335 research outputs found

    A layered control architecture for mobile robot navigation

    Get PDF
    A Thesis submitted to the University Research Degree Committee in fulfillment ofthe requirements for the degree of DOCTOR OF PHILOSOPHY in RoboticsThis thesis addresses the problem of how to control an autonomous mobile robot navigation in indoor environments, in the face of sensor noise, imprecise information, uncertainty and limited response time. The thesis argues that the effective control of autonomous mobile robots can be achieved by organising low level and higher level control activities into a layered architecture. The low level reactive control allows the robot to respond to contingencies quickly. The higher level control allows the robot to make longer term decisions and arranges appropriate sequences for a task execution. The thesis describes the design and implementation of a two layer control architecture, a task template based sequencing layer and a fuzzy behaviour based low level control layer. The sequencing layer works at the pace of the higher level of abstraction, interprets a task plan, mediates and monitors the controlling activities. While the low level performs fast computation in response to dynamic changes in the real world and carries out robust control under uncertainty. The organisation and fusion of fuzzy behaviours are described extensively for the construction of a low level control system. A learning methodology is also developed to systematically learn fuzzy behaviours and the behaviour selection network and therefore solve the difficulties in configuring the low level control layer. A two layer control system has been implemented and used to control a simulated mobile robot performing two tasks in simulated indoor environments. The effectiveness of the layered control and learning methodology is demonstrated through the traces of controlling activities at the two different levels. The results also show a general design methodology that the high level should be used to guide the robot's actions while the low level takes care of detailed control in the face of sensor noise and environment uncertainty in real time

    Influencing robot learning through design and social interactions: a framework for balancing designer effort with active and explicit interactions

    Get PDF
    This thesis examines a balance between designer effort required in biasing a robot’s learn-ing of a task, and the effort required from an experienced agent in influencing the learning using social interactions, and the effect of this balance on learning performance. In order to characterise this balance, a two dimensional design space is identified, where the dimensions represent the effort from the designer, who abstracts the robot’s raw sensorimotor data accord-ing to the salient parts of the task to increasing degrees, and the effort from the experienced agent, who interacts with the learner robot using increasing degrees of complexities to actively accentuate the salient parts of the task and explicitly communicate about them. While the in-fluence from the designer must be imposed at design time, the influence from the experienced agent can be tailored during the social interactions because this agent is situated in the environ-ment while the robot is learning. The design space is proposed as a general characterisation of robotic systems that learn from social interactions. The usefulness of the design space is shown firstly by organising the related work into the space, secondly by providing empirical investigations of the effect of the various influences o

    Robot manipulation in human environments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 211-228).Human environments present special challenges for robot manipulation. They are often dynamic, difficult to predict, and beyond the control of a robot engineer. Fortunately, many characteristics of these settings can be used to a robot's advantage. Human environments are typically populated by people, and a robot can rely on the guidance and assistance of a human collaborator. Everyday objects exhibit common, task-relevant features that reduce the cognitive load required for the object's use. Many tasks can be achieved through the detection and control of these sparse perceptual features. And finally, a robot is more than a passive observer of the world. It can use its body to reduce its perceptual uncertainty about the world. In this thesis we present advances in robot manipulation that address the unique challenges of human environments. We describe the design of a humanoid robot named Domo, develop methods that allow Domo to assist a person in everyday tasks, and discuss general strategies for building robots that work alongside people in their homes and workplaces.by Aaron Ladd Edsinger.Ph.D

    A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots

    Get PDF
    Mobile robots are increasingly being applied in a variety of sectors, including agricultural, firefighting, and search and rescue operations. Robotics and autonomous technology research and development have played a major role in making this possible. Before a robot can reliably and effectively navigate a space without human aid, there are still several challenges to be addressed. When planning a path to its destination, the robot should be able to gather information from its surroundings and take the appropriate actions to avoid colliding with obstacles along the way. The following review analyses and compares 200 articles from two databases, Scopus and IEEE Xplore, and selects 60 articles as references from those articles. This evaluation focuses mostly on the accuracy of the different path-planning algorithms. Common collision-free path planning methodologies are examined in this paper, including classical or traditional and modern intelligence techniques, as well as both global and local approaches, in static and dynamic environments. Classical or traditional methods, such as Roadmaps (Visibility Graph and Voronoi Diagram), Potential Fields, and Cell Decomposition, and modern methodologies such as heuristic-based (Dijkstra Method, A* Algorithms, and D* Algorithms), metaheuristics algorithms (such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), and neural systems such as fuzzy neural networks or fuzzy logic (FL) and Artificial Neural Networks (ANN) are described in this report. In this study, we outline the ideas, benefits, and downsides of modeling and path-searching technologies for a mobile robot

    Developmental learning of internal models for robotics

    No full text
    Abstract: Robots that operate in human environments can learn motor skills asocially, from selfexploration, or socially, from imitating their peers. A robot capable of doing both can be more ~daptiveand autonomous. Learning by imitation, however, requires the ability to understand the actions ofothers in terms ofyour own motor system: this information can come from a robot's own exploration. This thesis investigates the minimal requirements for a robotic system than learns from both self-exploration and imitation of others. .Through self.exploration and computer vision techniques, a robot can develop forward 'models: internal mo'dels of its own motor system that enable it to predict the consequences of its actions. Multiple forward models are learnt that give the robot a distributed, causal representation of its motor system. It is demon~trated how a controlled increase in the complexity of these forward models speeds up the robot's learning. The robot can determine the uncertainty of its forward models, enabling it to explore so as to improve the accuracy of its???????predictions. Paying attention fO the forward models according to how their uncertainty is changing leads to a development in the robot's exploration: its interventions focus on increasingly difficult situations, adapting to the complexity of its motor system. A robot can invert forward models, creating inverse models, in order to estimate the actions that will achieve a desired goal. Switching to socialleaming. the robot uses these inverse model~ to imitate both a demonstrator's gestures and the underlying goals of their movement.Imperial Users onl

    Expressive social exchange between humans and robots

    Get PDF
    Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.Includes bibliographical references (p. 253-264).Sociable humanoid robots are natural and intuitive for people to communicate with and to teach. We present recent advances in building an autonomous humanoid robot, Kismet, that can engage humans in expressive social interaction. We outline a set of design issues and a framework that we have found to be of particular importance for sociable robots. Having a human-in-the-loop places significant social constraints on how the robot aesthetically appears, how its sensors are configured, its quality of movement, and its behavior. Inspired by infant social development, psychology, ethology, and evolutionary perspectives, this work integrates theories and concepts from these diverse viewpoints to enable Kismet to enter into natural and intuitive social interaction with a human caregiver, reminiscent of parent-infant exchanges. Kismet perceives a variety of natural social cues from visual and auditory channels, and delivers social signals to people through gaze direction, facial expression, body posture, and vocalizations. We present the implementation of Kismet's social competencies and evaluate each with respect to: 1) the ability of naive subjects to read and interpret the robot's social cues, 2) the robot's ability to perceive and appropriately respond to naturally offered social cues, 3) the robot's ability to elicit interaction scenarios that afford rich learning potential, and 4) how this produces a rich, flexible, dynamic interaction that is physical, affective, and social. Numerous studies with naive human subjects are described that provide the data upon which we base our evaluations.by Cynthia L. Breazeal.Sc.D

    Drama, a connectionist model for robot learning: experiments on grounding communication through imitation in autonomous robots

    Get PDF
    The present dissertation addresses problems related to robot learning from demonstra¬ tion. It presents the building of a connectionist architecture, which provides the robot with the necessary cognitive and behavioural mechanisms for learning a synthetic lan¬ guage taught by an external teacher agent. This thesis considers three main issues: 1) learning of spatio-temporal invariance in a dynamic noisy environment, 2) symbol grounding of a robot's actions and perceptions, 3) development of a common symbolic representation of the world by heterogeneous agents.We build our approach on the assumption that grounding of symbolic communication creates constraints not only on the cognitive capabilities of the agent but also and especially on its behavioural capacities. Behavioural skills, such as imitation, which allow the agent to co-ordinate its actionn to that of the teacher agent, are required aside to general cognitive abilities of associativity, in order to constrain the agent's attention to making relevant perceptions, onto which it grounds the teacher agent's symbolic expression. In addition, the agent should be provided with the cognitive capacity for extracting spatial and temporal invariance in the continuous flow of its perceptions. Based on this requirement, we develop a connectionist architecture for learning time series. The model is a Dynamical Recurrent Associative Memory Architecture, called DRAMA. It is a fully connected recurrent neural network using Hebbian update rules. Learning is dynamic and unsupervised. The performance of the architecture is analysed theoretically, through numerical simulations and through physical and simulated robotic experiments. Training of the network is computationally fast and inexpensive, which allows its implementation for real time computation and on-line learning in a inexpensive hardware system. Robotic experiments are carried out with different learning tasks involving recognition of spatial and temporal invariance, namely landmark recognition and prediction of perception-action sequence in maze travelling.The architecture is applied to experiments on robot learning by imitation. A learner robot is taught by a teacher agent, a human instructor and another robot, a vocabulary to describe its perceptions and actions. The experiments are based on an imitative strategy, whereby the learner robot reproduces the teacher's actions. While imitating the teacher's movements, the learner robot makes similar proprio and exteroceptions to those of the teacher. The learner robot grounds the teacher's words onto the set of common perceptions they share. We carry out experiments in simulated and physical environments, using different robotic set-ups, increasing gradually the complexity of the task. In a first set of experiments, we study transmission of a vocabulary to designate actions and perception of a robot. Further, we carry out simulation studies, in which we investigate transmission and use of the vocabulary among a group of robotic agents. In a third set of experiments, we investigate learning sequences of the robot's perceptions, while wandering in a physically constrained environment. Finally, we present the implementation of DRAMA in Robota, a doll-like robot, which can imitate the arms and head movements of a human instructor. Through this imitative game, Robota is taught to perform and label dance patterns. Further, Robota is taught a basic language, including a lexicon and syntactical rules for the combination of words of the lexicon, to describe its actions and perception of touch onto its body

    Cognitive-developmental learning for a humanoid robot : a caregiver's gift

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 319-341).(cont.) which are then applied to developmentally acquire new object representations. The humanoid robot therefore sees the world through the caregiver's eyes. Building an artificial humanoid robot's brain, even at an infant's cognitive level, has been a long quest which still lies only in the realm of our imagination. Our efforts towards such a dimly imaginable task are developed according to two alternate and complementary views: cognitive and developmental.The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself. This thesis addresses a broad spectrum of machine learning problems across several categorization levels. Actions by embodied agents are used to automatically generate training data for the learning mechanisms, so that the robot develops categorization autonomously. Taking inspiration from the human brain, a framework of algorithms and methodologies was implemented to emulate different cognitive capabilities on the humanoid robot Cog. This framework is effectively applied to a collection of AI, computer vision, and signal processing problems. Cognitive capabilities of the humanoid robot are developmentally created, starting from infant-like abilities for detecting, segmenting, and recognizing percepts over multiple sensing modalities. Human caregivers provide a helping hand for communicating such information to the robot. This is done by actions that create meaningful events (by changing the world in which the robot is situated) thus inducing the "compliant perception" of objects from these human-robot interactions. Self-exploration of the world extends the robot's knowledge concerning object properties. This thesis argues for enculturating humanoid robots using infant development as a metaphor for building a humanoid robot's cognitive abilities. A human caregiver redesigns a humanoid's brain by teaching the humanoid robot as she would teach a child, using children's learning aids such as books, drawing boards, or other cognitive artifacts. Multi-modal object properties are learned using these tools and inserted into several recognition schemes,by Artur Miguel Do Amaral Arsenio.Ph.D
    • …
    corecore