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Abstract

This thesis focuses on an approach which entails the extraction of Beta component

of the EEG (Electroencephalogram) signal of a user and uses his/her EEG beta data

to generate a random AES (Advanced Encryption Standard) encryption key. This

Key is used to encrypt the communication between the UAVs (Unmanned aerial

vehicles) and the ground control station. UAVs have attracted both commercial

and military organizations in recent years. The progress in this field has reached

significant popularity, and the research has incorporated different areas from the

scientific domain. UAV communication became a significant concern when an attack

on a Predator UAV occurred in 2009, which allowed the hijackers to get the live

video stream. Since a UAVs major function depend on its onboard auto pilot, it is

important to harden the system against vulnerabilities. In this thesis, we propose a

biometric system to encrypt the UAV communication by generating a key which is

derived from Beta component of the EEG signal of a user. We have developed a safety

mechanism that gets activated in case the communication of the UAV from the ground

control station gets attacked. This system was validated on a commercial UAV under

malicious attack conditions during which we implement a procedure where the UAV

return safely to an initially deployed “home” position.
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Chapter 1

Introduction

1.1 Introduction

The use of unmanned aerial vehicles (UAVs) in civilian airspace has significantly

grown from public safety applications for commercial purposes, to personal use by

hobbyists and more aggressively in military applications. This increases at various

levels has subsequently led to the occurrence of several severe incidents of different

type of attacks on both military and civilian UAVs. Security flaws have been demon-

strated in recent investigations of both military and inexpensive consumer UAVs,

revealing these systems to be vulnerable to attack.

Commercial activities such as Google’s “Project Wing” [1] have managed to test

their drones for food delivery. Other company projects like Amazon’s “Prime Air”

service [2] aim to provide same-day package delivery. These successful projects would

place several drones in commercial airspace, near population centers, which would

increase the number of UAVs in civilian airspace and their proximity to people. It

would subsequently increase the potential for, and interest in, potential cyber-attacks
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on those UAVs. These potential threats need to be addressed to ensure that a UAV

completes its mission and is not used for a malicious purpose.

There have been several incidents where aerial robots have been remotely compro-

mised, which includes taking control of the UAV or making it crash-land. The first

well known cyber attack on a UAV occurred in 2009, when the Iraqi militants were

able to get live video feeds from an unsecured communication link used by a Predator

Drone, using readily available cheap software [3]. Other incidents such as in Octo-

ber 2011, a key-logging malware was found on Predator and Reaper ground control

stations, which got escalated quickly to both classified and unclassified computers [4].

The claimed theft of a Sentinel RQ-170 UAV by Iranian forces in December 2012

was a troubling incident. Hostile agents were able to compromise the control system

of the aircraft and remotely land the UAV, obtaining sensitive data including mission

and maintenance data. There are competing theories regarding how the RQ-170 Sen-

tinel may have been lost. The simplest theory is that a technical malfunction caused

the UAV to mistakenly land in Iranian territory [5]. A more nefarious possibility

is that through a vulnerability in a sensor system, the UAVs global position system

(GPS) could have been intentionally fooled into landing to a location where a hostile

agent intended. This type of attack is referred to as a “GPS-Spoofing” attack [5, 6].

An example of this type of attack was demonstrated using relatively inexpensive

equipment, thereby spoofing the GPS and taking complete control of UAV [7,8].

Control security for UAVs is an area of active study and development. Flight

tests have evaluated a new class of cyber-security solutions on a UAV performing a

video surveillance mission. Their goal was to protect military computer-controlled

remote systems from cyber-attacks. It included a new cyber-security layer called

“System-Aware” which depends on detailed knowledge of the design of the system

being protected. This layer of security provides both complement network and perime-
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ter security solutions and protects against supply chain and insider attacks that may

be embedded within a system [9].

UAV infrastructure is moving towards more network-centric command and con-

trol, where components are interconnected through mesh networks [10]. Some military

UAV systems, more specifically the Global Hawk, already has infrastructure of this

type. Public safety and disaster management UAVs are also moving to a similar

network architecture for planning and communication [11]. This enables fast com-

munication and constant environmental and asset awareness, but introduces security

drawbacks. Most elements of the UAV system are interconnected through a network

and if one component fails, it would affect the other components which might result

in malicious behavior throughout the system.

Certain simulation-based tests with active military UAV pilots have been exam-

ined which evaluates whether the autonomous behavior could provide a secure and

safe solution to an attack. The results from these tests indicate that the best course

of action includes navigating to an earlier way point or switching from GPS-guided

navigation to less precise, but more reliable navigation [9]. The UAV pilots presumed

that a System-Aware solution could automatically detect cyber-attacks.

An interesting perspective considers scenario of vendor and an attacker as a zero-

sum network interdiction game. From vendor’s perspective, the aim is to determine

an optimal strategy that evades attacks along the way during it’s travel from source

location to a destination point. It also takes the expected delivery time into consider-

ation, thereby maximizing the security of the UAVs communication. Similarly from

attacker’s perspective, the aim is to choose the optimal attack locations along the

path. This could result in potential physical or cyber damage which would eventually

maximize delivery time. Mathematically it was shown that this “network interdic-

tion” game is similar to a “zero-sum matrix game”. This results in two linear pro-
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gramming (LP) problems whose solutions attains a Nash Equilibrium (NE). Solving

the LP’s would give the expected delivery time under different conditions [12].

One potential solution uses bio-metric information to secure communication be-

tween a UAV and its command and control station. This would allow the UAV

to verify that its stated operator is issuing commands to the UAV. To the best of

our knowledge, bio-metric UAV authentication has been limited to facial recogni-

tion alone. Facial authentication is problematic since it can be easily deceived by

an attacker if they have a picture of the actual operator [13]. In this way, a more

secure bio-metric feature is needed. We propose to use the operator’s EEG signal

characteristics to secure communication between the operator and the UAV.

1.2 Contribution

In this work, we propose a technique which secures the UAV communication with the

ground control station using an encryption key generated using features of a user’s

electroencephalogram (EEG) signal. UAVs communicate using small mobile modules

called XBee. XBee’s secures communication using the AES (Advanced Encryption

Standard) encryption standard [14]. We developed a system to generate an AES

encryption key derived from an operator’s EEG signal, demonstrated a safety mecha-

nism activated in the case of a third-party attack, securing UAV communication using

a bio-metric data. This entire system was validated on a commercially available UAV.

We performed the testing on a UAV, where we encrypt its communication with the

ground control station by configuring the XBee’s AES encryption key using an EEG

bio-metric key. After configuring the XBee, we create a simple attack scenario, where

the third party or attacker is aware of the key and tries to attack the communication

which connects the UAV to the ground control station. We test our proposed safety
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solution that enables the UAV to detect that an attack has been attempted and

should return to the ‘home’ station.

1.3 Organization

This thesis is organized as follows. Chapter 2 presents a brief introduction to Un-

manned Autonomous Systems (UAS) or Unmanned Aerial Vehicles (UAV), its sensing

systems, UAV attacks, and threats and a brief introduction of EEG signal and its

parts. Chapter 3 describes the basic UAV communication and the types of commu-

nication attacks encountered so far (especially with XBees). Chapter 4 presents the

mathematical background for EEG signal feature extraction, Randomness Extraction,

and Key Generation and its usage for the UAVs. Chapter 5 presents experimental

results and discussion. Finally, Chapter 6 discusses thoughts on future work and

concludes the thesis.
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Chapter 2

Background

2.1 Unmanned Aerial Vehicles (UAS)

UAV, UAS or drones are all aircrafts which operates without a manned pilot. It

doesn’t mean that the pilot is absent, rather, piloting is controlled from a ground

control station. The rest of the setup is equivalent to any other manned systems or

unmanned aerial systems. This type of aircraft is intended to remain inside sight of

the administrator and is controlled remotely. Given the extensive research in this

field, even very basic UAV systems nowadays are equipped with a flight computer

and perform “intelligible” functions. These UAV systems come under the category

of Autonomous Systems which has been a leading research field. These UAVs are re-

searched to operate in changing environmental variables [15–17] which allow them to

navigate in hostile environments like investigating a forest fire [18], detecting struc-

tural faults, nuclear site inspections, etc. There are various types of UAVs being

used these days which serve different purposes. These are classified regarding their

applications.
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• Micro/Mini UAV: This category of UAVs are miniature and are light. Mi-

cro/Mini UAVs are mostly used in surveillance and scouting operations in small

buildings. “PD-100 Black Hornet” as shown in Fig. 2.1, is a good example of

UAV under this category.

Figure 2.1: PD-100 black hornet: Mini UAV
Source: http://futuristicnews.com/nano-uav-black-hornet-pd-100-prs/

• Tactical UAV: These UAVs (see Fig. 2.2) include other sub-types of UAVs based

on its functionality like Close Range (CR), Tactical UAVs Short Range (SR),

Medium Range (MR), Long Range (LR), Endurance (EN) and Medium Altitude

Long Endurance (MALE). These UAVs weigh around 150-1500 kilograms and

fly at an height of around 3000-8000 meters. Some examples under this category

are the RoboCopter 300.

Figure 2.2: A Military Tactical UAV
Source: http://uas.wales/w-101/

• Strategic UAV: These UAVs (see Fig. 2.3) have characteristics like heavy weight,
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altitude, data link, and endurance. Global Hawk is a popular UAV in this

category.

Figure 2.3: Global Hawk Strategic UAV
Source: http://www.defencetalk.com/pictures/mcas-miramar-2010/p40524-mq-4-

global-hawk-uavmiramar-2010.html

• Special Task UAV: These consists of different subgroups such as Lethal (LET)

and Decoys (DECs), Stratospheric(Strato), and Exo-Stratospheric (EXO) UAVs.

An example of a DEC Special Task UAVs is the Miniature Air Launched Decoy

(MALD) missile (see Fig. 2.4). The missile is incorporated with a Signature

Augmentation System (SAS), which makes the missile to behave like any other

aircraft and therefore confuses the enemy.

Figure 2.4: An example of MALD UAV
Source: https://en.wikipedia.org/wiki/ADM-160-MALD
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Consumer UAVs (see Fig. 2.5) and Professional UAVs (see Fig. 2.6) are the most

frequently used types of UAVs in modern days. These fall into the category of mini

UAVs. Consumer UAVs are cheap as compared to military UAVs and have limited

lifting power and less range, but can be used for variant purposes. Professional UAVs

have additional equipment and are more targeted towards superior capabilities for

building projects. Professional UAVs are usually costly since it comes with improved

lifting power and endurance. Adding more equipment to these UAVs are usually

done for a particular purpose. More specifically, consumer UAVs are mostly used by

hobbyists for fun like taking videos or only flying, while professional UAVs are used

to generate revenue for companies or governmental bodies (e.g. building inspection

or power lines inspection). Amid this exploration, an professional UAV is utilized to

improve its security.

Figure 2.5: Consumer UAV from DJI

Figure 2.6: A Professional Assembled UAV
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To communicate with these UAVs various communication techniques can be im-

plemented. All control signals can be transferred from RC (Radio Controller) to

UAV. The best form of communication is the radio waves. Radio waves (see Fig. 2.7)

are another sort of Electromagnetic Radiation (ER), that has wavelength more than

other communication technologies like Infrared. There are different frequency bands

based on various wavelength characteristics. Federal Communications Commission

(FCC) in the United States regulates the use of these frequency bands. In Europe,

it is governed by the European Communications Committee (ECC). The usage of

specific bands is restricted since the frequency bands are controlled. Even private

entities acquire license on some frequncies. Fortunately, there are frequency spectra

available which are free to use that can be used to control the UAV remotely.

Figure 2.7: Commonly used Radio Modules in a UAV

Different innovations like Bluetooth or Wifi are additionally used to control UAVs.

Because of their wavelength, their range is limited. So, it is mostly used to connect

to a computer, which makes it convenient to pre-program the flight of the UAV. It

gives the advantage of using a smart phone (see Fig. 2.8) to control the UAV and
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provides a low-cost approach for the whole operation.

Figure 2.8: A UAV controlled using Bluetooth

Other types of UAVs like the fixed wing craft which resemble a mini-plane. An

important consideration for a fixed wing drone is the wing type and the airframe

configuration. They are often made from lightweight polystyrene with a few rein-

forcements. Few of them have carbon frame which is tougher. The fixed-wing UAVs

usually have a central payload with detachable wings for ease of transport. Some have

wingspans measured in meters. However, the flight characteristics of flying wings are

not usually quite as good as a more conventional design even though they’re a prac-

tical proposition for rugged work.

2.2 UAV Sensing

A sensor is an equipment that detects changes in electrical, physical or other quantities

in the surrounding environment and produces an electrical output or a signal that

specifies the state of the environment which it is sensing. UAVs can be incorporated
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with sensors to detect changes in their surroundings that give the potential to navigate

better and also collect important data about the object that they are inspecting.

2.2.1 Distance Sensors

These sensors are mostly used to measure the distance between a UAV and another

object, without physically touching the object. Different sensors which accomplishes

these tasks are:

• Sonar distance sensing: These sensors (see Fig. 2.9) send Ultrasonic waves and

collect back the reflected waves to estimate the distance from UAV to an object.

It is in the form of a pulse width of the waves. However, these sensors are

affected by noise in the environment.

Figure 2.9: UltraSonic Distance Sensor

• Light pulse-distance sensing: These sensors are composed of a laser diode which

emits extremely short and strong light pulses, which gets reflected by objects

of interest and then received by a light sensitive receiver. It comes with an

advantage of precision, accuracy and noise immunity.
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• Magnetic-field sensing: These sensors are used for detecting the presence of

Magnetic fields and objects and also helps in determination of the position

of the UAV.

2.2.2 Infrared and Thermal Sensors

Infrared sensors (see Fig. 2.10), especially in cameras, are vast and are used in search

and rescue, surveillance, crop and forest health, pipeline inspection, leak detection,

etc. It gives results depending on the precision of the sensor. Infrared is invisible to

human eyes, but one can feel the heat when there is high-intensity infrared radiation.

A thermal camera can detect higher temperature areas. It can also indicate the

overheating sections of electrical equipment in various devices such as substations

and switch-gears. A drone equipped with these sensors can help to detect these

parts from a distance, thereby avoiding the inclusion of human beings in those life

threatening situations. They are also used for night vision and surveillance.

Figure 2.10: Infrared Sensor
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2.2.3 Image Sensors

These are the most commonly used sensors mounted on a UAV. They can be used for

various purposes such as object detection, tracking, etc. This provides a platform to

integrate other AI (Artificial Intelligence) tools using images like CNN (Convolutional

Neural Networks) for complex environment understanding.

As the growth of UAVs continues, demand for accurate sensing and obstacle detec-

tion technologies will continue to increase. Lidar is a device that allows an accurate

3D map of the drone’s surroundings. It also shows excellent performance in adverse

weather conditions and can be easily integrated onto modern UAVs. Lidar has much

more flexibility when it comes to its specifications, integration and form factor. Lidar

surpasses other technologies in use today for UAV applications such as ultrasound

and stereo cameras, both of which have an insufficient range. Although stereo cam-

eras can create very high-resolution images, they are more sensitive to extreme or

changing lighting conditions. Certain applications like a high-resolution mapping of

terrains and Google self-driving cars use high fidelity sensors such as scanning Lidars.

These Scanning LiDAR systems (see Fig. 2.11) have a great potential in generating

detail features of the environment,(see Fig. 2.12), but on the downside it is expensive.

Other features like a strict requirement to handle the device properly make the device

hardly viable for integration into commercial UAVs.
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Figure 2.11: Velodyne Lidar Sensor

Figure 2.12: Velodyne Lidar Sensor Sample Data

Despite the limitation of lidar, several research institutes and industries are ac-

tively using it for various applications like Flood Modelling, Forestry Management,

and Planning, Pollution Modelling, Mapping and Cartography, Urban Planning,

Coastline Management, etc.

Additional research is being actively pursued in the implementation of path plan-

ning using visual cues. A UAV is equipped with the camera. One approach suggests
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an image based optic flow algorithm including IMU (Inertial Measurement Unit)

data is incorporated with Extended Kalman Filter (EKF). It is further integrated

with a non-linear controller to accomplish 3D navigation. The IMU measurements

were merged with optic flow information to estimate the aircrafts ego-motion and the

depth map.

Another technique presents an approach to autonomous exploration where the

system takes advantage of a stereo camera and an inertial sensor for mapping and

pose estimation. The data shows the occupancy map, raw image data, and the dense

point cloud. A visual pose estimation system using multiple cameras mounted on a

UAV, also known as Multi-Camera Parallel Tracking and Mapping (PTAM) are also

quite popular among various approaches.

2.3 UAV Threats and Attacks

There are various methods where a UAV can be attacked and be used for other ma-

licious purposes. These methods could be classified as Logical and Physical attacks.

Physical attacks requires a physical contact with the UAV using some tools, where as

Logical assaults focuses on the navigation,position and other information which are

utilized by the UAV.

2.3.1 Physical Attacks

In an unmanned aircraft, as the navigation is entirely based on sensor data, it can be

affected via logical attacks which could eventually affect its navigation. Another way

to deal with bringing down a UAV is to utilize another Interceptor Drone or a UAV. It

could be done by flying the Interceptor drone straightforwardly into the target UAV.

It provides the benefit of protecting other areas where there is no inclusion of third
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parties. Another approach directs the second UAV to equip themselves with some

tools which brings down safely the target UAV (causing harm only to its functionality

as shown in Fig.2.13. Other physical assault vectors, for example, magnetism, wind

or powerful microwave beams are additionally utilized. A high-powered microwave

beam is expensive as well as it requires the knowledge and expertise to develop, so

they might not be applicable for few sectors. These applications are most common

for military UAVs. Another approach suggests a UAV equipped with appropriate

transport capabilities and power sources that can send a high-powered microwave

(see Fig. 2.14) to the target UAV and damages its internal circuitry. This equipment

could be installed at a lower cost, thereby avoiding the use of a military UAV. This

approach seems very plausible to take down a UAV.

Figure 2.13: Take down a UAV
Source: http://www.tpe-les-drones-1es1-68.webself.net/la-legislation
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Figure 2.14: Drone Gun that sends waves to take it down.
Source:https://plus.google.com/+AustinPolin

2.3.2 Logical Attacks

UAVs use multiple sensors and technologies that aid the operator and help him to

determine its altitude, flight speed, and position, etc. Since UAVs are unmanned,

their navigation completely relies on those parameters and commands which they

receive from the base station. An attacker can exploit these parameters or could even

change the information for his control of the UAV. Eventually, the UAV will obey the

attacker’s signal. It has gained significant attention lately and needs to be addressed.

Forging Control Signals

In the event that it is an open channel (unencrypted WiFi or radio), it is very simple

to send fake information to the UAV without an application layer encryption or

any authentication methods set up. Forged signals are eventually assumed as the
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correct command signals to the UAV. Even the Radio Controller (RC) will accept

and process these signals without knowing the difference between the original signals

that primarily should come from the ground station. It results in obtaining full control

over the UAV to navigate the UAV further. If standard protocols are used for the

communication with the UAV, they should also implement proper authentication.

Changing protocols without using the available security features can lead to reverse

engineering protocol, making it easy to gain control. This type of attack poses a

serious threat since the UAV will still obey the commands from the ground control

station. This might lead to change in control signals of the UAV.

Denial of Service

For receiver and sender to communicate, they need to be on the same channel. If an

attacker is aware of the channels being used, he can surge these channels with junk

information which keeps the real control signals originating from a ground control

station to be received by the UAV. Another attack uses de-authentication packets to

a Wifi network to prevent a connection. Both of these types of attack would result

into the end of communication.

Denial of Service attacks also occurs in GPS frequencies which affect GPS data.

It is termed as GPS jamming. The channels are overflowed with faulty information

to keep away from the real ground station signals going through. The devices needed

to perform these types of attacks are cheap and easily available. Evidently, the range

of GPS jammers are limited, but professional equipment has a potential to reach far

ranges, which allows the attacker to jam the GPS frequencies.
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Replay Attack

It is possible to record signals even if the data stream is encrypted, which could aid

the attacker to replay these signals towards the target. It will aggravate much faster if

the protocol does not utilize cryptographic methods to confirm the legitimacy of the

messages. By analyzing the response from the UAV, an attacker could easily estimate

the mapping between the message and command. The attacker could gain control of

the UAV by analysing all the possible commands. During this situation, the UAV

will also still obey the actual user at the ground control station, but it might make

controlling the device difficult.

Spoofing

Spoofing means forging signals, and it usually appears in the higher frequency of

the communication channel. The victim assumes the attacker’s reproduced signals

instead of original ones as actual input. The worst case occurs when GPS spoofing

takes place. It benefits the attacker by tricking the victim into believing that the

victim’s UAV is navigating to the correct path, but in reality, the UAV is taking the

path that the attacker intends to. GPS Spoofing poses a drastic threat to UAVs.

Military GPS system utilizes advanced encrypted and authenticated signals to send

data from the satellites to the receivers. Spoofing is more common in civilian GPS,

since they do not use military GPS. An attack on military GPS is also possible by

adding delays to the system. It is called selective-delay attack.

Wifi and Bluetooth Attack

Wireless communication occurs through an encryption standard named Wired Equiv-

alent Privacy (WEP). In particular cases which can be used to obtain the encryption

key, this encryption standard is vulnerable. Recent encryption protocols like WiFi
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Protected Access (WPA) and WiFi Protected Access 2 (WPA2) have multiple layers

of security. However, if certain conditions are met, it can be hacked.

There are software tools readily available that perform this type of attack in a wifi

network. Few commands in Linux systems like “airodump-ng mon0” lists all available

network traffic. Since the attacker is now aware of the network traffic, he can select

the traffic filters for further investigation. Another software tool called “airrack-ng”

can be used to capture all network traffic sent. Address Resolution Protocol (ARP)

can be used to generate random packets which could be injected to the network of

interest.

To prevent these attacks, one key thing to note is that the password to authenti-

cate the WiFi access point should be volatile and be changed for every device. The

use of defaults passwords is dangerous, and the encryption becomes vulnerable to

potential attacks. Another way to mitigate this attack is to have another hardware

with different encryption. An attacker might not comprehend the technology nor

would be able to develop equipment to exploit the encryption layer underneath.

Attack through Video Link

For an attacker, live video feed is vulnerable to attack. However, It depends on the

link the ground control uses for live video feed. A good example can be the attack

on U.S. Predator UAV for the live video feed in Iraq. Choosing between different

products which use different frequencies to transmit the video signal can be helpful

to mitigate the problem. Higher frequencies could be used for transmission, since

video transmission requires larger bandwidth. A setback we need to look is that

higher frequency data comes at the cost of the shorter range of the signal. One

trick to mitigate the problem is to split the video data at multiple channels of lower

frequencies. The receiver would have to listen to all the channels to reconstruct the
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original data.

Attack through Flight-Planning Software

The flight plans are conducted on the computer mounted on a UAV. Before the

start of a mission, the flight path data is sent from the planning software to the

computer mounted on the UAV. The planning software could be on a computer or

a mobile device. It is important for the UAV’s flight computer to be connected to

the planning software throughout the mission. Most configurations of the software

provide this functionality. During this time, an attacker can insert malware to the

computer, giving him the access to the software through which he can reprogram the

flight computer path and aid the UAV to his intended path. An attacker getting

access to the UAV through the internet is one of the serious problems that need to be

addressed. It happens, if the internet is connected to the ground station during the

flight, then the attacker can change the flight coordinates of the system and redirect

it to a different location as per the attacker’s choice.

2.4 Brain EEG Signal

The brain EEG signal has been of active research, and its fascination grew after its

discovery by a German scientist named Hans Berger [19]. After its discovery, new

methods for its exploration have been found. They are generally classified into two

groups named Invasive and Non-Invasive. Invasive methods need devices composed

of electrodes which are tested on humans or animals, which measures single neurons

voltage potential or local field potentials. The non-invasive approach utilizes magnetic

resonance imaging (MRI), and the EEG technology to gather all the readings. Both

approaches give different outlook which enables us to understand the functionalities



23

inside the brain and observe the electrical activity generated by the neurons through

these functions. For example, pairs of electrodes made of silver are used to measure

this electrical activity. Since the voltage difference between these electrodes is weak

(30-100mV), these are amplified for data collection. When neurons communicate

current flows. The electrical discharge caused by rapid on and off Na+ and K+ ion

channels in the neuron membrane, triggers an event called action potential. If it

crosses a certain threshold, the neurons fire. Evaluating this “fire” results in a brain

activity.

2.4.1 Bands of EEG signal

Figure 2.15: Different Parts of the Brain
Source: https://askabiologist.asu.edu/brain-regions

Berger discovered that different electrical frequencies are generated through actions

via different stages of consciousness. The different parts of the brain which are in-

volved in generation of different frequencies EEG signals is shown in Fig. 2.15. This

was later confirmed by observing and recording different subjects who were perform-
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ing a different task, like solving analytical problems. This resulted in different parts

of EEG wave. The different parts of brain EEG signals are described below.

2.4.2 Gamma Waves (< 25 Hz)

Gamma waves reflects how the human consciousness functions. It is originated from

the Thalamus region of the brain. Gamma wave are generated, as the electrical

activity traverse in the brain from front to back, about 25 times per second. Sample

Gamma wave are shown in Fig. 2.16. If the thalamus is damaged, then the wave

generation stops, and the patient goes into a profound coma state. In a way, it links to

other parts of the brain. This discovery and research have directed to solve the binding

problem, which describes two basic sub-problems. Firstly, how the brain separates

complex patterns coming from sensory input to classify them as “distinct” objects.

In simpler terms, what neural activity helps to separate two distinct color objects

coming from the same visual sensor (human eye). Secondly, how do different objects,

background, and emotions combine to form a collective “experience” [20], [21].

Beta and gamma waves combined relate to perception, attention, and cognition.

Gamma waves are also seen as a form of neural synchronization which is derived

from visual cues in a conscious state. Gamma waves are also found active during

rapid eye movement sleep which involves visualizations. Gamma wave is an essential

component for learning, memory and processing information. People who are men-

tally challenged tend to have lower gamma frequency than the average. Even though

Gamma waves have the highest frequency of other waves, it has the lowest amplitude.

Gamma waves are trainable, which means it’s frequency and amplitude can be in-

creased though regular meditation. Research on regular meditation practitioners has

suggested an increase in gamma wave activity. It may also explain heightened sense

of bliss, consciousness and intellectual acuity [21].
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Figure 2.16: Parts of EEG Signal
Source: https://imotions.com/blog/what-is-eeg/

2.4.3 Beta Waves (12-25 Hz)

Beta waves play an important role in this thesis. Beta waves are classified into three

types: Low Beta Waves (12.516 Hz), Beta Waves (16.520 Hz) and High Beta Waves

(20.528 Hz). These waves are generated in the central and frontal areas of the brain

and are usually small and fast. Sample Beta wave are shown in Fig. 2.16. It is mostly
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associated with focused concentration. A study claims that beta waves are actively

seen when there is resisting or suppressing the movement. One research shows a

significant increase in Beta power among alcohol dependent subjects. However, the

good amount of beta waves can be generated when we practice concentration. If it

is hard to concentrate, certain tools like Beta binaural beats help to simulate the

brain to go to concentration mode [21]. When two different pure-tone sine waves,

having frequencies lower than 1500 Hz, and has a difference of 40 Hz between them

is presented dichotically (one on each ear) to a listener, then the listener percieves it

as an auditory illusion which is called binaural beats.

However, there is a downside to this. People who often work a lot, for them would

result in stress and depression. So concerning brain waves, these people always emit

Beta brain waves, even when they are asleep. So increasing the Beta waves through

the binaural beats can be fatal for them. Certain experiments have shown that in

fact, these people have more Beta activity and less Alpha and Theta waves. So, it

is vital to have a proper balance of Alpha and Beta waves. It could be achieved by

taking breaks from the Beta binaural wave, stop thinking and listen to Alpha binaural

waves [22].

Some researchers claim that Beta waves are directly linked to the conscious mind [23].

During meditation, it is very advisable to make the meditative experience alive or

conscious by sharing or writing it down.

2.4.4 Alpha Waves (8-12 Hz)

Alpha waves are slower and are related to relaxation and disengagement. It is detected

at good amount when we are thinking of something peaceful. It mostly originates

in the frontal lobe and the back of the brain. Sample Alpha wave are shown in

Fig. 2.16. A healthy balance of all brain waves is important for the brain. For
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people who are more stressed, there is significant Beta waves and less of the other

waves. Similarly, Alpha waves in excess are not healthy either. A study shows that

an individual “become slower” Alpha waves are also called as “relaxing waves”, which

apparently plays an important part in human mind. It is shown that they act as a

bridge between conscious (Beta waves) part and sub-conscious (Theta waves) part of

the human mind. Feelings, information, memories, and creativity present deep inside

a person’s mind cannot become conscious if there is no connection between the two

states of mind [22].

Some research shows that alpha waves can also occur during the initial stages of

meditation. Just like Beta waves, Alpha waves can also be simulated using Alpha

binaural beats. However, it varies from person to person. Among the benefits of

Alpha waves, the most obvious result is the feeling of relaxation or peacefulness. It

also has some effects on the body like heart, where it helps slow down the heart rate,

which can be effective for people with heart problems. It also has a positive influence

on memorization and learning speed [21].

The measurement of EEG brain waves of a person would show a significant amount

of theta brain wave activity and Beta brain activity, but no Alpha waves.

2.4.5 Theta Waves (4-8 Hz)

Theta waves are associated with day dreaming, inefficiency and the lowest of these

theta waves signifies the thin line between sleep and awake states. Sample Theta

wave are shown in Fig. 2.16. It is sourced from negative thoughts or emotional

stress like disappointment and frustration. However, it has also been associated with

creative aspiration, unconscious material, and deep meditation. For adults, high

amount of these waves are considered abnormal, also related to AD/HD (attention-

deficit/hyperactivity disorder) [22].
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Theta waves also occur at inactive thinking. It also happens nearly in medita-

tion and dreams. Apparently, these activities require mostly shutting off the brain.

However, there is one exception though. People with creative thinking or activity like

drawing painting or composing music tend to have more theta brain activity. So, we

could even say that creativity comes from the subconscious part and thus the mind

inherently has a significant amount of Theta waves [22].

As mentioned, Theta waves play a very important part in human mind. Stressed

out people tend to spend much time in Beta brain waves making them deficit in Alpha

and Theta waves which results in its inability to be more creative and more relaxed.

Also, people feel as not being able to connect to their emotional selves.

So, based on the above discussion, it is healthy to have a good amount of Theta

waves to be able to access the “sub-conscious” mind. It also plays an important role

in self-healing and learning abilities [21].

2.4.6 Delta Waves (1-4 Hz)

Delta waves are the lowest frequency waves occuring when we are sleeping. These

waves are not meant to occur during awake state. So, if they occurs in good amount in

the awake state, they indicates physical defects in the brain. Some research suggests

that movement can result in artificial Delta waves, but it is yet to be confirmed [22].

Delta waves are also linked with the unconscious mind. Sample Delta wave are

shown in Fig. 2.16. They occur in humans when they are asleep not dreaming. They

are also found during deep meditations, however, it’s challenging to remain conscious

during these meditations, and these meditations are rather harder to reach. Delta

waves are also significantly associated with human intuition. People with AD/HD

have significant Delta waves activity [21].
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2.4.7 Why Beta waves?

Our primary purpose of using Beta waves for our research is that Beta brain waves are

associated with normal waking consciousness, logic and critical thinking capability

of a user. This ensures that the user is awake during data collection and he/she

is performing a mental task. The user is aware that the data is collected for key

generation.

2.5 Summary

This chapter provides a brief overview of functioning of the brain. It also provides

the idea of the different parts of the EEG signal which is emitted from the brain at

different states of mind. Finally, we explained why do we use Beta waves for our

work.
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Chapter 3

UAV Communication and Types of

Hack/Attacks

3.1 Xbee Communication

Figure 3.1: XBEE Radio Module: Essential component for this thesis

For a UAV communication system several things need to be taken into consideration.

• Transmitting device.
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• Receiving device.

• Environment for communication.

In wireless communication, transmission is done by a transmitter whose role is to

feed the antenna a signal for transmission . With a certain signal strength, the radio

transmitter encodes the data and translates it into RF waves. The receiving antenna

receives the signal and the receiver decodes the incoming data. The task of accepting

and decoding specific RF signals while rejecting unwanted or redundant data is also

performed by the receiver.

XBee is one of the mobile communicating device that can be mounted on a UAV

for it’s communication with the ground control station. XBees only communicate

with other XBees. It is shown in Fig. 3.1. XBees operates on Zigbee protocol.

Zigbee follows the 802.15.4 international standard. Digi International developed XBee

which is a product line and a brand name. In the bottom layer XBee also has the

IEEE 802.15.4 standard, but also they have their own suite of protocols on the top.

For greater transmission range Zigbee also allows mesh networking functionality in

addition to 802.15.4 standard. It helps to forward the messages from one node to

other to reach the destination node through the network. The frequency band used

for transmission determines the transmission speed. Since it is a low powered device,

it mostly acts as an embedded device. XBee devices can also run Zigbee compliant

software, but we need to flash it with the Zigbee firmware which results in losing the

benefits of XBee’s but giving full compatibility with other Zigbee compliant devices.

Digi explains regarding the use of proprietary multi-point and Digi mesh protocols as

well as the use of proprietary modulation. For example, the manufacturer of XBee

868LP devices which uses proprietary multi point protocols specifies the device’s

range to be 40 km. To be configured in the network, XBee devices don’t require

coordinator and end device. In addition to that, for checking whether the channel
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is independent and the data can be sent, XBee 868LP chip utilizes Listen Before

Talk (LBT) and Adaptive Frequency Agility (AFA). This capability allows multiple

different networks to coexist which allows dynamic data transfer. Another framework

called Killerbee has both Zigbee and 802.15.4 based networks. However, to run the

framework specific hardware is required. Killerbee also provides the functionality of

integrating itself with GoodFET hardware debug tool. Other research has indicated

that GoodFET mentions a common issue in Texas Instruments and Ember chips to

obtain RAM (Random access memory) on a locked chip.

To test the experiment 2 XBee modules are needed. The below-mentioned data are

needed to transfer the data from one XBee to another, also called as Point-to-Point

data transfer.

• PAN ID

• Channel

• Baud Rate

• Device High (DH) address

• Device Low (DL) address

The device comes with the default values for Channel, Baud rate, and PAN ID. It

allows the change of DL and DH address for the customer to test the device quickly.

The user needs to only change the DH and DL address of the other device so that it

can communicate. The UAV manufacturer doesn’t modify any parameters except for

the DL and DH parameters. It utilizes default values for the rest of the parameters.

There are different possibilities to get information about the DH and DL values.

• Physical access: Printed on chip’s cover.
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• Physical access: Reading the chip’s memory.

• Software Defined Radio.

• Brute-Force.

Once the parameters are known by the attacker, fake data can be sent, and dif-

ferent types of attacks can be performed. However, this simple scenario is not fairly

possible, since the chips are hidden in the user’s hardware, and also the attacker is

unaware of the physical address.

3.1.1 Xbee Modes

Xbee has two different working modules. The initial setup for basic communication

is named the transparent mode. The chip reads the memory and adds the DL and

DH address with the preamble and network ID. To communicate with another chip,

the DH and DL values needs to be changed.

Another mode that exists in XBee is the Application Programming Interface (API)

mode. In API mode, the receiver expects payload plus API-frame which incudes

payload. The destination address can also be specified along with other parameters

in the API-frame. This provides a benefit of not editing the DH and DL address every

time the destination needs to be changed for the payload. Simply the API-frame can

be sent to the device with the destination address specified in the frame itself.

3.1.2 Broadcast Mode

The chip disposes of all packets that are received. However, it contains another ad-

dress in the destination address in addition to its own. In any case, there is an

alternative found through further investigations. The sending and receiving of broad-

cast packets is also a functionality in XBee devices. In addition to that, regardless of
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the sender’s packet address, each received packet is viewed as legitimate by the chip.

It will return an acknowledgment regardless of the possibility that the receiving chip

has an alternate destination address put away in its memory.

A tool called “Node Discovery” uses this feature in the software XCTU. Other

chips which are using the same preamble and network ID if are in range, then the

user can discover it. This could come as great advantage for an attacker since a mere

acknowledgement can uncover the destination address.

Changing the preamble and network ID is the main step to complicate detection

of the used network. When the parameters are received, the chip’s firmware checks

the packets. If preamble or network values ID does not match with the ones stored in

the memory, then the frame is directly discarded rather than forwading it to the serial

connection. The idea behind the implementation is to avoid overloading the serial

output of the chip with data coming from other networks and to avoid interference

with other networks in range.

The parameters are checked in the firmware of the chip upon supply of a packet.

On the off chance that the estimations of the preamble or network ID are not coordi-

nating to the ones present on the chip, the frame is not sent to the serial connection,

but rather specifically disposed of. This was initially actualized to keep from interfer-

ing with other network in range and over-burdening the serial output of the chip with

information from different networks. It is impractical to compel the chip to forward

such packets, since the chip is restrictive and only official firmware can be installed.

XBee gives a probability of changing the parameters remotely. The remote chip

will temporarily use the newly received address by sending the correct API frame

having the DH (or DL) parameter with another value. Another API frame with

the Write (WR) command is required to persist the change. The attacker can also

remotely change the DH and DL addresses of any given XBee chip and can redirect
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the data transfer. When this is done, the attacker can control the channel.

3.1.3 Attacks on Xbee communication

Denial of Service (DoS)

For performing a DoS attack, diverse alternatives were proposed. One method is

to jam the connection, by over-burdening the utilized channels. Another abuses the

conduct and capacities of the protocol and technology being used.

Another alternative will be clarified in more noteworthy detail. At first, the

attacker plays out the previously mentioned brute-force attack on possible conceivable

network ID and preamble combinations. By sending communication packets utilizing

every single conceivable combination, the attacker will locate the dynamic devices.

Furthermore, the attacker utilizes an alleged “Remote AT Command” packet, to edit

the targeted XBee chip’s destination address. The payload of this data comprises of

the hexadecimal encoding, trailed by a latest parameter present in the following field.

The address of the attacked XBee chip will be changed temporarily by this packet

alone. This recent address will not change/overwrite the current address and yet at

the same time be utilized as long as the power supply proceeds.

The old address is used again upon restarting the device. Another “Remote AT

Command” is needed in order to persist the changes. The hexadecimal encoding for

the “WR” instruction is in the second packet. The chip will dependably utilize the

new destination address, even after a reboot. The connection will be interrupted if

the destination address of the telemetry box and the UAV chip is set to an arbitrary

value. The need to address every chip separately can be removed by “Remote AT

Command” which can send evry other packet as a broadcast packet. The addresses

ought to be set to an arbitrary value.
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Man in the Middle Attack

Two things are required to meddle with the flight PC of the UAV: appropriate payload

and access to the communication channel.

For the second case, instead of using a random value as used in DoS approach,

the destination addresses of the target chips should be configured to the attackers

address. At this point, the attacker now can tune into all communication that occurs

between the attacked chips. This type of attack is termed as man-in-the-middle.

For the first case, by figuring out the first information which is sent in the channel,

the right payload can be known. From this, the attacker can now tune into the

communication, subsequently, he may have the capacity to understand the data of

the payload and remake the commands. In any case, the user can control the UAV

since the producer of the UAV furnishes its customers with a tablet and also a pre-

install the application. Since the methods and the used commands implemented in

the software can be reverse engineered, the attacker can reveal this information and

use it as a payload.

3.1.4 Counter Measures

Hardware Encryption

Hardware encryption provides another feasible option for encryption, since the built-

in encryption for the XBee is slow. For allowing decryption and encryption of the

incoming serial data, this hardware requires to be present in front of the XBee chip.

In transparent mode, which is the original setup, the data gets simply forwarded

and doesn’t need further interpretation. However, in API mode this approach is

impossible, since portion of the data that is given to the XBee chip, requires analysis

by the chip. If the data is encrypted, the XBee chip might not be able to estimate
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the transmission parameters (DL and DH address). It functions similarly to XBee

encryption but has dedicated functionality.

Application layer encryption

Another possibility is the application layer. However, no further encryption is required

if the exchanged information is now encoded upon it’s arrival in the XBee serial

interface. Also, since the measure of information remains the same, no execution

issues on the XBee chips are expected. Application layer encryption adds a logical

layer on the top of the utilized physical layers. Consequently, this would alleviate

classification dangers made by one weak connection as well as every single weak

connection. Choosing between symmetric and asymmetric encryption is a further

step. The upsides of symmetric encryption are performance and simplicity. Two

parties that have not met before can have asymmetric encryption. Since the keys

can be activated in both the devices in its first use, this case is similar to symmetric

encryption, Additionally, asymmetric cryptography is costly due to handshakes and

exchange of certificates. Because of this only symmetric encryption is a practical

solution.

During symmetric encryption, the data is encrypted prior leaving the computer

and decrypted at the planning software and vice versa. This concludes that the

processing power for the encryption keys is sufficient and the encryption keys are

saved in the device.

Xbee on board encryption

Encrypting the channel would ensure the confidentiality of the information. XBee

provides such a feature as mentioned earlier. This would be a convenient method

to use since it doesn’t take much to implement. It avoids the attacker to modify
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the internally saved data remotely without having a prior knowledge of the correct

encryption key. XCTU software can be utilized to store the encryption key. A user

can use the XCTU software to store the encryption key in the XBee chip allowing

encrypted communication. Of course, the key should be the similar on both sides,

else the packets will be easily removed. The encryption and decryption are performed

using AES-128, since both sides use the same key. The encryption occurs symmet-

rically. It’s performance might get affected since the chip requires time to encrypt

and decrypt the payload. So, link layer encryption seems to be the most practical

approach to the problem, but cannot be applied to the above case.

3.1.5 Additional approach

Man-in-the Middle attack is still possible, if the on-board encryption as mentioned

earlier is not used. This will not allow the attacker to read the packet content. In this

situation, DoS attack can be performed since the change of address is still possible

as the XBee encryption is disabled. There is no way out of it, and the encryption

needs to be setup which is not possible in DoS attacks. So, an alternative needs

to be found out that provides the same bandwidth and functionality as the XBee

although doesn’t allow changes of the internal parameters. One option that might

work is using duplicate channels by using two Xbee Communication channels with

enabled encryption on both of them. It only gives an logical approach to divide the

communication and reassemble.

3.2 Summary

This chapter presented an overview of different types of UAVs sensors equipped on

the UAV and different types of attacks on a UAV that have been encountered so far.



39

Chapter 4

Proposed Methodology

This chapter describes the background of our proposed method for securing a UAV.

As an outline, we have proposed a technique which secures the UAV communication

to the ground control station using an encryption key generated using features of

a person’s electroencephalogram (EEG) signal. Next, we present the mathematical

background for extracting individual characteristics of the EEG signal. Further, we

describe briefly on how the XBee communicate with each other and how the data are

further translated into control signals. We finally propose a system to generate an

AES encryption key derived from an operator’s EEG signal and have demonstrated

a safety mechanism which gets activated in the case of a third-party attack, thus

securing the UAV communication using a bio-metric information. This entire system

was validated on a commercially available UAV.
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4.1 Mathematical Background

4.1.1 Lengendre’s Polynomials

Legendre Differential equation is given by:

∂

∂x
[(1− x2) ∂

∂x
pn (x)] + n(n+ 1)pn(x) = 0. (4.1)

where n is a real-number, i.e n = 0, 1, 2, 3, 4, ... and x lies in the interval of −1

and 1. pn(x) are the Legendre’s polynomials.

Legendre’s polynomials are solutions to the above Legendre’s Differential equation.

If n is an integer, then at x = 1 and x = −1 the solution is regular and the series for

this solution ends.

The polynomials are computed using Rodrigue’s formula:

pn(x) =
1

2nn!

∂n

∂xn
[(x2 − 1)n]. (4.2)

One significant property of Legendre’s polynomial is that it is orthogonal with

respect to L2 norm in the interval −1 < x < 1. Few more important properties of

Legendre’s polynomials are:

• Legendre polynomials are symmetric or anti symmetric.

pn (−x) = (−1)n pn (x) . (4.3)

The n-degree equation used for fitting data is given by:
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y (x) = a0 +
n∑
1

aipi(x) (4.4)

4.1.2 BCH (Bose-Chaudhuri-Hocquenghem) codes

A class of cyclic error-correcting codes can be formed by BCH codes. Polynomials on

a finite field can be used to construct BCH codes. During code design, BCH provides

an advantage of absolute control over the number of symbol errors correctable by the

code. To be more precise, multiple bit errors can be rectified using efficient design of

BCH codes. Another algebraic method named syndrome decoding aids easy decoding

of BCH codes. This helps in designing a simple decoder for BCH codes using light

low powered devices [24].

Assume that there is a prime power (A prime power are those prime numbers that

is exactly divisible by one prime number) q. Let there be another 2 positive integers

d and m where d ≤ qm − 1.

So, on a finite field GF (q) with distance of at least d and code length of n = qm−1,

a primitive narrow-sense BCH code can be constructed based on the below mentioned

methodology:

Let the initial element of GF (qm) be α. Let i be any positive integer. Let the

minimal polynomial of αi over GF (q) be mi(x) .

Then, the least common multiple g(x) = lcm(m1(x), ...,md−1(x)) is called the

BCH code generator polynomial.

It is proven that g(x) is a polynomial with coefficients in GF (q) and divides xn−1.

So, the polynomial code as given by g(x) is a cyclic code. The above procedure is

called a primitive narrow sense BCH code.

BCH codes are derived from the above formulas, by adding two more steps:

• α can be non-strict since it is a primitive element of GF (qm). If so, then the code
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length varies from qm − 1 to ord(α), as the order of the element α.

• The consecutive roots of the generator polynomial can go from αc, ..., αc+d−2 to

α, ..., αd−1

Some properties of BCH codes are:

• The generator polynomial of a BCH code has degree at most (d− 1)m.

• A BCH code is cyclic.

• A BCH code has minimal Hamming distance at least d.

BCH Encoding

BCH encoding can be done in the following way.

• For (n, k) BCH encoder the k message bits are applied to parallel to serial shift

register.

• Using those message bits, it computes the parity bits and sent to serial to parallel

to serial shift register.

• The parallel to serial shift register’s ouput is sent to (n, k) encoder module.

• The the parity bits are concatenated to original bits to get n− bit encoded data.

• The whole encoding process needs n clock cycles.

BCH Decoding

BCH decoding can be done in the following way.

• Assume that we have a (n, k) BCH decoder.
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• From the received codeword r(x), Syndrome value Si i = 1, 2, ..., 2t can be calcu-

lated.

• Determine the error location polynomial s(x).

• To correct the errors, the roots of s(x) should be found.

Advantages of BCH codes

• It can be easily decoded with the syndrome decoding method.

• It requires a simple hardware to function. So it obviates the use of complex

systems to perform the decoding procedure making it easy to implement on a

low powered device.

• It is highly flexible, allowing it to control over block length and acceptable error

thresholds. This allows for custom code to be designed on a given specification.

• BCH are useful in theoretical computer science.

• Easy to implement in hardware.

• Widely used encoding and decoding technique.

Disadvantages of BCH codes

• It works on complex and iterative decoding procedure.

• It’s hard for decoder to decide whether the decoded package is false or not.

4.1.3 Universal Hashing

From a family of hash functions, we select a random hash function which have a

certain mathematical property. It could be understood simply as follows: Assume



44

that we intend to map keys from some universe U into m bins. The algorithm aims

to manage some data set S ⊂ U of |S| = n keys. Normally, the primary aim of

hashing is to obtain a low number of collisions (keys from S that maps to the same

bin).

The approach to this problem is to select a function randomly from a family of

hash functions. A family of functions H = {h : U → [m]} is called a universal family

if ∀x, y ∈ U, x 6= y : Pr
h∈H

[h(x) = h(y)] ≤ 1
m

.

In simpler terms, any two keys in the universe clash with a probability of at most

1/m, if the hash function h is taken randomly from H.

4.2 Getting EEG signal

We used a Mindwave headset from NeuroSky to extract the EEG signal of a user. It

is shown in Fig. 4.1.
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Figure 4.1: Neurosky Mindwave Sensor
Source: http://support.neurosky.com/kb/mindwave/mindwave-diagram

The MindWave headset gives the brain activity in the computer it is connected.

It also provides the functionality on mobile devices too. It is safe to use and measures

brainwave signals and also monitors the attention levels of user. It samples around

a frequency of 1 Hz giving all the components of the EEG signal. Every electrical

activity produces waves, and electrical devices create some noise. This noise might

change the electrical readings of the brain. This justifies the fact that most EEG

devices pick up electrical signals or readings even when the user is not connected

to the device. The idea of measuring brain activity through the waves is similar to

eavesdroping a conversation at a concert. Earlier, EEG devices avoided this problem

by measuring these signals in environments where electrical activity is strictly con-

trolled and increasing the signal strength of the data coming from the brain through

the use of a conducting solution.
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However, it is inconvenient always to have a room and a conductive solution

for reading EEG signals. Thanks to modern science, NeuroSky has developed good

algorithms to built into their products which filter out this “noise”. NeuroSkys white

paper claims the ThinkGear technology has been tested at 96 percent as accurate as

that within research grade EEGs. Sample EEG data from Mindwave Neurosky sensor

is shown in Fig. 4.2.

Figure 4.2: Sample EEG data from NeuroSky Mindwave Sensor

Next, we extract only the Beta component of the EEG signals as shown in Fig.

4.3. As we mentioned that this signal is the signal of interest since it is related to

concentration in the awake state. So different users are aware of data collection. We

collected Beta component of the EEG signal for four different users. The sample wave

from is given below.
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Figure 4.3: Sample Beta component of the EEG signal

4.3 Implemented Algorithm

After collecting the Beta data of the EEG signal, we perform the few steps based on

the block diagram as described in Fig. 4.4
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Figure 4.4: Block diagram of our implementation

4.3.1 Feature Extraction

We record an EEG signal (Beta waves) from a specific user for period of time T . The

Beta waves are amplified by amplifier value A and matched via high order Legen-

dre Polynomials. Legendre’s differential equation is given by Equation (3.1) and its

Legendre polynomials are computed by Equation (3.2).

The Legendre’s polynomial equations are used to fit the collected EEG data which

results in an n-degree equation.

The n-degree equation used for fitting data is given by:

y (x) = a0 +
n∑
1

aipi(x). (4.5)
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The polynomial coefficients a0, a1, ...an are combined together with the time win-

dow of size T and the amplitude multiplier A to form the raw feature vector z :=

{ca0, ca1, ca2, ...can, A, T} where c is a constant to magnify the difference between

coefficients. We map z to w such that w = z×M + γ where M is an n×n invertible

matrix which satisfies
∑

imi,j = 1; γ is a random vector whose elements are within

the range
[
2−θ, 2θ

]
.

Since attackers can reconstruct the original EEG waveform given the feature vec-

tor, we map the feature vector with some random vector using Linear transformation.

This results as a random feature vector w [25].

4.3.2 Randomness Extraction

After obtaining feature vector w, we use a reusable fuzzy extractor constructed from

(n, k)-BCH codes (BCH codes form a class of cyclic error-correcting codes to correct

errors occurred [25]) with generator function to extract enough randomness from it.

Randomness provides the functionality of representing the feature vector in different

form so that attacker cannot reconstruct the original signal.

The randomness extracted from each feature ri is computed as ri = Hx(wi), where

Hx is a hash function in a universal hash family. The universal hash family H is a

class of hash functions. H is defined to be universal if the possibility of a pair of

distinct keys being mapped into the same index is less than 1/l (l is the length of

the randomness string). The hashing operation is performed after making a random

choice of hash function from the universal class H. The universal hash function

already gives the optimal length of extracted randomness [25].

We also compute the syndrome Sc of feature values for future authentication. If

the feature element is viewed as wi(x) = wi0 + wi1x + ... + win−1x
n−1, every element
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wi has a corresponding syndrome Sci for (n, k)-BCH codes:

Sci = wi(x)modg(x) =
{
wi(α

1), wi(α
2), ..., wi(α

2t)
}
. (4.6)

4.3.3 Key Generation

Next, we generate the key based on the features and pre-program the specific UAV

with that key to secure the communication channel. This is a practical way to ensure

that both the ground control station Xbee and the XBee on-board UAV obtain exactly

the same key for encryption and decryption. The key K is generated based on chosen

extracted randomness from the previous step [25]. The key generation technique is

given below.

We randomly choose q constants 1 ≤ j1 ≤ ... ≤ jq ≤ n to pick up several features

and produces a permuted feature vector v :=
{
wj1 , ..., wjq

}
.

The key K generated is based on chosen random extracted randomness rji : K :=

rj1||...||rjq , where || denotes concatenation.

4.3.4 Configuring XBee with the Key Generated

AES Encryption Key

AES’s design methodology is based on substitution-permutation network, which is a

combination of both permutations and combination. It works fast in both hardware

and software. AES is an adaptation from Rijndael [26], and it has a key size of 128,

192 or 256 bits and a fixed block size of 128 bits. However, Rijndael specification

has a specific key and block sizes that could be 32 bits multiples, where 128 <=

bitsize <= 256.

AES has 4×4 column-major matrix composed of bytes, which is termed as the
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state. However, some variations of Rijndael have larger block length size and have

additional columns in the state. Often, AES calculation is done in a specific finite

field.

For example , let there are 16 bytes b0, b1, ..., b15, then these bytes are represented

in matrix-form as:



b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15



The total iterations of transformation rounds that convert the input from plain

text to cipher text is specified by the AES cipher’s key size. The number of iterations

for each key size is as follows:

• 128-bit keys - 10 cycles of repetition.

• 192-bit keys - 12 cycles of repetition.

• 256-bit keys - 14 cycles of repetition.

Every round consists of several processing steps. In each processing step there are

four similar but different stages. It also includes the steps that depend on encryption

key itself. To perform decryption, the same key can be used to cipher text into

original plain text by applying reverse rounds.

After generating the key using the above procedure, we configure the XBee’s AES

encryption key parameter to use the generated key for communication. For this

experiment, we used the Mindwave sensor and Alienware 15-inch laptop with i7 6820

HK processor to create the EEG system.
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We utilized a commercially available UAV to conduct this experiment. The UAV

used the Pixhawk as its controller as the CPU which had the XBee connected to

communicate with the ground control station.

The UAV and the base station were wirelessly connected using XBee transmitter

and receivers.

After configuring the AES encryption key of the XBee with the generated en-

cryption key, we tested the communication of UAV with the XBee connected to the

ground control station. The AES key configuration ensured secured communication

of the UAV to the ground control station. However, we have also introduced a sce-

nario where an attacker is trying to intercept the communication between the UAV

and ground control station with the primary purpose to gain control of the UAV. For

simplicity, we have assumed that the attacker already knows the key generated and

has configured its device with that key and to communicate with the UAV maliciously.

Our experimental setup is shown in Fig. 4.5.
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Figure 4.5: Block diagram of our implementation

As a safety measure, we have pre-configured the UAVs XBee to receive the com-

mands from the ground control station Xbee’s address. If the attacker tries to send

the control signals from its device then from the attacker’s packet address, we ver-

ify that a third party is intervening, and we activate the Return-To-Launch control

signal in the UAV. This would mean that the UAV identified that an attack was

attempted and should return to its starting location. The RTL (Return-To-Launch

mode) aids the UAV navigation from its current position to hover above the home

position. RTL is a GPS-dependent move, so it is essential that GPS lock is enabled

before attempting to use this mode.

The algorithm is described below as Algorithm 1.
The LockGPS() function ensures that the sensor is not affected by any other way

since it becomes completely independent of the rest of the communication process.

We also propose another methodology where, in case a hack is attempted, the
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Algorithm 1: RTL mode activation in UAV

getAddress← xbeedata.getAddress()
if getAddress 6= groundcontrolstation.getAdress() then
LockGPS()
ReturnToLaunch()

else
Continue;

end if

XBee sends a predefined signal to the ground control station which signals the station

to configure the XBees (both at the ground control station and at the UAV) with a new

key. We then run at the ground control station the same pipeline of key generation

from the EEG signal and generate another key to ensure the communication is secure

and configure both the XBees.

We describe the algorithm below (Algorithm 2):

Algorithm 2: Key Change request in UAV

getAddress← xbeedata.getAddress()
if getAddress 6= groundcontrolstation.getAdress() then
LockGPS()
SendKeyChangeToGroundControlStation()
WaitForKey()

else
Continue();

end if

Another attempt to ensure a secure communication is to regularly change the key

generated and configure the Xbees at regular intervals of time. This way we achieve

quite robust and secure way of communication in the UAVs.

4.4 Summary

This chapter gives the underlying mathematical frame work and the design of our

implementation for Key generation techniques using the individual characteristics of
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the EEG signal. This chapter also describes the algorithms to detect an cyber attack

and evasion techniques in order to secure the communication between the UAV and

the ground control station.
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Chapter 5

Experimental Results and

Discussion

5.1 Results

In the initial setup, we collected the EEG data and activated our key generation

pipeline to generate a key. The data were collected from a user performing a specific

task which involves activating the Beta component of the EEG signal. The collected

data (around 1000 data points) are fed to our key generation pipeline that involves

Features extraction, Randomness extraction, and Key generation.

Then we configure the XBee’s in AT mode to ensure that XBee’s AES encryption

mode is enabled and uses the Key generated from our pipeline. Since the EEG data

is inconsistent even for the same user at different time intervals, the generated Key

from our pipeline would be different, thus ensuring uniqueness of the Key generated.

This enables users to configure the XBee’s AES key to different values.

A normal EEG waveform of a single person is shown in Figure 5.1: We extract
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Figure 5.1: Sample EEG waveform (with all the components) of a user performing a
specific mental task.

the Beta components of different people which was collected under similar tasks.

XBee has two basic modes of interaction: AT and AP2 mode. AT mode is also

referred as Transparent mode. In AT mode, the destination address is specified in

the Xbee’s memory any data sent to the XBee module is immediately sent to the

destination Xbee. A user can configure the Xbee in AT mode by first placing the

module in Command mode and then sending predefined AT commands using USB or

UART port. It is useful in scenarios where we do not intend to change the destination

address often or in cases of simple network or a point to point communication. XBee’s

in-built encryption also gets disabled in AT mode, so it is important to give proper

attention while configuring XBees.

We performed our proposed safety mechanism using an assembled quadcopter

with an onboard autopilot and the XBees to communicate with the ground control
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Figure 5.2: Waypoints set for the experiment in the first configuration. The attack was
discovered after the UAV navigated from waypoint 3 and Return-to-Launch (RTL)
was enabled.

station. We set up the waypoints for the UAV using mission planner software. For

our experiment, we set up different waypoints at different configurations and tested

our methods at different times. It is shown from Figure 5.2 to Figure 5.5 [27].

The purpose was to travel these way-points and return to the base location in

case an attack is detected. We introduced a third party attacking mechanism, and

for a simplistic purpose, we made the third party aware of the key generated which

the UAVs XBee is using to communicate with the ground control station. As the

third party starts attacking and maliciously sending control signals to the UAV, our

algorithm successfully detects the intervention (since the received packets at the UAVs

XBee has different source address). After detection of the intervention, the UAV

initiates its RTL mechanism and return to the base GPS location without completing

the directed trajectory [27].
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Figure 5.3: Waypoints set for the experiment in the second configuration. The at-
tack was discovered after the UAV navigated from waypoint 5 and Return-to-Launch
(RTL) was enabled.
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Figure 5.4: Waypoints set for the experiment in the third configuration. The at-
tack was discovered after the UAV navigated from waypoint 2 and Return-to-Launch
(RTL) was enabled.
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Figure 5.5: Waypoints set for the experiment in the fourth configuration. The at-
tack was discovered after the UAV navigated after waypoint 2 and Return-to-Launch
(RTL) was enabled.
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Figure 5.6: Waypoints set for the experiment in real time. The attack was discovered
after the UAV navigated after waypoint 4 and Return-to-Launch (RTL) was enabled.

We tested our other approach of changing the key when an attack is detected.

During this test, we setup the same waypoints and introduced a similar type of

attack along the way. After successful detection of the intervention, the algorithm

sent a key change request to the ground control station, during which, the UAVs

communication is restricted to the ground control station, and it hovers at a specified

location where the attack was attempted. After the XBee is configured to a new AES

key, the navigation is resumed to the destined location [27].

Fig. 5.6 shows the results in real-time. The attack was detected after waypoint

4 and Return-to-Launch (RTL) was enabled.
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5.2 Summary

This chapter entails the results of proposed algorithm for return to home position

of a UAV in case a hack is detected. We performed the detection on a UAV with

on-board Xbee. This chapter also gives the results of detected attack at various paths

the UAV travels.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis gives a unique approach to biometric encryption of a UAV communicating

with the ground control station. We have also provided a safety mechanism for the

UAV in case a third-party intervention is detected along the way. This approach

can be used for any UAV scenario where cyberattacks are a particular concern. Our

approach not only adds a layer of additional security to the UAV but also provides a

unique way for securing the UAV with low-cost resources.

6.2 Future Work

In future work, we plan to further extend our authentication scheme to multi-UAV

scenarios [28–30], where a cluster of UAVs aims to authenticate their controller. A

possible approach is to have each member in all UAVs (a cluster) sequentially verify

the controller one by one utilizing the proposed authentication scheme. Formation
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control and cooperative learning in multi-robot systems can be utilized to enhance

the safety security mechanism [31–33].

6.2.1 Statistical Analysis of EEG

We also intend to enhance our EEG key generation technique from extracting poly-

nomial coefficients to perform a statistical analysis of the EEG data. One approach

suggests using the averaged event-related potential (ERP) which claims to have the

potential to provide more robust bio-metric identification. It describes the Cogni-

tive Event-Related Biometric Recognition (CEREBRE) protocol, an ERP based bio-

metric protocol designed efficiently to express individual’s unique responses coming

from multiple functional brain systems. The results based on their approach indicate

100 percent identification accuracy in a pool of 50 users.

The idea for statistical analysis for EEG is to extract consistent parameters in an

EEG signal of a particular user. This consistency ensures a single key or a single type

of key with a known variance. Identify other consistent parameters of brain EEG

signals that highlight the task a particular user is performing like sleeping, doing a

different mental tasks, etc. It would not only help identifying a state of mind (which

is important for generating a key since getting EEG data from sleeping person would

defeat our purpose) but also identify the intensity of state of mind of different indi-

viduals performing a different task. This must require different volunteers performing

different tasks. This requires active data collection for a longer period.

6.2.2 A Bird that never forgets what it sees!

This subsection describes another technique for safe return to home approach for

a UAV in case an attack is detected. Given the advancement of miniature storage
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devices and increased memory capacity of UAVs, it has become affordable to design

and implement visual navigation through 3D sensors which justify the title of this

section.

The idea is to use only the 3D data acquired over time as the UAV travels in a

specified path. Assume a scenario, where the ground control station specifies a path

for a UAV to travel from one location to another. Since the UAV is equipped with 3D

sensors (Ex: Velodyne) we attempt to store the 3D data in memory and perform the

alignment of 3D point clouds to reconstruct the scene as the UAV acquires through

time along the way. Assume that at a certain point X along the way, an attack

was detected. Our approach is to cut all the communication of the UAV to the

ground control station and use only the previously reconstructed scene to navigate

and find it’s way back to home. It essentially simplifies as follows: understand the

environment, detect the key features, find a path to return to the home position based

on the reconstructed 3D scene until the attack was detected. We progressed our way

though 3D scene construction at a smaller scale ( room) using a simpler 3D device

(PMD picoflexx).

Overview: 3D sensing

3-D sensing that leads to highly dense mapping of the environment is a key feature of

aerial robotics if such system are to be able to execute path planning and navigation.

To get such data we require a Time-of-Flight 3D sensor (pico flexx sensor) which gives

3D data points of the perceived environment. These data points are generally called

as point clouds which are collection of points that represent the environment.

The per frame point cloud data are generally acquired from different viewpoints

of the environment, in this case when the sensor is onboard the UAV. However the

point clouds acquired, should be added together to make a perfect sense of the envi-
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ronment which would aid the MAV to localize itself in the environment and navigate

accordingly. Aligning the point clouds which are taken at different viewpoints to a

global coordinate frame such that the point clouds match as well as possible which

helps reconstructing the environment is defined as the Registration. The key aspect

in Registration is to find the relative position and orientation between the acquired

point clouds. The problem statement narrows down to the registration of two 3D

point clouds, i.e., aligning two point clouds by estimating the transformation be-

tween the two view poses under which the point clouds have been acquired. This

type of registration can be carried out by one of the several variants of ICP(Iterative

Closest Point) algorithm. The registration of Point clouds can be split into following

steps:

1. Selection: Sampling Input Point Clouds.

2. Matching: Finding the correspondences between the point clouds

3. Rejection: Reducing outlier by filtering the correspondences.

4. Alignment: Using an error metric in order to minimize the error while obtaining

the optimal transformation.

The above steps are calculated by the ICP algorithm implemented in PCL (Point

Cloud Library). However we process the input cloud data for refining which aids

ICP.

We have implemented the following steps in our pipeline:

1. Voxel Grid Filtering:

Since original point clouds are often redundant and become computationally

expensive, we downsample the original point clouds that is, reduce the number

of points in the point cloud. It could be done using voxelized grid approach
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among other methods. This approach creates a 3D voxel grid (Voxel grid can

be assumed as a set of tiny 3D boxes in space). Then, in each voxel unit(3D

box), all the points present will be approximated (i.e., downsampled) with their

centroid.

2. Statistical Outlier Removal:

It is a technique to perform a statistical analysis of the input point cloud dataset

and remove the noisy measurements. The idea is to analyze the number of

neighbours for each point, and normally it is a user defined value including

standard deviation. So, those points will be identified and removed, which have

a distance larger than the user defined standard deviation of the mean distance

to the query point. The computed output is stored in a variable.

3. Normals Estimation:

Surface normals relate to the geometric surface of a point. It is inferred as a

normal’s direction at a point located on the surface. This surface normal is a

vector perpendicular to the surface at that point. It is usually calculated by

the analysis of PCA (Principal Component Analysis) which is the eigenvectors

and eigenvalues of a covariant matrix which is calculated from the query point’s

nearest neighbors. So, for every point, the algorithm picks it’s neighbors within

a sphere of radius r which is user defined.

4. Iterative Closest Point Algorithm(ICP):

This algorithm is an iterative algorithm designed to find the best transformation

(combination of rotation and translation) between two point clouds so that they

match each other with minimum error. In this process, one point cloud is taken

as target or reference, and the other is taken as the source. ICP iteratively

checks the transformation which is required to reduce the distance from the
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source to the target point cloud. The process can be reduced to the following

steps:

• For every point located in the source point cloud, find the closest point in

the target or reference point cloud.

• Estimate the translation and rotation combination using an error mean

squared cost function that assists best to align every source point in the

source point cloud to its match found in the previous step.

• Apply the transformation obtained from the previous step to the source

point cloud.

• Iterate the procedure until an accepted error is obtained.

In our approach, the first acquired point cloud is kept as a target and the second

point cloud as the source. We iteratively perform the same set of operations for a

subsequent pair of point clouds which are acquired for a scene. However, there are

certain parameters that need to be taken care of.

• Between two corresponding points in source < − > target we need to set the

maximum distance threshold.

• RANSAC Outlier Rejection - This method classifies a point to be inlier or an

outlier. Primarily, if the distance between the transformed source index and

the target data index is smaller than the user-defined inlier distance threshold,

then the point is considered as an inlier.

• For an optimization to be considered as having converged to the final solution,

we need to set the Transformation epsilon which is the maximum admissible

difference between two consecutive transformations.
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• Before the ICP algorithm is considered to have converged, we need to set the

maximum admissible Euclidean error between two consecutive steps in the ICP

loop.

• Setting the ICP’s maximum number of iterations.

Since we are using normals for ICP, the ICP inherently uses point-to-plane error

metric for convergence. The result of ICP is the Transformation matrix (PT) between

the source and target point clouds. This transformation matrix is used to update the

global Transformation (GT) which is set to an Identity matrix in the initial setup.

It is updated as GT = GT ∗ PT where PT is the pair wise transform. The

Pairwise transform of the previous step is also used as an initial guess for the ICP in

the next pair alignment to perform fast convergence. The data set were collected at a

frame rate of 15fps and moved across the room slowly. Data sets collected at smaller

distance helped ICP to converge faster since more data would overlap in a pairwise

alignment. The results are shown in Fig. 6.1 and Fig. 6.2.
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Figure 6.1: ICP results of a room

Figure 6.2: Another reconstruction of a room
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Path Planning from Visual Data

After creating the 3D construction of a scene, path planning algorithms for returning

the UAV to home position needs to be implemented. There are different path planning

algorithms that has the potential to determine the paths from visual key points or

visual way points. Most popular among these are Rapidly exploring random trees

(RRT), Probablistic Road Maps (PRM), Artificial Potential Fields and Mixed Integer

Programming.
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