15 research outputs found

    Local search for stable marriage problems with ties and incomplete lists

    Full text link
    The stable marriage problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. We consider a useful variation of the stable marriage problem, where the men and women express their preferences using a preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these preference lists. In this setting, we study the problem of finding a stable matching that marries as many people as possible. Stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. This problem is NP-hard. We tackle this problem using local search, exploiting properties of the problem to reduce the size of the neighborhood and to make local moves efficiently. Experimental results show that this approach is able to solve large problems, quickly returning stable matchings of large and often optimal size.Comment: 12 pages, Proc. PRICAI 2010 (11th Pacific Rim International Conference on Artificial Intelligence), Byoung-Tak Zhang and Mehmet A. Orgun eds., Springer LNA

    Local search for stable marriage problems

    Full text link
    The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on Computational Social Choice

    A constraint programming approach to the hospitals/residents problem

    Get PDF
    An instance I of the Hospitals/Residents problem (HR) involves a set of residents (graduating medical students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the hospitals, as do hospitals for residents. A solution of I is a <i>stable matching</i>, which is an assignment of residents to hospitals that respects the capacity conditions and preference lists in a precise way. In this paper we present constraint encodings for HR that give rise to important structural properties. We also present a computational study using both randomly-generated and real-world instances. We provide additional motivation for our models by indicating how side constraints can be added easily in order to solve hard variants of HR

    Set Constraint Model and Automated Encoding into SAT: Application to the Social Golfer Problem

    Get PDF
    On the one hand, Constraint Satisfaction Problems allow one to declaratively model problems. On the other hand, propositional satisfiability problem (SAT) solvers can handle huge SAT instances. We thus present a technique to declaratively model set constraint problems and to encode them automatically into SAT instances. We apply our technique to the Social Golfer Problem and we also use it to break symmetries of the problem. Our technique is simpler, more declarative, and less error-prone than direct and improved hand modeling. The SAT instances that we automatically generate contain less clauses than improved hand-written instances such as in [20], and with unit propagation they also contain less variables. Moreover, they are well-suited for SAT solvers and they are solved faster as shown when solving difficult instances of the Social Golfer Problem.Comment: Submitted to Annals of Operations researc

    A Constraint Programming Approach to the Hospitals / Residents Problem

    Get PDF
    An instance I of the Hospitals / Residents problem (HR) involves a set of residents (graduating medical students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the hospitals, as do hospitals for residents. A solution of I is a stable matching, which is an assignment of residents to hospitals that respects the capacity conditions and preference lists in a precise way. In this paper we present constraint encodings for HR that give rise to important structural properties. We also present a computational study using both randomly-generated and real-world instances. Our study suggests that Constraint Programming is indeed an applicable technology for solving this problem, in terms of both theory and practice

    Hardness of Instance Generation with Optimal Solutions for the Stable Marriage Problem

    Get PDF
    In a variant of the stable marriage problem where ties and incomplete lists are allowed, finding a stable matching of maximum cardinality is known to be NP-hard. There are a lot of experimental studies for evaluating the performance of approximation algorithms or heuristics, using randomly generated or artificial instances. One of standard evaluation methods is to compare an algorithm's solution with an optimal solution, but finding an optimal solution itself is already hard. In this paper, we investigate the possibility of generating instances with known optimal solutions. We propose three instance generators based on a known random generation algorithm, but unfortunately show that none of them meet our requirements, implying a difficulty of instance generation in this approach

    A specialised constraint approach for stable matching problems

    Get PDF
    Constraint programming is a generalised framework designed to solve combinatorial problems. This framework is made up of a set of predefined independent components and generalised algorithms. This is a very versatile structure which allows for a variety of rich combinatorial problems to be represented and solved relatively easily. Stable matching problems consist of a set of participants wishing to be matched into pairs or groups in a stable manner. A matching is said to be stable if there is no pair or group of participants that would rather make a private arrangement to improve their situation and thus undermine the matching. There are many important "real life" applications of stable matching problems across the world. Some of which includes the Hospitals/Residents problem in which a set of graduating medical students, also known as residents, need to be assigned to hospital posts. Some authorities assign children to schools as a stable matching problem. Many other such problems are also tackled as stable matching problems. A number of classical stable matching problems have efficient specialised algorithmic solutions. Constraint programming solutions to stable matching problems have been investigated in the past. These solutions have been able to match the theoretically optimal time complexities of the algorithmic solutions. However, empirical evidence has shown that in reality these constraint solutions run significantly slower than the specialised algorithmic solutions. Furthermore, their memory requirements prohibit them from solving problems which the specialised algorithmic solutions can solve in a fraction of a second. My contribution investigates the possibility of modelling stable matching problems as specialised constraints. The motivation behind this approach was to find solutions to these problems which maintain the versatility of the constraint solutions, whilst significantly reducing the performance gap between constraint and specialised algorithmic solutions. To this end specialised constraint solutions have been developed for the stable marriage problem and the Hospitals/Residents problem. Empirical evidence has been presented which shows that these solutions can solve significantly larger problems than previously published constraint solutions. For these larger problem instances it was seen that the specialised constraint solutions came within a factor of four of the time required by algorithmic solutions. It has also been shown that, through further specialisation, these constraint solutions can be made to run significantly faster. However, these improvements came at the cost of versatility. As a demonstration of the versatility of these solutions it is shown that, by adding simple side constraints, richer problems can be easily modelled. These richer problems add additional criteria and/or an optimisation requirement to the original stable matching problems. Many of these problems have been proven to be NP-Hard and some have no known algorithmic solutions. Included with these models are results from empirical studies which show that these are indeed feasible solutions to the richer problems. Results from the studies also provide some insight into the structure of these problems, some of which have had little or no previous study

    An Empirical Study of the Stable Marriage Problem with Ties and Incomplete Lists

    No full text
    We present the first complete algorithm for the SMTI problem, the stable marriage problem with ties and incomplete lists. We do this in the form of a constraint programming encoding of the problem. With this we are able to carry out the first empirical study of the complete solution of SMTI instances. In the stable marriage problem (SM) [5] we have n men and n women. Each man ranks the n women, giving himself a preference list. Similarly each woman ranks the men, giving herself a preference list. The problem is then to marry men and women such that they are stable i.e. such that there is no incentive for individuals to divorce and elope. This problem is polynomial time solvable. However, when preference lists contain ties and are incomplete (SMTI) the problem of determining if there is a stable matching of size n is then NP-complete, as is the optimisation problem of finding the largest or smallest stable matching [6, 10]. In this paper we present constraint programming solutions for the SMTI decision and optimisation problems, a problem generator for random instances of SMTI, and an empirical study of this problem.</p
    corecore