45 research outputs found

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system

    A Systematic Literature Survey of Unmanned Aerial Vehicle Based Structural Health Monitoring

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are being employed in a multitude of civil applications owing to their ease of use, low maintenance, affordability, high-mobility, and ability to hover. UAVs are being utilized for real-time monitoring of road traffic, providing wireless coverage, remote sensing, search and rescue operations, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. They are the next big revolution in technology and civil infrastructure, and it is expected to dominate more than $45 billion market value. The thesis surveys the UAV assisted Structural Health Monitoring or SHM literature over the last decade and categorize UAVs based on their aerodynamics, payload, design of build, and its applications. Further, the thesis presents the payload product line to facilitate the SHM tasks, details the different applications of UAVs exploited in the last decade to support civil structures, and discusses the critical challenges faced in UASHM applications across various domains. Finally, the thesis presents two artificial neural network-based structural damage detection models and conducts a detailed performance evaluation on multiple platforms like edge computing and cloud computing

    DroneSig: Lightweight Digital Signature Protocol for Micro Aerial Vehicles

    Get PDF
    Micro aerial vehicles a.k.a. drones, have become an integral part of a variety of civilian and military application domains, including but not limited to aerial surveying and mapping, aerial surveillance and security, aerial inspection of infrastructure, and aerial delivery. Meanwhile, the cybersecurity of drones is gaining significant attention due to both financial and strategic information and value involved in aerial applications. As a result of the lack of security features in the communication protocol, an adversary can easily interfere with on-going communications or even seize control of the drone. In this thesis, we propose a lightweight digital signature protocol, also referred to as DroneSig, to protect drones from a man-in-the-middle attack, where an adversary eavesdrops the communication between Ground Control Station (GCS) and drone, and impersonates the GCS and sends fake commands to terminate the on-going mission or even take control over the drone. The basic idea of the DroneSig is that the drone will only execute the new command after validating the received digital signature from the GCS, proving that the new command message is coming from the authenticated GCS. If the validation of the digital signature fails, the new command is rejected immediately, and the Return-to-Launch (RTL) mode is initiated and forces the drone to return to the take-off position. We conduct extensive simulation experiments for performance evaluation and comparison using OMNeT++, and simulation results show that the proposed lightweight digital signature protocol achieves better performance in terms of energy consumption and computation time compared to the standard Advanced Encryption Standard (AES) cryptographic technique

    Model of on-line control for the smart object by communication technologies

    Get PDF
    Based on analysis of opportunities of usage existing models, methods and techniques for on-line monitoring and control of unmanned dynamic objects, a mathematical model of remote estimation of distance to wire-controlled unmanned mobile object is proposed. The presence of model and techniques of remote estimation of distance to wirecontrolled unmanned object increases the reliability of control for exclusion of critical situations in the strict radio counteraction conditions and powerful electromagnetic jamming setting during control

    Model of on-line control for the smart object by communication technologies

    Get PDF
    Based on analysis of opportunities of usage existing models, methods and techniques for on-line monitoring and control of unmanned dynamic objects, a mathematical model of remote estimation of distance to wire-controlled unmanned mobile object is proposed. The presence of model and techniques of remote estimation of distance to wirecontrolled unmanned object increases the reliability of control for exclusion of critical situations in the strict radio counteraction conditions and powerful electromagnetic jamming setting during control

    Securing a UAV Using Features from an EEG Signal

    Get PDF
    This thesis focuses on an approach which entails the extraction of Beta component of the EEG (Electroencephalogram) signal of a user and uses his/her EEG beta data to generate a random AES (Advanced Encryption Standard) encryption key. This Key is used to encrypt the communication between the UAVs (Unmanned aerial vehicles) and the ground control station. UAVs have attracted both commercial and military organizations in recent years. The progress in this field has reached significant popularity, and the research has incorporated different areas from the scientific domain. UAV communication became a significant concern when an attack on a Predator UAV occurred in 2009, which allowed the hijackers to get the live video stream. Since a UAVs major function depend on its onboard auto pilot, it is important to harden the system against vulnerabilities. In this thesis, we propose a biometric system to encrypt the UAV communication by generating a key which is derived from Beta component of the EEG signal of a user. We have developed a safety mechanism that gets activated in case the communication of the UAV from the ground control station gets attacked. This system was validated on a commercial UAV under malicious attack conditions during which we implement a procedure where the UAV return safely to an initially deployed "home" position

    A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions

    Full text link
    Thanks to the rapidly developing technology, unmanned aerial vehicles (UAVs) are able to complete a number of tasks in cooperation with each other without need for human intervention. In recent years, UAVs, which are widely utilized in military missions, have begun to be deployed in civilian applications and mostly for commercial purposes. With their growing numbers and range of applications, UAVs are becoming more and more popular; on the other hand, they are also the target of various threats which can exploit various vulnerabilities of UAV systems in order to cause destructive effects. It is therefore critical that security is ensured for UAVs and the networks that provide communication between UAVs. In this survey, we aimed to present a comprehensive detailed approach to security by classifying possible attacks against UAVs and flying ad hoc networks (FANETs). We classified the security threats into four major categories that make up the basic structure of UAVs; hardware attacks, software attacks, sensor attacks, and communication attacks. In addition, countermeasures against these attacks are presented in separate groups as prevention and detection. In particular, we focus on the security of FANETs, which face significant security challenges due to their characteristics and are also vulnerable to insider attacks. Therefore, this survey presents a review of the security fundamentals for FANETs, and also four different routing attacks against FANETs are simulated with realistic parameters and then analyzed. Finally, limitations and open issues are also discussed to direct future wor

    A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques

    Get PDF
    Unmanned Aerial Vehicles (UAV) have revolutionized the aircraft industry in this decade. UAVs are now capable of carrying out remote sensing, remote monitoring, courier delivery, and a lot more. A lot of research is happening on making UAVs more robust using energy harvesting techniques to have a better battery lifetime, network performance and to secure against attackers. UAV networks are many times used for unmanned missions. There have been many attacks on civilian, military, and industrial targets that were carried out using remotely controlled or automated UAVs. This continued misuse has led to research in preventing unauthorized UAVs from causing damage to life and property. In this paper, we present a literature review of UAVs, UAV attacks, and their prevention using anti-UAV techniques. We first discuss the different types of UAVs, the regulatory laws for UAV activities, their use cases, recreational, and military UAV incidents. After understanding their operation, various techniques for monitoring and preventing UAV attacks are described along with case studies
    corecore