5,052 research outputs found

    Analysis of FMRI Exams Through Unsupervised Learning and Evaluation Index

    Get PDF
    In the last few years, the clustering of time series has seen significant growth and has proven effective in providing useful information in various domains of use. This growing interest in time series clustering is the result of the effort made by the scientific community in the context of time data mining. For these reasons, the first phase of the thesis focused on the study of the data obtained from fMRI exams carried out in task-based and resting state mode, using and comparing different clustering algorithms: SelfOrganizing map (SOM), the Growing Neural Gas (GNG) and Neural Gas (NG) which are crisp-type algorithms, a fuzzy algorithm, the Fuzzy C algorithm, was also used (FCM). The evaluation of the results obtained by using clustering algorithms was carried out using the Davies Bouldin evaluation index (DBI or DB index). Clustering evaluation is the second topic of this thesis. To evaluate the validity of the clustering, there are specific techniques, but none of these is already consolidated for the study of fMRI exams. Furthermore, the evaluation of evaluation techniques is still an open research field. Eight clustering validation indexes (CVIs) applied to fMRI data clustering will be analysed. The validation indices that have been used are Pakhira Bandyopadhyay Maulik Index (crisp and fuzzy), Fukuyama Sugeno Index, Rezaee Lelieveldt Reider Index, Wang Sun Jiang Index, Xie Beni Index, Davies Bouldin Index, Soft Davies Bouldin Index. Furthermore, an evaluation of the evaluation indices will be carried out, which will take into account the sub-optimal performance obtained by the indices, through the introduction of new metrics. Finally, a new methodology for the evaluation of CVIs will be introduced, which will use an ANFIS model

    Harmony Search-Based Cluster Initialization For Fuzzy C-Means Segmentation Of MR Images.

    Get PDF
    We propose a new approach to tackle the well known fuzzy c-means (FCM) initialization problem

    Harmony search-based cluster initialization for fuzzy c-means segmentation of MR images

    Full text link

    Contributions in computational intelligence with results in functional neuroimaging

    Get PDF
    This thesis applies computational intelligence methodologies to study functional brain images. It is a state-of-the-art application relative to unsupervised learning domain to functional neuroimaging. There are also contributions related to computational intelligence on topics relative to clustering validation and spatio-temporal clustering analysis. Speci_cally, there are the presentation of a new separation measure based on fuzzy sets theory to establish the validity of the fuzzy clustering outcomes and the presentation of a framework to approach the parcellation of functional neuroimages taking in account both spatial and temporal patterns. These contributions have been applied to neuroimages obtained with functional Magnetic Resonance Imaging, using both active and passive paradigm and using both in-house data and fMRI repository. The results obtained shown, globally, an improvement on the quality of the neuroimaging analysis using the methodological contributions proposed

    Fuzzy spectral clustering methods for textual data

    Get PDF
    Nowadays, the development of advanced information technologies has determined an increase in the production of textual data. This inevitable growth accentuates the need to advance in the identification of new methods and tools able to efficiently analyse such kind of data. Against this background, unsupervised classification techniques can play a key role in this process since most of this data is not classified. Document clustering, which is used for identifying a partition of clusters in a corpus of documents, has proven to perform efficiently in the analyses of textual documents and it has been extensively applied in different fields, from topic modelling to information retrieval tasks. Recently, spectral clustering methods have gained success in the field of text classification. These methods have gained popularity due to their solid theoretical foundations which do not require any specific assumption on the global structure of the data. However, even though they prove to perform well in text classification problems, little has been done in the field of clustering. Moreover, depending on the type of documents analysed, it might be often the case that textual documents do not contain only information related to a single topic: indeed, there might be an overlap of contents characterizing different knowledge domains. Consequently, documents may contain information that is relevant to different areas of interest to some degree. The first part of this work critically analyses the main clustering algorithms used for text data, involving also the mathematical representation of documents and the pre-processing phase. Then, three novel fuzzy versions of spectral clustering algorithms for text data are introduced. The first one exploits the use of fuzzy K-medoids instead of K-means. The second one derives directly from the first one but is used in combination with Kernel and Set Similarity (KS2M), which takes into account the Jaccard index. Finally, in the third one, in order to enhance the clustering performance, a new similarity measure S∗ is proposed. This last one exploits the inherent sequential nature of text data by means of a weighted combination between the Spectrum string kernel function and a measure of set similarity. The second part of the thesis focuses on spectral bi-clustering algorithms for text mining tasks, which represent an interesting and partially unexplored field of research. In particular, two novel versions of fuzzy spectral bi-clustering algorithms are introduced. The two algorithms differ from each other for the approach followed in the identification of the document and the word partitions. Indeed, the first one follows a simultaneous approach while the second one a sequential approach. This difference leads also to a diversification in the choice of the number of clusters. The adequacy of all the proposed fuzzy (bi-)clustering methods is evaluated by experiments performed on both real and benchmark data sets

    S-Divergence-Based Internal Clustering Validation Index

    Get PDF
    A clustering validation index (CVI) is employed to evaluate an algorithm’s clustering results. Generally, CVI statistics can be split into three classes, namely internal, external, and relative cluster validations. Most of the existing internal CVIs were designed based on compactness (CM) and separation (SM). The distance between cluster centers is calculated by SM, whereas the CM measures the variance of the cluster. However, the SM between groups is not always captured accurately in highly overlapping classes. In this article, we devise a novel internal CVI that can be regarded as a complementary measure to the landscape of available internal CVIs. Initially, a database’s clusters are modeled as a non-parametric density function estimated using kernel density estimation. Then the S-divergence (SD) and S-distance are introduced for measuring the SM and the CM, respectively. The SD is defined based on the concept of Hermitian positive definite matrices applied to density functions. The proposed internal CVI (PM) is the ratio of CM to SM. The PM outperforms the legacy measures presented in the literature on both superficial and realistic databases in various scenarios, according to empirical results from four popular clustering algorithms, including fuzzy k-means, spectral clustering, density peak clustering, and density-based spatial clustering applied to noisy data

    Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints

    Get PDF
    In socio-economical clustering often the empirical information is represented by time-varying data generated by indicators observed over time on a set of subnational (regional) units. Usually among these units may exist contiguity relations, spatial but not only.In this paper we propose a fuzzy clustering model of multivariate time-varying data, the longitudinal fuzzy C-Medoids clustering with contiguity constraints. The temporal aspect is dealt with by using appropriate measures of dissimilarity between time trajectories. The contiguity among units is dealt with adding a contiguity matrix as a penalization term in the clustering model.The cross sectional fuzzy C-Medoids clustering with contiguity constraints is obtained considering one instant of time. The model is applied to the classification of the European NUTS on the basis of the observed dynamics of the Basic, Efficiency and Innovation subindexes of the Regional Competitiveness Index (RCI) 2013 and 2016. The positioning of the Italian regions is analyzed through the values of the medoids of the clusters and shows the peculiarities of the regions with respect to the subindexes either in single times or in the dynamic. Two contiguity constraints, one based on the European Western, Southern, Central and Northern geographic areas and one on the level of GDP—taken into account in the computation of the RCI—are also introduced in the models

    A Hybrid Enhanced Independent Component Analysis Approach for Segmentation of Brain Magnetic Resonance Image

    Get PDF
    Medical imaging and analysis plays a crucial role in diagnosis and treatment planning. The anatomical complexity of human brain makes the process of imaging and analyzing very difficult. In spite of huge advancements in medical imaging procedures, accurate segmentation and classification of brain abnormalities remains a challenging and daunting task. This challenge is more visible in the case of brain tumors because of different possible shapes of tumors, locations and image intensities of different types of tumors. In this paper we have presented a method for automated segmentation of brain tumors from magnetic resonance images. An enhanced and modified Gaussian mixture mode model and the independent component analysis segmentation approach has been employed for segmenting brain tumors in magnetic resonance images. The results of segmentation are validated with the help of segmentation evaluation parameters
    corecore