40,606 research outputs found

    Class movement and re-location: An empirical study of Java inheritance evolution

    Get PDF
    This is the post-print version of the final paper published in Journal of Systems and Software. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Inheritance is a fundamental feature of the Object-Oriented (OO) paradigm. It is used to promote extensibility and reuse in OO systems. Understanding how systems evolve, and specifically, trends in the movement and re-location of classes in OO hierarchies can help us understand and predict future maintenance effort. In this paper, we explore how and where new classes were added as well as where existing classes were deleted or moved across inheritance hierarchies from multiple versions of four Java systems. We observed first, that in one of the studied systems the same set of classes was continuously moved across the inheritance hierarchy. Second, in the same system, the most frequent changes were restricted to just one sub-part of the overall system. Third, that a maximum of three levels may be a threshold when using inheritance in a system; beyond this level very little activity was observed, supporting earlier theories that, beyond three levels, complexity becomes overwhelming. We also found evidence of ‘collapsing’ hierarchies to bring classes up to shallower levels. Finally, we found that larger classes and highly coupled classes were more frequently moved than smaller and less coupled classes. Statistical evidence supported the view that larger classes and highly coupled classes were less cohesive than smaller classes and lowly coupled classes and were thus more suitable candidates for being moved (within an hierarchy)

    A framework for the simulation of structural software evolution

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2008 ACM.As functionality is added to an aging piece of software, its original design and structure will tend to erode. This can lead to high coupling, low cohesion and other undesirable effects associated with spaghetti architectures. The underlying forces that cause such degradation have been the subject of much research. However, progress in this field is slow, as its complexity makes it difficult to isolate the causal flows leading to these effects. This is further complicated by the difficulty of generating enough empirical data, in sufficient quantity, and attributing such data to specific points in the causal chain. This article describes a framework for simulating the structural evolution of software. A complete simulation model is built by incrementally adding modules to the framework, each of which contributes an individual evolutionary effect. These effects are then combined to form a multifaceted simulation that evolves a fictitious code base in a manner approximating real-world behavior. We describe the underlying principles and structures of our framework from a theoretical and user perspective; a validation of a simple set of evolutionary parameters is then provided and three empirical software studies generated from open-source software (OSS) are used to support claims and generated results. The research illustrates how simulation can be used to investigate a complex and under-researched area of the development cycle. It also shows the value of incorporating certain human traits into a simulation—factors that, in real-world system development, can significantly influence evolutionary structures

    Structured Review of the Evidence for Effects of Code Duplication on Software Quality

    Get PDF
    This report presents the detailed steps and results of a structured review of code clone literature. The aim of the review is to investigate the evidence for the claim that code duplication has a negative effect on code changeability. This report contains only the details of the review for which there is not enough place to include them in the companion paper published at a conference (Hordijk, Ponisio et al. 2009 - Harmfulness of Code Duplication - A Structured Review of the Evidence)

    Extracting Build Changes with BUILDDIFF

    Full text link
    Build systems are an essential part of modern software engineering projects. As software projects change continuously, it is crucial to understand how the build system changes because neglecting its maintenance can lead to expensive build breakage. Recent studies have investigated the (co-)evolution of build configurations and reasons for build breakage, but they did this only on a coarse grained level. In this paper, we present BUILDDIFF, an approach to extract detailed build changes from MAVEN build files and classify them into 95 change types. In a manual evaluation of 400 build changing commits, we show that BUILDDIFF can extract and classify build changes with an average precision and recall of 0.96 and 0.98, respectively. We then present two studies using the build changes extracted from 30 open source Java projects to study the frequency and time of build changes. The results show that the top 10 most frequent change types account for 73% of the build changes. Among them, changes to version numbers and changes to dependencies of the projects occur most frequently. Furthermore, our results show that build changes occur frequently around releases. With these results, we provide the basis for further research, such as for analyzing the (co-)evolution of build files with other artifacts or improving effort estimation approaches. Furthermore, our detailed change information enables improvements of refactoring approaches for build configurations and improvements of models to identify error-prone build files.Comment: Accepted at the International Conference of Mining Software Repositories (MSR), 201

    Proactive Empirical Assessment of New Language Feature Adoption via Automated Refactoring: The Case of Java 8 Default Methods

    Full text link
    Programming languages and platforms improve over time, sometimes resulting in new language features that offer many benefits. However, despite these benefits, developers may not always be willing to adopt them in their projects for various reasons. In this paper, we describe an empirical study where we assess the adoption of a particular new language feature. Studying how developers use (or do not use) new language features is important in programming language research and engineering because it gives designers insight into the usability of the language to create meaning programs in that language. This knowledge, in turn, can drive future innovations in the area. Here, we explore Java 8 default methods, which allow interfaces to contain (instance) method implementations. Default methods can ease interface evolution, make certain ubiquitous design patterns redundant, and improve both modularity and maintainability. A focus of this work is to discover, through a scientific approach and a novel technique, situations where developers found these constructs useful and where they did not, and the reasons for each. Although several studies center around assessing new language features, to the best of our knowledge, this kind of construct has not been previously considered. Despite their benefits, we found that developers did not adopt default methods in all situations. Our study consisted of submitting pull requests introducing the language feature to 19 real-world, open source Java projects without altering original program semantics. This novel assessment technique is proactive in that the adoption was driven by an automatic refactoring approach rather than waiting for developers to discover and integrate the feature themselves. In this way, we set forth best practices and patterns of using the language feature effectively earlier rather than later and are able to possibly guide (near) future language evolution. We foresee this technique to be useful in assessing other new language features, design patterns, and other programming idioms
    • 

    corecore