4,918 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Understanding multidimensional verification: Where functional meets non-functional

    Get PDF
    Abstract Advancements in electronic systems' design have a notable impact on design verification technologies. The recent paradigms of Internet-of-Things (IoT) and Cyber-Physical Systems (CPS) assume devices immersed in physical environments, significantly constrained in resources and expected to provide levels of security, privacy, reliability, performance and low-power features. In recent years, numerous extra-functional aspects of electronic systems were brought to the front and imply verification of hardware design models in multidimensional space along with the functional concerns of the target system. However, different from the software domain such a holistic approach remains underdeveloped. The contributions of this paper are a taxonomy for multidimensional hardware verification aspects, a state-of-the-art survey of related research works and trends enabling the multidimensional verification concept. Further, an initial approach to perform multidimensional verification based on machine learning techniques is evaluated. The importance and challenge of performing multidimensional verification is illustrated by an example case study

    Automatic synthesis of application-specific processors

    Get PDF
    Thesis (D. Tech. (Engineering: Electrical)) -- Central University of technology, Free State, 2012This thesis describes a method for the automatic generation of appli- cation speci_c processors. The thesis was organized into three sepa- rate but interrelated studies, which together provide: a justi_cation for the method used, a theory that supports the method, and a soft- ware application that realizes the method. The _rst study looked at how modern day microprocessors utilize their hardware resources and it proposed a metric, called core density, for measuring the utilization rate. The core density is a function of the microprocessor's instruction set and the application scheduled to run on that microprocessor. This study concluded that modern day microprocessors use their resources very ine_ciently and proposed the use of subset processors to exe- cute the same applications more e_ciently. The second study sought to provide a theoretical framework for the use of subset processors by developing a generic formal model of computer architecture. To demonstrate the model's versatility, it was used to describe a number of computer architecture components and entire computing systems. The third study describes the development of a set of software tools that enable the automatic generation of application speci_c proces- sors. The FiT toolkit automatically generates a unique Hardware Description Language (HDL) description of a processor based on an application binary _le and a parameterizable template of a generic mi- croprocessor. Area-optimized and performance-optimized custom soft processors were generated using the FiT toolkit and the utilization of the hardware resources by the custom soft processors was character- ized. The FiT toolkit was combined with an ANSI C compiler and a third-party tool for programming _eld-programmable gate arrays (FPGAs) to create an unconstrained C-to-silicon compiler

    Generic Pipelined Processor Modeling and High Performance Cycle-Accurate Simulator Generation

    Full text link
    Detailed modeling of processors and high performance cycle-accurate simulators are essential for today's hardware and software design. These problems are challenging enough by themselves and have seen many previous research efforts. Addressing both simultaneously is even more challenging, with many existing approaches focusing on one over another. In this paper, we propose the Reduced Colored Petri Net (RCPN) model that has two advantages: first, it offers a very simple and intuitive way of modeling pipelined processors; second, it can generate high performance cycle-accurate simulators. RCPN benefits from all the useful features of Colored Petri Nets without suffering from their exponential growth in complexity. RCPN processor models are very intuitive since they are a mirror image of the processor pipeline block diagram. Furthermore, in our experiments on the generated cycle-accurate simulators for XScale and StrongArm processor models, we achieved an order of magnitude (~15 times) speedup over the popular SimpleScalar ARM simulator.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    A selective dynamic compiler for embedded Java virtual machine targeting ARM processors

    Get PDF
    Tableau d’honneur de la FacultĂ© des Ă©tudes supĂ©rieures et postdoctorales, 2004-2005Ce travail prĂ©sente une nouvelle technique de compilation dynamique sĂ©lective pour les systĂšmes embarquĂ©s avec processeurs ARM. Ce compilateur a Ă©tĂ© intĂ©grĂ© dans la plateforme J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Con- figuration). L’objectif principal de notre travail est d’obtenir une machine virtuelle accĂ©lĂ©rĂ©e, lĂ©gĂšre et compacte prĂȘte pour l’exĂ©cution sur les systĂšmes embarquĂ©s. Cela est atteint par l’implĂ©mentation d’un compilateur dynamique sĂ©lectif pour l’architecture ARM dans la Kilo machine virtuelle de Sun (KVM). Ce compilateur est appelĂ© Armed E-Bunny. PremiĂšrement, on prĂ©sente la plateforme Java, le Java 2 Micro Edition(J2ME) pour les systĂšmes embarquĂ©s et les composants de la machine virtuelle Java. Ensuite, on discute les diffĂ©rentes techniques d’accĂ©lĂ©ration pour la machine virtuelle Java et on dĂ©taille le principe de la compilation dynamique. Enfin, on illustre l’architecture, le design (la conception), l’implĂ©mentation et les rĂ©sultats expĂ©rimentaux de notre compilateur dynamique sĂ©lective Armed E-Bunny. La version modifiĂ©e de KVM a Ă©tĂ© portĂ©e sur un ordinateur de poche (PDA) et a Ă©tĂ© testĂ©e en utilisant un benchmark standard de J2ME. Les rĂ©sultats expĂ©rimentaux de la performance montrent une accĂ©lĂ©ration de 360 % par rapport Ă  la derniĂšre version de la KVM de Sun avec un espace mĂ©moire additionnel qui n’excĂšde pas 119 kilobytes.This work presents a new selective dynamic compilation technique targeting ARM 16/32-bit embedded system processors. This compiler is built inside the J2ME/CLDC (Java 2 Micro Edition for Connected Limited Device Configuration) platform. The primary objective of our work is to come up with an efficient, lightweight and low-footprint accelerated Java virtual machine ready to be executed on embedded machines. This is achieved by implementing a selective ARM dynamic compiler called Armed E-Bunny into Sun’s Kilobyte Virtual Machine (KVM). We first present the Java platform, Java 2 Micro Edition (J2ME) for embedded systems and Java virtual machine components. Then, we discuss the different acceleration techniques for Java virtual machine and we detail the principle of dynamic compilation. After that we illustrate the architecture, design, implementation and experimental results of our selective dynamic compiler Armed E-Bunny. The modified KVM is ported on a handheld PDA and is tested using standard J2ME benchmarks. The experimental results on its performance demonstrate that a speedup of 360% over the last version of Sun’s KVM is accomplished with a footprint overhead that does not exceed 119 kilobytes

    A Framework for Uncertain Cloud Data Security and Recovery Based on Hybrid Multi-User Medical Decision Learning Patterns

    Get PDF
    Machine learning has been supporting real-time cloud based medical computing systems. However, most of the computing servers are independent of data security and recovery scheme in multiple virtual machines due to high computing cost and time. Also, this cloud based medical applications require static security parameters for cloud data security. Cloud based medical applications require multiple servers to store medical records or machine learning patterns for decision making. Due to high Uncertain computational memory and time, these cloud systems require an efficient data security framework to provide strong data access control among the multiple users. In this work, a hybrid cloud data security framework is developed to improve the data security on the large machine learning patterns in real-time cloud computing environment. This work is implemented in two phases’ i.e. data replication phase and multi-user data access security phase. Initially, machine decision patterns are replicated among the multiple servers for Uncertain data recovering phase. In the multi-access cloud data security framework, a hybrid multi-access key based data encryption and decryption model is implemented on the large machine learning medical patterns for data recovery and security process. Experimental results proved that the present two-phase data recovering, and security framework has better computational efficiency than the conventional approaches on large medical decision patterns
    • 

    corecore