6 research outputs found

    An Empirical Analysis of Amazon EC2 Spot Instance Features Affecting Cost-effective Resource Procurement

    No full text
    <p>This repository contains code and data for the paper "An Empirical Analysis of Amazon EC2 Spot Instance Features Affecting Cost-effective Resource Procurement", by Cheng Wang, Qianlin Liang and Bhuvan Urgaonkar.</p

    Design of E-Procurement System In CV. W3 INDONESIA

    Get PDF
    This research is a part of the implementation of e-procurement in CV. W3 Indonesia. The procurement was done conventionally using paper forms which were filled and submitted to the supervisor to get approval. After that, the purchasing department would purchase the items ordered. The design and implementation of this e-procurement resulted a system that is able to improve efficiency procurement processes time, and reduce operational costs by eliminating paper that was originally used as a medium for communication and verification

    Pricing the Cloud: An Auction Approach

    Get PDF
    Cloud computing has changed the processing and service modes of information communication technology and has affected the transformation, upgrading and innovation of the IT-related industry systems. The rapid development of cloud computing in business practice has spawned a whole new field of interdisciplinary, providing opportunities and challenges for business management research. One of the critical factors impacting cloud computing is how to price cloud services. An appropriate pricing strategy has important practical means to stakeholders, especially to providers and customers. This study addressed and discussed research findings on cloud computing pricing strategies, such as fixed pricing, bidding pricing, and dynamic pricing. Another key factor for cloud computing is Quality of Service (QoS), such as availability, reliability, latency, security, throughput, capacity, scalability, elasticity, etc. Cloud providers seek to improve QoS to attract more potential customers; while, customers intend to find QoS matching services that do not exceed their budget constraints. Based on the existing study, a hybrid QoS-based pricing mechanism, which consists of subscription and dynamic auction design, is proposed and illustrated to cloud services. The results indicate that our hybrid pricing mechanism has potential to better allocate available cloud resources, aiming at increasing revenues for providers and reducing expenses for customers in practice

    Intelligent Load Balancing in Cloud Computer Systems

    Get PDF
    Cloud computing is an established technology allowing users to share resources on a large scale, never before seen in IT history. A cloud system connects multiple individual servers in order to process related tasks in several environments at the same time. Clouds are typically more cost-effective than single computers of comparable computing performance. The sheer physical size of the system itself means that thousands of machines may be involved. The focus of this research was to design a strategy to dynamically allocate tasks without overloading Cloud nodes which would result in system stability being maintained at minimum cost. This research has added the following new contributions to the state of knowledge: (i) a novel taxonomy and categorisation of three classes of schedulers, namely OS-level, Cluster and Big Data, which highlight their unique evolution and underline their different objectives; (ii) an abstract model of cloud resources utilisation is specified, including multiple types of resources and consideration of task migration costs; (iii) a virtual machine live migration was experimented with in order to create a formula which estimates the network traffic generated by this process; (iv) a high-fidelity Cloud workload simulator, based on a month-long workload traces from Google's computing cells, was created; (v) two possible approaches to resource management were proposed and examined in the practical part of the manuscript: the centralised metaheuristic load balancer and the decentralised agent-based system. The project involved extensive experiments run on the University of Westminster HPC cluster, and the promising results are presented together with detailed discussions and a conclusion
    corecore