5,579 research outputs found

    Deep Learning-Based Multiple Object Visual Tracking on Embedded System for IoT and Mobile Edge Computing Applications

    Get PDF
    Compute and memory demands of state-of-the-art deep learning methods are still a shortcoming that must be addressed to make them useful at IoT end-nodes. In particular, recent results depict a hopeful prospect for image processing using Convolutional Neural Netwoks, CNNs, but the gap between software and hardware implementations is already considerable for IoT and mobile edge computing applications due to their high power consumption. This proposal performs low-power and real time deep learning-based multiple object visual tracking implemented on an NVIDIA Jetson TX2 development kit. It includes a camera and wireless connection capability and it is battery powered for mobile and outdoor applications. A collection of representative sequences captured with the on-board camera, dETRUSC video dataset, is used to exemplify the performance of the proposed algorithm and to facilitate benchmarking. The results in terms of power consumption and frame rate demonstrate the feasibility of deep learning algorithms on embedded platforms although more effort to joint algorithm and hardware design of CNNs is needed.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Dynamic Vision Sensor integration on FPGA-based CNN accelerators for high-speed visual classification

    Get PDF
    Deep-learning is a cutting edge theory that is being applied to many fields. For vision applications the Convolutional Neural Networks (CNN) are demanding significant accuracy for classification tasks. Numerous hardware accelerators have populated during the last years to improve CPU or GPU based solutions. This technology is commonly prototyped and tested over FPGAs before being considered for ASIC fabrication for mass production. The use of commercial typical cameras (30fps) limits the capabilities of these systems for high speed applications. The use of dynamic vision sensors (DVS) that emulate the behavior of a biological retina is taking an incremental importance to improve this applications due to its nature, where the information is represented by a continuous stream of spikes and the frames to be processed by the CNN are constructed collecting a fixed number of these spikes (called events). The faster an object is, the more events are produced by DVS, so the higher is the equivalent frame rate. Therefore, these DVS utilization allows to compute a frame at the maximum speed a CNN accelerator can offer. In this paper we present a VHDL/HLS description of a pipelined design for FPGA able to collect events from an Address-Event-Representation (AER) DVS retina to obtain a normalized histogram to be used by a particular CNN accelerator, called NullHop. VHDL is used to describe the circuit, and HLS for computation blocks, which are used to perform the normalization of a frame needed for the CNN. Results outperform previous implementations of frames collection and normalization using ARM processors running at 800MHz on a Zynq7100 in both latency and power consumption. A measured 67% speedup factor is presented for a Roshambo CNN real-time experiment running at 160fps peak rate.Comment: 7 page

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Performance evaluation over HW/SW co-design SoC memory transfers for a CNN accelerator

    Get PDF
    Many FPGAs vendors have recently included embedded processors in their devices, like Xilinx with ARM-Cortex A cores, together with programmable logic cells. These devices are known as Programmable System on Chip (PSoC). Their ARM cores (embedded in the processing system or PS) communicates with the programmable logic cells (PL) using ARM-standard AXI buses. In this paper we analyses the performance of exhaustive data transfers between PS and PL for a Xilinx Zynq FPGA in a co-design real scenario for Convolutional Neural Networks (CNN) accelerator, which processes, in dedicated hardware, a stream of visual information from a neuromorphic visual sensor for classification. In the PS side, a Linux operating system is running, which recollects visual events from the neuromorphic sensor into a normalized frame, and then it transfers these frames to the accelerator of multi-layered CNNs, and read results, using an AXI-DMA bus in a per-layer way. As these kind of accelerators try to process information as quick as possible, data bandwidth becomes critical and maintaining a good balanced data throughput rate requires some considerations. We present and evaluate several data partitioning techniques to improve the balance between RX and TX transfer and two different ways of transfers management: through a polling routine at the userlevel of the OS, and through a dedicated interrupt-based kernellevel driver. We demonstrate that for longer enough packets, the kernel-level driver solution gets better timing in computing a CNN classification example. Main advantage of using kernel-level driver is to have safer solutions and to have tasks scheduling in the OS to manage other important processes for our application, like frames collection from sensors and their normalization.Ministerio de Economía y Competitividad TEC2016-77785-
    corecore