

Title A layered control architecture for mobile robot

navigation

Name Jiancheng Qiu

This is a digitised version of a dissertation submitted to the University of

Bedfordshire.

It is available to view only.

This item is subject to copyright.

A Layered Control Architecture for

Mobile Robot Navigation

by

Jiancheng Qiu

A Thesis submitted to the Univeristy Research Degree Committee in fulfillment ofthe
requirements for the degree of

DOCTOR OF PHILOSOPHY

In

Robotics

Faculty of Science, Design and Technology

University of Luton

January, 1998

•

Abstract

This thesis addresses the problem of how to control an autonomous mobile robot
navigation in indoor environments, in the face of sensor noise, imprecise information,
uncertainty and limited response time. The thesis argues that the effective control of
autonomous mobile robots can be achieved by organising low level and higher level
control activities into a layered architecture. The low level reactive control allows the
robot to respond to contingencies quickly. The higher level control allows the robot to
make longer term decisions and arranges appropriate sequences for a task execution.

The thesis describes the design and implementation of a two layer control architecture, a
task template based sequencing layer and a fuzzy behaviour based low level control layer.
The sequencing layer works at the pace of the higher level of abstraction, interprets a task
plan, mediates and monitors the controlling activities. While the low level performs fast
computation in response to dynamic changes in the real world and carries out robust
control under uncertainty.

The organisation and fusion of fuzzy behaviours are described extensively for the
construction of a low level control system. A learning methodology is also developed to
systematically learn fuzzy behaviours and the behaviour selection network and therefore
solve the difficulties in configuring the low level control layer.

A two layer control system has been implemented and used to control a simulated mobile
robot performing two tasks in simulated indoor environments. The effectiveness of the
layered control and learning methodology is demonstrated through the traces of
controlling activities at the two different levels. The results also show a general design
methodology that the high level should be used to guide the robot's actions while the low
level takes care of detailed control in the face of sensor noise and environment
uncertainty in real time.

Acknowledgements

First and foremost I would like to thank my director of studies, Mick Walters, for three
years of advice and friendship. Mick gave me the freedom to pursue my own ideas and
made it possible for me to concentrate on this research. He also managed to bring me
back to the track when my ideas went too wild. Most recently, he gave me the pushes I
needed to get everything finished and written down. Without his valuable guidance and
full support, it would be impossible to complete the work in three years.

Second, I would like to thank Dr. Roger Harvey, who unfortunately left us half year ago.
I have benefited immensely from his rigorous scientic research method and his
encouragement. It was mainly for his effort that I had chances to present some of the
research results in international conferences under difficult circumstances. He will be
sorely missed.

Third, I am also extremely grateful to Dr. John Chisholm, my external supervisor for
supervising my study, reading and commenting on an early draft of my thesis, especially
as he has not been so well over the last year. His comments helped shape the final draft
thesis greatly.

Special thanks go to Dr. Kemal Ahmed and Mr. David Wilking son for their diligence in
reading the draft of this thesis and their valuable discussions.

I would like to thank my examination cornmitee. Dr. Huosheng Hu served as the external
examiner and Dr. Alfred Vella as the internal examiner. Their invaluable comments and
suggestions gave me the guidances in completing the final thesis in a short time.

I would also like to thank Steve Arkurst, Elaine Walsh and Faculty of Design and
Technology for providing me with a PhD studentship and valuable teaching experience
during the course of this work.

This thesis would not be possible without a great deal of advice and help from many
people. I cannot possibly list them all here, and I apologize for any I might have missed.

Thanks to my family for their love and support. I would especially like to thank my
father, who instilled in me, at a very young age, a love oflearning. Dad, thanks for all the
stories, homeworks and love. Dad, rests in peace.

Finally, I would like to thank my wife, Hua. Marrying her was the smartest thing I ever
did. I am forever indebted to her, for giving me so much love, hope, and support.

Table of Content

List of Figures

List of Tables

Chapter 1 Introduction

1.1 Issues in Real-World Navigation

1.1.1 Local Sensor Data vs. World Model

1.1.2 Dealing with Sensor Noise

1.1.3 Dealing with Imprecise Information

1.IA Fast Response Time

1.1.5 Plans

1.2 Actions and Behaviours

1.3 High Level Activity and Low Level Activity

1.4 Imprecision and Heuristic Control

1.5 Learning

1.6 Outline of a Two Layer Control Architecture

1.7 Summary

1.7.1 The Problem

1.7.2 The Assumption

1.7.3 Approach

1.8 Thesis Outline

Chapter 2 Review of Mobile Robot Control Architecture

2.1 Introduction

2.2 Traditional Approach

2.3 Behaviour Approach

V1

IX

3

3

4

4

4

5

6

7

8

9

10

11

11

12

12

13

14

14

15

16

2.4 RAPs

2.5 ATLANTIS

2.6 TCA

2.7 AuRA

2.8 Situated Automata

2.9 Blended Behaviour Approach

2.10 Hybrid Approaches

2.11 Summary

Chapter 3 A Two Layer Control Architecture

3.1 Low Level Control Layer

3.1.1 Behaviour Structure

3.1.2 Fuzzy behaviour Components

3.1.2.1 Fuzzy Input Variables and Output Variables

3.1.2.2 Membership Functions

3.1.2.3 Fuzzy Control Rules

3.1.3 Fuzzy Behaviour Structure

3.1.4 Fuzzy Behaviour Processing Algorithm

3. 1.5 Fuzzy Behaviour Link

3.2 Higher Level Control Layer

3.2.1 Interfacing to Low Level Control Layer

3.2.2 Task Template, Tasks and Task Queue

3.2.3 Task Scheduler

3.3 Summary

Chapter 4 Fuzzy Behaviour Organisation and Fusion

4.1 A Sensor Model

4. 1. 1 Overview

4.1.2 Structure of Sensor Model

4.1.3 Perceptual Subsystem

17

19

20

21

21

22

23

26

28

29

29

31

31

33

34

36

37

38

39

41

43

45

49

52

52

52

53

54

ii

ZF

4.2 Fuzzy Behaviour Organisation 55

4.2.1 Reactive Behaviours 56

4.2.1.1 Avoid Obstacle 58

4.2.1.2 Keep Moving 60

4.2.1.3 Follow Edge 61

4.2.1.4 Recover Stall 64

4.2.2 Task-Oriented Behaviours 64

4.2.2.1 Follow Corridor 66

4.2.2.2 Reach Position 67

4.3 Fuzzy Behaviour Fusion 69

4.3.1 Behaviour Promotioniinhibition Links 73

4.3.2 Behaviour Activation 73

4.3.2.1 Situational Activation 74

4.3.2.2 Motivation Activation!Inhibition 74

4.3.3 Behaviour Selection Network and Algorithm 75

4.4 Summary 79

Chapter 5 Learning of Optimal Mobile Robot Control Behaviours 81

5. 1 Introduction 81

5.2 Genetic Algorithms 82

5.2.1 Basic Process 83

5.2.2 Genetic Representation and Operators 83

5.3 Robot Learning 85

5.4 Learning ofFuzzy Behaviours 87

5.4. 1 Structure of fuzzy behaviour to be learnt 87

5.4.2 Fuzzy Behaviour Learning Method 89

5.4.3 A Multistage Learning Course 91

5.4.4 Fuzzy Behaviour Learning Environments 92

5.4.5 Behaviour Genetic Chromosomes 94

5.4.6 Design of Genetic Operators 95

iii

5.4.6.1 Random Initialisation

5.4.6.2 Crossover

5.4.6.3 Mutation

5.4.6.4 Average Operator

5.4.6.5 Reproduction Operator

5.4.7 Evaluation Functions

5.4.8 Control Parameters and Learning Algorithm

5.4.9 Simulation Results Analysis

5.4.9.1 Learnt Membership Functions

5.4.9.2 Genetic Algorithm Convergence Evaluation

5.4.9.3 Effects ofMultistage Learning

5.4.9.4 Visualisation of Leaming Results

5.5 Learning ofBehaviour Selection Network

5.5. 1 Components to be learnt

5.5.2 An Incremental Learning Approach

5.5.3 Simulation Design and Results

5.6 Summary

Chapter 6 Experiments

6.1 A Simulated Robot System

6.2 A Concrete Slab Finishing Task

6.2.1 Experiment Set-up

6.2.2 Navigation and Task Execution Plan

6.2.3 An Implementation of Two Layer Control System

6.2.4 Detailed Traces

6.2.4.1 A Sequencing Trace

6.2.4.2 A Behaviour Activation Level Trace

6.2.5 Two Complete Robot Courses

6.2.6 Discussion of the Detailed Courses

6.3 A Building Security Patrolling Task

96

96

97

98

99

99

100

102

102

105

107

111

115

115

116

117

122

125

125

128

129

130

132

134

134

144

153

154

155

iv

6.4 Summary ofExperiments 161

163Chapter 7 Conclusions and Future Work

7.1 Summary 163

1637. 1. 1 The Argument

1647.1.2 MARCO control architecture

7.1.3 Fuzzy Behaviour-based Low Level Control Layer 165

7.1.4 Task Template-based Sequencing Layer 166

7.1.5 Learning ofLow Level Control Layer 167

7.1.6 Experiments 168

7.2 Evaluation 169

7.2.1 Robust Goal-directed Behaviours 169

7.2.2 Fast Response Time 170

7.2.3 Uncertainty, Sensor Noise and Imprecision 171

7.2.4 Limitations 172

7.3 Discussion 174

7.4 Future Work 177

7.4.1 Extension 177

7.4.2 Deliberative Layer 177

7.4.3 Learning 178

7.5 Conclusions 178

Reference

Appendix A: Review of Fuzzy Logic Control

Appendix B: Initial population of Avoid Obstacle for both multistage and noo­

multistage learning

Appendix C: A Complete Sequencing Trace Log

~---.---------------

-- --------

List of Figures

Fig. 3-1 MARCO Block Diagram 28

Fig. 3-2 Membership function structures used in MARCO 33

Fig. 3-3 Structure of a Fuzzy Behaviour in MARCO 37

Fig. 3-4 Processing Algorithm of a fuzzy behaviour. 38

Fig. 3-5 A Behaviour Link 39

Fig. 3-6 An Example Navigation Task 40

Fig. 3-7. A Simple Example Task Template 44

Fig. 3-8 Task Execution Diagram 45

Fig. 3-9 Task Scheduling Algorithm 49

Fig. 4-1 Sphere of Influence of Environment 57

Fig. 4-2 Sample Point Coverage for Avoid Obstacle Behaviour 58

Fig. 4-3 Membership Functions of Fuzzy Variables of Avoid Obstacle Behaviour 59

Fig. 4-4 Membership Functions of Speed 60

Fig. 4-5 Edge Following Actions 61

Fig. 4-6 Angle Histogram Calculation 62

Fig. 4-7 Local Angle-histogram Calculation Algorithm 62

Fig. 4-8 Membership Functions of Follow Edge Behaviour 64

Fig. 4-9 Acting Pattern ofFour Task-oriented Behaviours 65

Fig. 4-10 Some Membership Functions of Fuzzy Variables of Reach Position 69

Fig. 4-11 An Example ofBehaviour Coordination 69

Fig. 4-12 An Example Behaviour Selection Network 73

Fig. 4-13 Behaviour Selection Network 75

Fig. 4-14 Behaviour Link Structure 76

Fig. 4-15 Behaviour Selection Algorithm
 77

Fig. 4-16 Energy Redistribution Process for Robot Control in Fig. 4-11
 78

Fig. 5-1 Genetic Operators 84

vi

Fig. 5-2 Membership Functions of Fuzzy Variables for Avoid Obstacle 88

Fig. 5-3 Genetic Chromosome of Avoid Obstacle Behaviour 89

Fig. 5-4 Patterns ofLeaming Environments 92

Fig. 5-5 Some Typical Simulated Worlds for Avoid Obstacle Behaviour 93

Fig. 5-6 Some example worlds for other behaviours in 3 stages 94

Fig. 5-7 Structures of Fuzzy Behaviour Chromosome 95

Fig. 5-8 High Level Structure of the Learning Algorithm 102

Fig. 5-9 Membership functions of fuzzy variable obsJeft of Avoid

Obstacle behaviour during the learning process 105

Fig. 5-10 Generation vs. Fitness charts of learning processes for fuzzy behaviours 106

Fig. 5-11 Snapshots of the course of the robots controlled by four fuzzy behaviours 112

Fig. 5-12 Snapshots of the course of the robots controlled by Track Path 113

Fig. 5-13 Behaviour Selection Network to be Learned 117

Fig. 5-14 Structure of behaviour link chromosomes 117

Fig. 5-15 Snapshots of the courses of the robot for the learning of the behaviour selection

networks: Reach Position-Avoid Obstacle+ Keep Moving 119

Fig. 5-16 Snapshots of the courses of the robot for the learning ofthe behaviour selection

networks: Follow Edge-Avoid Obstacle+ Keep Moving 120

Fig. 5-17 Snapshots of the courses of the robot for the learning of the behaviour selection

networks: Track Path-Avoid Obstacle+ Keep Moving 121

Fig. 5-18 Generation vs. Fitness charts of the learning processes for the behaviour selection

network 123

Fig. 6-1 Diagram of A Simulated Robot System, SIMAR 126

Fig. 6-2 A Simple Kinematic Servoing Model 127

Fig. 6-3 The Layout of the First Floor of the Spire Research Centre 129

Fig. 6-4 Simplified Feature Map of the First Floor 129

vii

Fig. 6-5 Part of Environment in the Robot Centred Co-ordinate 130

Fig.6-6 Task Plan for Concrete Slab Finishing 131

Fig. 6-7 Approximate Reference Trace Routes and Positions 134

Fig. 6-8 The Trace of Fuzzy Behaviour Activity for Following Corridor 146

Fig. 6-9 The Trace of Fuzzy Behaviours Activity for Crossing the Door 148

Fig. 6-10 The Trace of Fuzzy Behaviour Activity for Reaching the First Goal 149

Fig. 6-11 The Trace ofBehaviour Activity for Troweling a Path with Two Pillars 151

Fig. 6-12 The Trace ofBehaviour Activity in Finishing the First Pillar 152

Fig. 6-13 Snapshot of Complete Robot Course in Concrete Slab Finishing Task with

Manually Designed Low Level Control System 153

Fig. 6-14 Snapshot of Complete Robot Course in Concrete Slab Finishing Task with

Learned Low Level Control System 154

Fig. 6-15 Snapshot of the Robot Course in Corridor Patrolling 157

Fig. 6-16 Corridor Perception at the Entry of Corridor #1 158

Fig. 6-17 Corridor Perception at the End of Corridor #1 159

Fig. 6-18 Corridor Perception at the Entry ofCorridor #3 160

viii

List of Tables

Table 3-1 Linguistic Terms Used in Fuzzy Rules in MARCO 34

Table 5-1 The first 5 members of the initial population at stage 1 for

Follow Edge Behaviour 103

Table 5-2 The first 5 members of the initial population at stage 2 for

Follow Edge Behaviour 103

Table 5-3 The first 5 members of the initial population at stage 3 for

Follow Edge Behaviour 103

Table 5-4 The first 5 members of the final population for Follow Edge Behaviour 103

Table 5-5 The first 10 members of the end population at 3 stages for

multistage learning 109

Table 5-6 The first 10 members of the population at generation 299, 599,1000

for non-multistage learning 110

Table 5-7 Performance indexes of three Avoid Obstacle behaviours 112

Table 5-8 Behaviour Link Chromosome and Their Performance Indexes 119

ix

have been removed, maps are approximate and imprecise and not always up-to-date,

and the weather may change suddenly. This usually makes it impossible to plan a

complete and reliable course of action in advance. Actions have to be taken at the

moment the situations arise which cannot be perceived by a plan. Third, sensors and

actuators are not perfect. Sensory information includes noise and sometimes may be

totally wrong. Mechanical actuators are imprecise and can fail. Wheel slips on the

floor. Error accumulation can tum a series of small imprecision into failure. A small

direction error can lead to a big position displacement.

These problems are fundamental problems and they cannot be solved by engineering

techniques so far. No matter how powerful a computer people build, a finite amount

of time will allow only a finite amount of computation. No matter how good a sensor

may be there is always information that it cannot deliver because the relevant situation

is hidden behind a wall or around a comer. No matter how many theories people may

use in describing our physical world, some aspects of the world still cannot be

predicted. Limited computation and sensing capabilities make the problems even

worse.

This thesis addresses the problem of how to design a control mechanism for an indoor

autonomous mobile robot that will allow it to reliably operate in the real world in the

face of these problems, namely:

· Sensor Noise;

· Limited computation time;

· Uncertainty, approximity and imprecision.

The behaviour of the robot should display three characteristics. Firstly it should be

reactive; that is, it should be able to respond quickly to unexpected contingencies,

such as collisions with obstacles. Second, it should be task-oriented; that is , the robot

should choose the right sequences of actions which lead it to a.chieve its task goals.

Third the robot's behaviour should be robust and reliable. It should be able to move ,

on its own and be confident that it will survive while achieving its goals under sensor

noise, uncertainty and imprecision.

2

1.1 Issues in Real-World Navigation

Examining further our car driving analogy can help to identify the sorts of processes

that are needed get a mobile robot to move around in the real world, whether it be

across office building, construction floor or across country. The following sections

highlight the main themes which the thesis will address.

1.1.1 Local Sensor Data vs. World Model

Navigation, whether it be a hallway or on a motorway, involves local sensory input, a

plan and a map in order to control a physical system progress towards the navigation

goal. How to use local sensory input and a world model varies, but in humans, using

either extreme affects their performance. Human can't drive with their eyes closed.

However, even with their eyes open, most drivers will have trouble finding way in

London when there is no knowledge of roads beyond what can be seen directly.

Local sensor data are necessary for a number of reasons. First, the world is a dynamic

and unpredictable place. Cars on streets and people in hallways move in unpredictable

ways, and in order to navigate without collisions it is necessary to monitor the

surroundings constantly. Even if the world were perfectly static, sensors would still be

necessary. Because of mechanical uncertainty, it is impossible to build a system which

navigates reliably without some sort of feedback. Therefore, local sensory information

is necessary, at least, to provide feedback for the low level control mechanism driving

the robot.

A world model is often needed in addition to local sensor data. Sometimes the

information necessary to decide what to do to achieve a goal is simply not available to

local sensors. It is similar to the way that one relies on instructions and maps, (that is,

3

plans and world model), to decide the direction to drive when there is no such

information locally.

1.1.2 Dealing with Sensor Noise

While sensory information is necessary, it is often noisy or wrong. It is not unusual

that people sometimes misread traffic signs. Robots are particularly vulnerable to

noise because their sensors are typically of much lower quality than those human

possess. Due to erroneous sensor data or a changing world, the robot's world model

may be wrong as well. The robot's actions would certainly be wrong based on the

incorrect world model. An effective control system should be able to detect and

correct erroneous information in the world model to guide the robot's actions. At the

same time, the robot should still work properly under the noisy local sensor data.

1.1.3 Dealing with Imprecise Information

A mobile robot requires some prior knowledge in obtaining a navigation goal. Such

knowledge is perhaps a map which may not be accurate because of the changing

world. Some features of an environment can be modified, a passage way indicated in

the map may be blocked and no longer in use, a door the robot is about to cross is

actually positioned half a meter left to the one in the map. Things can even be worse

when imprecise information is mingled with noise sensor data. The robot control

system should have a way to accommodate such imprecise knowledge and still be able

to navigate successfully.

1.1.4 Fast Response Time

All computations in navigation are time-limited, but some are more limited than

others, such as avoiding emerging collisions. When a driver steps on his brakes in

4

p

front of an emerging car from a side road there are typically only a few seconds

available before colliding. An autonomous mobile robot must operate at the pace of

the world and respond quickly to unexpected situations in order to survive in the real

world. A robot that can do the right thing is useless if it does it too late. Slow response

will certainly result in unfavourable navigation actions and even damage to the robot.

On the other hand, sometimes there are decisions that can and do take longer time to

make. The decision to go down Ml rather than A418 from Luton to Bristol requires

many minutes of poring over a map. However, even this decision has a deadline; it

would not be very useful to decide to use A418 once already started on Ml. For a

robot, it must do the whole task in a reasonable time to be cost-effective.

1.1.5 Plans

Much of the early work on mobile robot planning usually make the assumption that

the world can be predicted infinitely into the future. High level decisions are often

made under such assumptions. A plan is constructed as a computer program, a step­

by-step algorithm which may be executed by an autonomous robot. The plan tries to

account for every detail of mobile robot interactions and instructs every movement of

the robot. Such a method may be reasonable in an engineered environment completely

under the control of the planner. In a complex, dynamic real world, an assumption of

predictability is no longer held. It is not possible to predict the future in detail. When a

planner cannot project future states of the world in complete detail, it cannot construct

a detailed plan or the plan constructed is not going to work. Many detailed actions in

the plan will have to be left unspecified until the situation in which they are required

arises and the details of the world state can be determined by direct observation. This

means that a plan must be sketchy. I simply cannot tell if a duck will run in front of

my car when I set off to visit my friends. When it does, I step on the brake, change the

gear and stop the car to let the duck get away. The sequences of actions are not

planned before I set off. They belong to a sketchy plan I have in my mind: go to Old

Bedford Road; drive till Six Form College; turn left to New Bedford Road The

5

sequences of the actions have been embedded in my driving skills and are brought

into action when the situation requires. Similarly, a robot acting in a complex,

dynamic world must be controlled with flexible plans that allow many low level

actions to depend on the actual situations, encountered at execution time. Constructing

a control mechanism to support a sketchy task plan and low level detailed actions is

the central topic of the thesis.

1.2 Actions and Behaviours

It is common in the AI literature to decompose actions hierarchically. High level

actions made by high level decisions consist of sequences of low level actions. The

hierarchy ends at the lowest level with primitive actions which can be directly

executed by the robot actuators. "Turning the wheel" is a good example of a primitive

actions for a person driving down the road. Similarly, it is fairly straightforward to

"tum the wheel" on a mobile robot because the "wheel" is usually directly connected

to a motor over which the robot exercises direct control. However, "turn the wheel"

cannot be executed by the motor unless the direction and amount of angle to turn are

also provided. Here, two example primitive actions involving turning are "turn left"

and "turn right". Others may include "increase speed", "decrease speed", "raise arm",

"lower arm", etc. For a mobile robot, a primitive action cannot be initiated without its

control parameters calculated and provided by a processing module.

We can see a primitive action is invoked to create a desired control behaviour in the

robot movement and serve the specific purpose. It is natural to use the term

"behaviour" to refer to this specific purpose processing module which creates the

parameters and invokes primitive actions. When a driver turns the wheel left and

presses on brake, he implicitly exhibits collision avoidance "behaviour" to prevent

colliding with an approaching car from the right. Driving to London is an activity

which requires a collection of driving behaviours. To keep moving on the Ml at

certain speed ranges, a driver will step on the accelerator pedal constantly_ To avoid

collision, the driver will change speed and direction. To take a correct position, the

6

5

: I
, I -

driver will follow traffic lanes. These driving behaviours fall in two different

categories: reactive behaviours and purposeful behaviours. Driving to London is an

activity which needs the support of purposeful driving behaviours, such as following

correct lanes. However, following a correct lane alone cannot guarantee a safe arrival.

There is a constant need to avoid collision and change speed during the course. These

driving behaviours do not belong to the activity "Driving to London" but are parts of

one's innate driving knowledge and can be activated whenever required. The "Driving

to London" activity needs the support ofboth driving behaviours. Similarly, a robot

control system can be better organised, based on special purpose controlling

behaviours. Task-oriented behaviours support the purpose of completing the robot

task, while reactive behaviours take care of local interactions. These two types of

behaviours need to be composed to resolve the conflicting control actions. The major

part of this thesis will be about how to organise these specific purpose control

behaviours.

1.3 High Level Activity and Low Level Activity

While low level activities can directly control a robot, they have to be guided by high

level control activities. I cannot drive to my friend's home in Bristol without figuring

out the approximate steps how to get there. The sketchy plan is produced by carefully

reading a road map and simple instructions from my friend. I have to follow these

steps during my driving while constantly engaging in controlling the car. These two

types of activity lead me to a safe arrival. However, these activities have a number of

different characteristics. A high level activity is initiated by a high level decision.

High level activities can also include computational processes which produce

decisions. Low level activities carry out a goal provided by a high level activity.

Driving down the Ml to Junction 6A is the first step of my going to Bristol and

involves a number of my driving behaviours; Keep Moving, Avoid Collision, Follow

Lane. A high level activity need more computation time to decide and is less time

critical. A low level activity has to produce fast results and control the robot in real

time. A high level activity has a slower pace but its effect lasts longer. Once I commit

7

I
~I

myselfto be on the MI, Driving down the Ml to Junction 6A will last more than 10

minutes. By contrast, once on the MI, pressing on the brake commits me to go slower

only for a few seconds. I can also quickly regain my speed at any time.

High level activity and low level activity are two parts of an integrated problem. They

can interact with each other and the environment in very complex ways. Driving to

Bristol and stepping on the brake to avoid hitting the front car near Junction 6A are

related somehow. I would not have had to step on the brake if I had not been driving

to Bristol. On the other hand, my stepping on the brake was not simply a direct

consequence of driving to Bristol either. Ifthe car had not slowed so suddenly, I could

have driven to Bristol without pressing on the brake at that point. Pressing on the

brake does help me to arrive in Bristol safely later. Controlling a mobile robot needs

careful organisation of these different types of activity. Their differences in processing

time and functions need to be taken into account in designing the robot control

architecture. A layered model is adopted in this thesis as a more efficient control

approach.

1.4 Imprecision and Heuristic Control

Humans all share one property, we are not good at describing our behaviour with

mathematical models. Instead, we use heuristic experience or knowledge and

symbolic terms to describe our daily activities and make decision. "On approaching

the T junction, slow down" is a typical example of such a heuristic rule to instruct a

student driver. We can well understand and master such kind of control knowledge.

Such knowledge is often imprecise or vague and impossible or very difficult to be

represented in a vigorous mathematical model. See the above example of

"approaching the T junction" again, the instructor may advise his driving student

when to apply the brake to slow down. Would he say, "Begin braking 74 feet from the

T junction"? or would his advise be more like "Applying the brake pretty soon"? The

answer is the latter, of course. The former instruction is too precise to be

implemented. Looking at a similar control rule for a collision avoidance behaviour of

8

...

a mobile robot, the rule "if an object is less than 2m in the front, then reduce the speed

to 20mmls" would be much more difficult to be realised than the rule "if an object is

close in the front, then reduce the speed to very slow" because of noisy sensor, wheel

error and environment uncertainty. In driving, humans use many such heuristic rules

and imprecise knowledge to effectively control a car. Our correct behaviours of

controlling a car are implicitly built on such linguistic rules, which are derived from

empirical observations and heuristic knowledge. Ifthere is a car in front, slow down.

If a car approaches from the front right, turn to the left to avoid collision. These are

rudimentary control knowledge. In controlling a mobile robot, one of the key

problems is how to provide a method for handling such kind of heuristic knowledge,

while at the same time coping with the imprecision, uncertainty and sensor noise

which occur in the real world.

1.5 Learning

An intelligent system should learn or adapt. Learning means change, either the change

of control parameters or the organisation of the control system. It is difficult to design

a complete control system without the need for further modifications and

improvement. A new driver will still need to learn. How to drive on motorway, how to

drive in fog conditions, etc. are all the new things he needs to master. Through

continuous learning, one can be more certain to drive safely. For a complex control

system like a mobile robot, learning is even more important. There are two main

reasons. First, a mobile robot is built by human. Humans have shortcomings, either

their knowledge of controlling a mobile robot is not complete, or they are unable to

postulate all aspects of the control problems. The worse thing is that humans will

make mistakes. Learning is a process of change which allows such inherited mistakes

and incompleteness to be exposed and changed. Second, the environments used to

demonstrate the controlling of a mobile robot are limited. The real world is largely

unpredictable. Conditions and situations presented in one environment may not be

available in another one and vice-versa. This causes the problem that some aspects of

9

$

controlling problems cannot be investigated because the conditions are not present.

Learning should be introduced to overcome, or at least reduce, such difficulties.

1.6 Outline of a Two Layer Control Architecture

The proceeding sections have described some problems and intuitions about the

natures of mobile robot control. This thesis is mainly about how to translate these

intuitions into a computational mechanism for controlling an autonomous mobile

robot, namely indoor navigation. This section gives an overview of how this has been

done.

To summarise briefly, the central topic of the thesis is that a mobile robot navigation

system should be supported by a layered control architecture. High level activity and

low level activity have different computational requirements and need to be organised

differently. The low level activity works at real time and involves reactive and

purposeful actions which can be supported by special purpose computational modules,

called behaviours. Some of the behaviours are responsible for achieving goals

assigned by high level decisions. Others are required to interact with the dynamic real

world and help achieve high level tasks. These behaviours rely on local sensors and

goal information and perform fast computation. They work together to complete tasks

given by high level decisions in the face of sensor noise, uncertainty and imprecision.

Fuzzy logic control is exploited to build the two types of behaviours in the low level

control layer. With the flexibility and symbolic natures of fuzzy control rules,

heuristic control knowledge is effectively organised into the low level control

mechanism of a mobile robot.

On the other hand, this low level activity alone is inadequate to navigate a mobile

robot. It needs the guidance from a high level control activity. Navigation involves the

execution of a task plans which consists of a sequences of steps for the robot to

complete. A task plan is better to be organised as a sketchy plan with many details of

control actions taken care of by the low level control layer. A high level activity

10

organises the correct sequences of controlling activities in the low level control layer,

monitors the progress of the task execution and even performs high level planning

when necessary. Planning will not be discussed in the thesis. It is assumed that task

plans have already been produced by a planning system or human. A Reactive Action

Package(RAP)[Firby89] like control structure is used as basic blocks for organising

high level activity.

A two layer control architecture, MARCO t, consisting of a task template(modified

RAP) based higher level control layer and a fuzzy behaviour-based low level control

layer, is proposed. The two-layer control architecture belongs to the lower two levels

of a so called three layer architecture, deliberative/sequence/reactive[Hasemann95).

The sequencing layer initiates, monitors and terminates the controlling activities in the

low level control layer, while the low level control layer executes tasks initiated by the

sequencing layer. The two layers co-operate to complete a navigation task with the

sequencing layer being in charge.

This thesis also describes the way to effectively organise a low level control layer for

indoor navigation, specifically based on indoor environment features. A learning

methodology is discussed to automatically learn the low level control layer and reduce

the efforts and difficulties involved in the design of such a control structure.

1.7 Summary

This section gives a brief review of the main points of the thesis.

1.7.1 The Problem

This thesis addresses the problem of how to organise an effective control mechanism

for autonomous mobile robot navigation in a real world environment in the face of

t Mobile Autonomous Robot COntroller.

11

sensor noise, uncertainty and limited response time in a way which is reactive, robust

and task-directed.

1.7.2 The Assumption

A control mechanism can be based fundamentally on a layered architecture. A high

level control layer can be based on a control structure which can sequence the

controlling activities in the low level control layer. The low level control layer can be

based on special purpose behaviours to support the task execution assigned by the

high level control layer. The high level control layer organises the correct sequences

of task execution while the low level control layer performs fast control actions in the

face of sensor noise, uncertainty and imprecision.

A robust, reliable system for controlling an autonomous mobile robot in the real world

can be obtained through effective learning processes.

1.7.3 Approach

A two layer control architecture, MARCO has been developed. This architecture

includes a high level sequencing layer and a low level control layer.

The computational structures for implementing the architecture, MARCO, are studied

in detail. Two heterogeneous structures, a fuzzy behaviour and a task template are

defined and used as the basic building blocks of the two layers.

A simple-ta-complex multistage learning methodology has been developed to

automatically learn a low level control layer.

The implementation of the control architecture is demonstrated by controlling a

simulated robot in performing two indoor tasks. One is a concrete slab finishing task

and the other is a building security patrolling task. The robot's ability to efficiently

12

sequence the controlling activity according to task plans and perform robust goal­

directed control actions under sensor noise, approximate and imprecise information is

assessed.

1.8 Thesis Outline

This thesis is divided into seven chapters. Chapter 1 is the Chapter that you are

currently reading. It presents an informal descriptions of the mobile robot navigation

and control problems upon which the rest of the thesis is based.

Chapter 2 reviews related work in mobile robot control and justifies the choice of a

multi-layer architecture and fuzzy logic control method.

Chapter 3 describes the organisation of a two layer control architecture, MARCO and

defines the data structures of the two layers' basic building blocks, fuzzy behaviour

and task template.

Chapter 4 presents the organisation of a fuzzy behaviour-based low level control

layer. The two major parts include the fuzzy behaviour organisation based on the

sphere of influence of environment features and the behaviour selection network.

Chapter 5 describes a simple-to-complex multistage learning methodology in order for

the low level control layer to learn, including learning individual fuzzy behaviours and

behaviour selection network.

Chapter 6 presents two experiments using the MARCO control system to perform two

tasks in simulation. The detailed traces are discussed to demonstrate the effectiveness

of the control architecture.

Chapter 7 summarises and presents discussions and conclusions of the MARCO

architecture and suggests some directions for future research.

13

~
~ ilI

Ii
Chapter 2 Review of Mobile Robot Control Architecture

2.1 Introduction

Mobile robotics research can be marked by the first appearance of autonomous

mobile machine, Shakey, which was built at the Stanford Research Institute in 1968

[Nilsson69]. Shakey worked in a very carefully-engineered environment. Its

navigation was helped with the special artificial features in the environment. Although

it was not a successful mobile robot, Shakey encouraged further research in mobile

robotics. In the seventies, the Stanford Cart[Moravec83], a wheel-driven mobile robot

was developed as a testbed for indoor and outdoor navigation in an unknown

environment. It was only capable of slow motion(1 meter every 1O~15 minutes) and

was not a success. Another project running at the same time was the "Mars Rover"

project at JPL[Cox90]. It was stopped due to the lack ofefficient computing and

sensing technology. Probably the first success in mobile robots was Hilare developed

at LAAS, France[Giralt90]. The robot was capable of perception, self-navigation,

position estimation, path planning and obstacle avoidance. However, because of the

length of time needed to obtain sensor data, Hilare had to spend most of its time

sitting still. The most successful aspects of the project were the application of

traditional sensing and AI technologies. The success of Hilare project attracted more

attention to mobile robotics during the eighties. Many mobile robots were developed

based on Hilare system architecture [Moravec88] [Thorpe90] [Weisbin89]

[Crowley87]. This trend of the development over 15 years was mainly based on

traditional sense-model-pI an-act approach. Despite a lot of effort, few of these

autonomous robots can carry out tasks robustly and reliably in the real world.

Controlling autonomous mobile robots is difficult for three fundamental

reasons[Gat92]. First, the time available to decide what to do is limited. A mobile

robot must operate in the time domain of its environment. Second, many aspects of

the world are unpredictable, making it impossible to plan a complete course of actions

in advance. Third, sensors cannot provide complete and accurate information about

the environment. These are fundamental problems which cannot be eliminated by

14

engineering methods. Throughout the years of building robot control systems a

number of robot control architectures have been created to enable a mobile robot to

work in face of these problems. Some of the more commonly known architectures are

reviewed here.

2.2 Traditional Approach

The traditional Sense-Model-Plan-Act control architecture was first highlighted in the

Hilare project[Giralt90]. A mobile robot control system is organised based on a single

execution pipeline of information processing, proceeding from sensing, world

modelling, planning to action. The control framework exists essentially in any control

system. The extent to which these processes are instantiated in particular systems

varies greatly. Specifically, the amount of deliberation, i.e. modelling and planning,

can be strongly emphasised as in expert system control or totally neglected as in

mechanical control systems. In mobile robot control, the sense-model-plan-act

approach assumes a largely static or at least predictable world assumption between

sensing and acting. This is a rather invalid assumption for most real world. Because of

the unpredictability of the real world and imperfect sensors, it is impossible to

maintain a perfect world model which is the base of its success. This often leads to

errors in reasoning, planning and the final execution in the control system. With a

single pipeline execution, the time needed for a mobile robot to respond to a situation

is equivalent to the time taken for the information to pass through sensing, world

modelling, planning and acting, resulting in poor real time performance.

Advances have been made in exploiting hierarchical structures to improve reactivity

by breaking up the original single execution pipeline into a number of parallel ones.

The typical approach is hierarchical decomposition which may involves vertical and

horizontal decomposition. The reasons for vertical system decomposition are

increasing degrees of abstraction and decreasing frequency of interactions with the

environment. Reasons for horizontal system decomposition are far more reactive

response and simpler modelling of low level control activities.

15

2.3 Behaviour Approach

The behaviour approach was first introduced by Brooks in the subsumption

architecture[Brooks86] which was subsequently updated in [Brooks89]. A modified

version was developed by his student Connel1[Conne1189].

Brook's subsumption architecture is more a design methodology than an architecture.

Rather specifying a set of components and the interfaces between them, subsumption

specifies a set of guidelines to be used for developing control mechanisms. To quote

Mataric, "Rather than a recipe for programming robots, [the subsumption architecture]

is a set of philosophical concepts about robot... design."[Mataric90].

Brook's formulation of the architecture is based on the idea of decomposing the

problem of robot control by task rather than by function. Most robot control

architectures are composed of functional modules which perform such processes as

sensor interpretation, planning, execution monitoring, etc. Brooks argues that such a

design is inherently inefficient because it requires that each functional module be

powerful enough to support any task the robot may perform.

Rather than developing general functional modules, the sUbsumption architecture

advocates the development of more specifically focused mechanism called

behaviours. Each behaviour is designed to control only a single task, allowing the

computation within the behaviour to be optimised for that task. Each behaviour is

coupled directly to the robot's sensors and actuators. Behaviours are organised

hierarchically into layers, with the lowest level behaviours responsible for maintaining

the viability of the robot, and the higher levels pursuing more purposeful goals. The

idea is that if the higher levels cannot provide guidance, lower levels still cause the

robot to react reasonably, e.g., not bump into obstacles. When a higher level is active,

it can suppress more primitive behaviours below it. Conflicts among behaviours are

resolved by an arbitration mechanism.

16

There are some other general guidelines advocated by the architecture. Each

individual computational module should be fairly simple. Implementations of the

architecture have been based on simple finite-state machines. The architecture

strongly opposes the use of centralised data structures which can be accessed across

behaviours. Each behaviour is responsible for maintaining whatever data structures it

needs. There is no centralised control as in traditional architecture.

The sUbsumption architecture has been highly influential in mobile robotics

community, and its ideas have appeared in most of the proposed architectures to some

extent. To date, the subsumption architecture has been used to build dozens of

autonomous mobile robots[Thau97]. However, because of their minimal prior

knowledge about the environment and lack of spatial reasoning capability, they are

mostly limited to low level or very specific behaviours. Connell's can-retrieving robot

can navigate in an unknown environment, locate a soda can by means of active vision

system, collect the soda can in a gripper, and return to its starting position. This is an

advanced behaviour. However, to accomplish the task, hardware and software are

tailored specifically to recognise only soda cans, the robot cannot be readily

reprogrammed to "look" for other objects. The robot sometimes took very circuitous

routes and there were some places its navigation scheme couldn't reach at

aU[ConneU89]. Mataric has demonstrated a robot that was able to construct a map of

its environment and plan paths using that map[Mataric90]. However, her robot

operated in a fairly simple domain(essentially an one-dimensional world) and it is not

clear her method can extend to more complex tasks. Because of the lack of a world

model which can be shared by all of behaviours, it is difficult to co-ordinate reactive

behaviours and more purposeful behaviours. The ability of the architecture to solve

more complex navigation problem is limited.

2.4 RAPs

17

_!!§

Firby's Reactive Action Package(RAP) control system[Firby89] belongs to reactive

planning approaches which typically employ task-nets to carry out a plan execution. A

RAP task is an autonomous process pursuing its goal until it is achieved or all

methods tried to achieve fail. RAPs can hierarchically refer to other RAPs within the

associated task-nets and therefore creates a task tree during execution. The RAP

system consists of four major parts, the RAP memory, the RAP library, the RAP task

agenda and the RAP interpreter. The RAP memory contains the best estimates of the

current world state. The RAP library is simply a collection of RAPs which are

themselves collections of methods for accomplishing something. Each method is

annotated with information that describes under what circumstance it is applicable.

The selection of a method is followed by the execution of the task net within the

method. The RAP interpreter is a program which executes a RAP program. The

interpreter runs in cycles. The system starts with a set of tasks stored in a data

structure called a task agenda. At the beginning of each cycle the interpreter chooses a

task from the task agenda based on a set of heuristics. It then finds a RAP in the RAP

library for performing that task, and chooses one of the RAP's methods based on the

method annotation and the RAP memory. A method is either a primitive(discrete)

action, in which case it is executed, or it is a set of tasks connected by task net, in

which case these are placed on the task queue. The cycle then starts again. Each RAP

keeps track of whether or not it has succeeded in accomplishing its goal, and keeps

trying methods until either it succeeds, or all methods have been tried. Because a task

has the execution control for only one cycle each time it is invoked, the system can

respond quickly to unexpected events in the world.

The RAP system was designed to be the middle sequencing layer of a so called three

layer architecture[Hasemann95]. In the original RAP architecture, the bottom layer

controlled discrete actions, and the top layer was a planner which generated RAPs.

One important feature of RAP systems is the need of a sensor memory which is the

sole base of information about the world. The sorts of tasks which the RAP system

dealt with involved many object recognition and manipulations.

18

""

ATLANTIS is a heterogeneous robot control architecture based on the claim that a

successful architecture for controlling autonomous mobile robot should be

heterogeneous and asynchronous, that is, it should have components which are

structured differently from one another and which operate in parallel at different levels

of abstraction[Gat92]. This idea has also been adapted in this thesis, though control

structures involved are different.

2.6 TeA

Simmon's Task Control Architecture(TCA)[Simmons90] is a control architecture

which also supports task decomposition and concurrence. The architecture consists of

a set of task-specific computational processes called modules which communicate

with each other by passing messages through a central control module. The central

control module routes messages dynamically among the task modules. Tasks in TCA

are structured as hierarchical task trees which have parent-child relationship among

messages. A task tree is similar to an expanded RAP. TCA allows concurrent

executions of steps in the task tree, which can include ordinary computation as well as

physical tasks. TCA includes mechanisms for enforcing temporal constraints among

various steps in the task tree. TCA is actually a distributed architecture with the

support of central message control. Robot control processes such as perception,

planning, and execution can be localised and synchronised with message passing.

The methodology used in TCA is first to develop systems with traditional sense­

model-plan-act cycles, then use the TCA facilities to add concurrence. Monitoring and

error handling are also added after the code for handling normal situations is in place

[Simmons90]. TCA is more traditional than other architectures in that it uses pre­

written, carefully engineered tasks net with explicit control infom1ation. TCA does

not specify the structure oflow level control mechanism at all. In term of three layer

architecture, TCA belongs to sequencing layer.

20

iiiNif§

I

Ii

2.7 AuRA

Arkin's AuRA(Autonomous Robot Architecture)[Arkin90] is motivated by biological

evidence and a potential field approach. AuRA's fundamental building block is a

motor schema, adopted from Arbib's notion of motor schema[Arbib85]. "Potential

fields" is first introduced by Khatib[Khatib86] and now extensively used in the

robotic domain[Latombe91]. In a potential field approach, a goal is represented by a

potential pseudo-force from that goal's viewpoint. For example, the goal of avoiding

obstacles is represented by a potential field having maximum value around the

obstacles; and the goal of reaching a given location is represented by a field having

minimum value at that location. At the each point, the robot responds to a pseudo­

force proportional to the vector gradient of the field. Arkin's motor schema is

implemented by "potential fields", which is associated either with a goal or with an

obstacle. Motor schemas are combined by vector summation, resulting in an overall

potential field which controls the robot's motion. A planner modulates the motor

schemas to keep the robot out of local minima which are often produced when

combining such potential fields[Slack90].

AuRA is comprised of five subsystems: perception, cartographer, planner, motor

control and homeostatic control. AuRA's planner is basically a path planner that

generates a piece-wise linear path to the goal. This plan is then passed to the execution

layer, where motor schemas to follow this path piece by piece are dynamically chosen

and instantiated at execution time. AuRA is not a typical three layer architecture.

Accurate world modelling is a key part of the architecture.

2.8 Situated Automata

Rosenschein and Kaelbling's situation automata theory[Kaelbling90] is a formal

methodology for the design of a robot control architecture. The basic architecture

consists of two components, a perception component and an action component. The

21

I

perception component consists of a network of combinatorial logic gates connected to

the robot's sensors as well as to its own outputs through a time-delayed feedback

loop. The action component is simply a combinatorial logic array. The idea is that the

perception component keeps track of the current state of the world while the action

component maps that perception onto an appropriate action for achieving the robot's

goals in that situation. The feedback loop in the perception component allows the

robot to remember the past, and thus allow past data to be incorporated into current

decisions.

Situation automata theory does not commit to analogical representation ofthe world.

The key point of the theory is that the robot should contain just enough information to

accomplish tasks in its environment and this information need not be in an analogical

form. The theory has many things in common with subsumption architecture, but with

the formal emphasis.

The intuition of the theory is that the situation automata approach will allow high

level descriptions of environments and tasks to be compiled automatically into a

reactive control mechanism with a formal basis. The current main practical success

have been a suite of development tools: GAPPS, RULER, REX [Kaelbling88]

[Kaelbling90]. Situated automata can be seen as a reactive control layer in three layer

architecture.

2.9 Blended Behaviour Approach

Blended Behaviours[Saffiotti93] approach constitutes a new direction and are based

on fuzzy rule sets and fuzzy logic composition rules in order to blend simple

behaviours to form complex ones. Context-dependent blending of behaviours is

accomplished using desirability functions and context rules. In this approach, low

level behaviours are implemented using fuzzy logic controller. These behaviours run

concurrently and their weights are reassigned according to their activation level and

their fixed importance orders, i.e. priorities, in response to the state of the world and

22

MB

I
"

goals. A synthesised control output is produced by weighted summation of all outputs

from active behaviours. Blended behaviour is similar to "potential field" approach in

that the behaviours are composed through weighted summation, but with fuzzy

desirability instead of potential force.

The biggest problem ofthe approach is the weakness in coping with local minima and

error recovery similarly encountered in the "potential field" method[Slack90]. The

composition nature of the robot control makes it inefficient to escape local minima.

When the robot control fails, direct control strategies need to be employed to recover

the robot, which will result in an inconsistent low level control structure. However,

the fuzzy behaviour-based approach provides the robot with robust control abilities in

facing noise sensor, uncertainty and imprecision in the real world[Saffiotti et al 93a].

Blended behaviour architecture is a low level control layer.

2.10 Hybrid Approaches

There are many other robot control architectures in the literature. Most of them are

variants on the traditional sense-model-plan-act architecture where a planner

constructs a plan from a world model to be executed by an execution system. The

most common is some type of hierarchical exploitation on basic approach, where one

planner generates a plan at a high level of abstraction which is fed to another planner

to fill in details, such as NASREM[Smith89].

Another form of variation is to allow some of the processes to be parallel. The

CODGER architecture[Shafer89] is a recent example of this approach. It attempts to

overcome the inherent slowness ofthe sense-model-plan-act model by constructing

incremental plans and pipe lining the process. The result has been quite successful.

However, like all purely traditional architectures, CODGER is still limited by the

speed of the pipeline. CODGER is not a real-time system. Due to the relatively long

latencies in message passing and UNIX time-sharing execution patterns, data transfer

23

, • A ...

cannot be guaranteed within given time bounds. CODGER is an inappropriate

architecture for systems requiring real time processing[Shafer89].

Attempts have also been made to provide the traditional approach with an execution

monitoring system which monitors the execution of the plan and takes corrective

action when things go wrong(e.g. [Broverman87]). The execution monitoring system

simply checks the values of the robot's sensors to make sure that they fall within

expected bounds. When they do not, the execution monitoring system diagnoses the

problem and takes corrective action. The problem is that diagnosing the execution

problem and taking the corrective action is also a very hard thing to do, involving the

entire problem of deciding what to diagnose and where to start. Instead of diagnosing,

some systems try to anticipate possible failures and provide required responses

[Miller89] [Gat90].

Departing farther from the traditional approach than the above variations is the

anticipation of possible situations and actions upon which plans, called situation­

action plans, can be organised. These compiled plan approaches consider all possible

situations(or at least a large subset of them) and map appropriate actions to them

instead of using run time planning. Examples of the approaches are teleo-reactive

trees[Nilsson94] and universal plans[Schoppers87]. Teleo-reactive trees are sets of

condition ~ action rules which are continuously evaluated. The first action for which

the energising evaluates to true is executed and continue as long as the energising

condition is true. Teleo-reactive trees can be recursive and organised in hierarchies.

Although the character of the teleo-reactive approach is more like that of a sequencing

machine (like RAP), the continuous nature of actions and condition evaluation puts it

to low level control approach. The major disadvantage is inefficiency since all

conditions must be evaluated continuously. Universal plans push the situation action

approaches to the extreme by generating plans which say what to do in every

conceivable situation. They are decision trees which map the current world state into

the next action to take. An universal plan is usually created off-line by a "reverse

planning" procedure. Given a goal and a set of operators as inputs, the procedure

chains backwards from the goal condition using the descriptions of the operators and

24

iii ~!II-H

I

resource handling. Activities on this layer correspond to long term planning. This Jj
level relies on very abstracted knowledge, highly sophisticated reasoning techniques,

and extensive application domain knowledge. Two planners commonly used in this Ilayer are IxTeT[Ghallab94] and SIPE, SIPE2[Wilkins94][Wilkins95]. The sequencing
i'

layer involves the selection of appropriate task nets and organises the correct

sequences of controlling activities. A task net is a pre-written ordered set of actions, I
such as behaviours or operators. Task nets represent execution procedures and can

have hierarchical structures. The sequencing layer selects appropriate task nets and

executes them following the ordered steps within the task nets. Execution of task nets

involves activation, monitoring and termination of reactive layer behaviours. The

reactive layer usually consists of behaviours, performs the transition of task goals

from higher level to numerical control and combines the separate behaviours to

produce control output.

Several typical three layer architectures are 3T[Bonass094, 95], ATLANTIS[Gat92],

GLAIR[Hexmoor93, 95], LAAS[Chatila92][Ingrand95] and Payton architecture(4

layers, the bottom 2 roughly correspond to the reactive layer)[Payton86,90]. Another

example of a heterogeneous three layer system is SSS, presented in [Conne1l90,92]

where a human is used as a high level controller for a low level system based on the

sUbsumption architecture.

2.11 Summary

During the last decade decisive progress on the robot control architecture has been

made though major problems still need to be addressed, namely noise sensor,

unpredictability, imprecision and approximity. The introduction of the reactivity

approaches, with its most extreme implementation being the subsumption

architecture, is probably the most important development in robot control architecture

during the last 20 years.

26

4

~
Traditional sense-model-plan-act approach was supplemented by reactive components II
and seems to have lost importance because of the following reasons: (a) single

pipeline execution is time consuming and cannot produce fast response in real world ,i
environment; (b) different computation mechanisms can be provided to support II

I

different processing involved; (c) most difficult problems lie in the interactions with
II

the world and the need for fast response at lower levels of representations. However, it II

still is an essential part, in one form or another, in all mainstream architectures,

though the difference in realisation can be huge.
 Ii

Advances have been made in exploiting hierarchical structures to split the robot

control system vertically into levels of hierarchies as well as the introduction of

control entities, such as behaviours, reactive action package, or teleo-reactive

programs, to split up the low level control horizontally into concurrent operations. The

reasons for vertical decomposition are that increasing degrees of abstraction results in

decreasing frequency of interactions with the environment, allowing different

structures to be employed for different levels of operations. Reasons for horizontal

decomposition are far more reactive response and simpler modelling of low level

control activities. The current state of the robot control architecture seems to be three

layer architectures which usually employs three levels of abstraction. These three

layers are the deliberative layer, a sequencing layer and a reactive control layer.

This thesis concentrates on the two lower levels, sequencing layer and reactive control

layer. Particularly, the research focuses on the combination of RAP-like sequencing

technology with fuzzy behaviour-based low level control layer to solve the problems

raised in Chapter 1. Combining a RAP-like sequencing layer to a fuzzy behaviour­

based control layer is a topic which still remains unexplored. Fuzzy logic control has

already been used in mobile robot navigation, especially in behaviour-based

approach. In this thesis, a triangle form of fuzzy membership function and a singleton

representation of fuzzy output are chosen to support a simple design of behaviours and

also a fast control inference process. The review of fuzzy logic control is given in

Appendix A.

27

II

·U;

Chapter 3 A Two Layer Control Architecture

This Chapter develops the computational structure required to implement a control

mechanism for an autonomous mobile robot based on the concept of fuzzy logic ,I'

control and a modified RAP. The control architecture consists of two parts, a low level

control mechanism and a higher level sequencing mechanism. This Chapter approaches

the problem from the bottom-up by considering first how to organise the low level

control. The low level control means controlling primitive activities which contains no

decision-making computations. These include the robot's direct interactions with the

environment and the purposeful control actions in order to accomplish an

predetermined goal. This Chapter describes a low level control mechanism based on

fuzzy set theory. The notion of the behaviours have been adopted from Brooks's

subsumption architecture[Brooks89], but behaviours are implemented using fuzzy

logic control, instead of"circuit" and "potential field" methods[Gat91a][Arkin90]. The

layer structure is replaced by a behaviour link network to perform co-ordination of the

behaviour's activities for the robot control.

Having developed the structure for controlling primitive activities, the Chapter will go

on to examine how to control higher level activities. The computational structures

needed to control the higher level activities tum out to be very different from those

needed to control the low level activities. An existing technology, RAP can be

employed for this purpose with some modifications.

Sequencing Layer
(Task Templates)

soft channel

sensors

Low Level Control Layer
(parallel Fuzzy Behaviours)

actuators

Fig. 3-1 MARCO Block Digram

28

Fig. 3-1 is a simple block diagram of MARCO. The sequencing layer is based on a

RAP-like control structure called a task template, carrying out task sequencing and

management activities. The low level control layer consists of a collection of fuzzy

behaviours, running in parallel and producing a single set of outputs for controlling

mobile robot actuators. An independent perceptual subsystem is responsible for world

modelling and maintaining a sensor model which is accessed by both the layers. This

Chapter will concentrate on the construction of the two layers. The sensor model and

the perceptual subsystem will be discussed in Chapter 4.

3.1 Low Level Control Layer

This section describes the first part of the MARCO architecture, the one that controls

low level robot activities. As argued in Chapters 1 and 2, a low level control

mechanism should have the following characteristics:

· fast response time;

· able to cope with sensor noise, imprecise information and uncertainty;

· easy to use heuristic control knowledge.

To impose these characteristics onto low level control behaviours, fuzzy logic control

provides an efficient method. To review briefly, fuzzy control is a method of

controlling a system that is similar to classical process control, but differs in that it

substitutes imprecise, heuristic notions for the precise numeric measures of a control

model. In order to organise behaviours using fuzzy logic, the structure of a behaviour

needs to be examined first.

3.1.1 Behaviour Structure

Definition 1: Behaviour

In Summers's contemporary English dictionary[Summers95], a behaviour is defined as

a way of acting or reacting in a specified way. The definition is extended in this thesis

29

II

II

II

JAM 4i%-i #M e

Ii

for the robot application. A behaviour is defined as a way ofacting or reacting in order

to accomplish a single goal. To be less abstractive, it can be further stated that a robot

control behaviour is a set of control strategies to formulate robot movement actions in

order to accomplish a single goal. Under such definitions, some examples of robot

behaviours can be Avoid Obstacle, Keep Moving, Follow Wall, Follow Corridor, Go

To Position, etc. Avoid Obstacle is a single goal for the robot to achieve when there is

an obstacle ahead of it. Similarly, Go To Position is a single goal that is assigned to the

robot to complete. The differences between the above two behaviours are that

avoiding obstacle is a direct action in facing environment contingencies, while going to

position is a purposeful behaviour. The former is called a reactive behaviour and the I
latter a task-oriented behaviour. Whatever their functions, these behaviours are similar

in several aspects. They all have input and output components. Input components can

be direct sensor data or interpreted environment information, such as range and i
encoder data or environment features such as a door or a piece ofwall. Output

components constitute the output control parameters, which mainly are the speed and

heading information of the robot. Each behaviour creates the output control

parameters to satisfy its purpose or function. For example, a Go To Position behaviour

creates a direction and speed which allows the robot to move straight towards the

specified position. At the same time, Avoid Obstacle behaviour produces the speed and

heading which slows down and steers the robot away from an obstacle right ahead.

The above two outputs are in conflict for actually controlling the robot movements,

but they are the result of the two individual behaviours for their own purposes. Later,

how to resolve the contradictions will be discussed. Now, let us check the behaviour

structure further. In order to create the output control parameters from input sensor or

environment information, we need a control method, or a control model to connect

these two parts. Fuzzy logic control is a very efficient way to perform such connection

roles. In a fuzzy logic controller, a collection offuzzy control rules is used to form the

control formula. Applied to a robot behaviour, this set of fuzzy rules constitute the

control strategy for a behaviour to fulfil its purpose.

3.1.2 Fuzzy behaviour Components

30

II

3.1.2.1 Fuzzy Input Variables and Output Variables II

From the above discussion, we know that a robot fuzzy behaviour includes at least

three parts: input, output and a fuzzy control model. Its control model has a set of

fuzzy control rules. These control rules are fed with fuzzy input variables and produces
l1li

a set offuzzy output variables. The fuzzy input variables actually summarise the state

of the robot for a behaviour. Each fuzzy behaviour is provided with its own set of

fuzzy input variables. The values of these input variables are computed through

fuzzification from extracted specific sensor information necessary for the behaviour to

operate. For example, we have a simple Avoid Obstacle behaviour with three rules:

ifobsJight is CLOSE then left_heading;

if obs _left is CLOSE then right_heading;

ifobsJront is CLOSE then decrease_speed;

This simple behaviour relies on three fuzzy input variables, obs_right, obsJeft and

obs_front. These variables indicate the degree of CLOSENESS, representing the

robot's state in relation to the obstacles in the environment. Suppose that the robot has

three sensors in the right, left and front directions which sense the nearest obstacles in

these directions. The range values to detected obstacles are fed to the fuzzy behaviour

and the values of its fuzzy input variables are calculated to indicate how close these

obstacles are to the robot. Depending on the fuzzy input variables, Avoid Obstacle

behaviour can produce the output control values accordingly in order to move around

the environment safely. Because this Avoid Obstacle behaviour is only responsible for

staying away from obstacles, the fuzzy input variables indicating closeness to the

robot's surrounding are sufficient for the behaviour to operate. For other types of

fuzzy behaviours, their fuzzy inputs variables have to reflect the state ofthe robot in

relation to the task that behaviour is supposed to perform. For a Go To Position

behaviour, it does not need the indications of the robot's closeness to obstacles but

requires the measurement of the CLOSENESS of the robot to the specified position

and the deviation of the heading of the robot from that position. Similarly, different

31

XMi!!f? M%

fuzzy input variables indicating relevant state infonnation of the robot with respect to

other behaviours are required for those behaviours to operate on.

In most fuzzy behaviour-based approaches[Goodridge94][Reignier94] [Garcia­

Alegre93] [Sugen089] [Konolige92], the method of derivation of fuzzy input variables

are similar, but the representation offuzzy output variables can be different. Standard

forms of fuzzy output variables are used in [Reignier94][Martinez93] [Skubic94].

Goodridge [Goodridge94), Garcia-Alegre[Garcia-Alegre93] and Vandorpe

[Vandorpe94] used crisp values which are similar to fuzzy singleton representation of 1
output. Konolige[Konolige92] used simplified control set to represent fuzzy output. I
Sugeno[Sugen085] used another type offuzzy control rule which has the fonn

I
i

if X is Ai and Y is Bi then

Z = aOi +al;x + a2 iy+...... .

The fuzzy output variable is a linear function of fuzzy input variables. As argued in

Section 4, Appendix A., a singleton representation offuzzy output has the advantages

of fast computation and simplicity. In constructing MARCO's fuzzy behaviours, fuzzy

output variables are represented as singleton fuzzy values to improve the real time

response oflow level control behaviours. At MARCO's low level control layer, only

two types of output control parameters are required for the robot's control,

forwardlback speed and heading. These two types of fuzzy singleton values represent

the differentials between current speed and angle to the desired values. For example,

two typical fuzzy control values would be

ifobsyont is CLOSE then slow _down(to speed 50)

and

ifobsJight is CLOSE then lej(heading(8 degree);

The fuzzy singleton value slow_down is the differential value between current speed

and 50 and left_heading is 8 degree from current heading. The heading and speed

output variables can be used in different behaviours. Some fuzzy behaviours may only

need one output while others may need both of them. For example, a speed control

32

i
behaviour only needs speed as an output variable, while an obstacle avoidance

behaviour needs to control both the speed and the heading.

3.1.2.2 Membership Functions

In the above section, fuzzy input variables are described as the indications of the

robot's state in relation to its environment from a behaviour's point of view. These

state values are actually transformed from the robot's sensor information by fuzzy

membership functions. Again, take Avoid Obstacle as an example. In the rule

ifobsJight is CLOSE then left_heading,

OWI X·,_

a b a b

Fig. 3-2 Membership function structures used in MARCO

when fuzzy input variable obs_right, has a value 1.0, it indicates that an obstacle is

very close to the robot. This results in the full escaping heading, -8 degree, of the rule

output. The problem here is how to decide appropriate criteria. We can say that O.Sm

is the minimum distance which indicates a full degree of CLOSENESS or l.Om is the

criteria. We can also say that S.Om is the distance from where the degree of

CLOSENESS is 0.0 or 3.0m can be the case. Even the criteria for zero and full degree

is the same, a fuzzy input variable can have different values using different types of

membership function. In most fuzzy behaviour implementations, a triangle form of

fuzzy membership functions is used because of its easy computation and proved

effectiveness[Cox94]. In MARCO, triangular and half-tria.ngular forms of membership

functions are selected as shown in Fig. 3-2.

33

~---

Although, fuzzy input variables are behaviour-dependent, their membership functions

have similar structures. In MARCO, the following linguistic terms listed in Table 3-1

are used to represent different fuzzy sets for different fuzzy input variables:

Table 3-1 Liguistic Terms Used in Fuzzy Rules in MARCO

speed angle distance time step

FAST BIG SMALL LONG SMALL

SLOW POSITIVE MEDIUM NEAR

NEGATIVE MEDIUM CLOSE I

POSITIVE BIG POSITIVE BIG

NEGATIVE BIG NEGATIVE BIG

For the fuzzy variables time and step, there is only one linguistic term involved

respectively. The terms LONG and SMALL are used in Recover Stall behaviour

which only becomes active when a robot is stalled for a certain period oftime or the

robot moves in a very slow pace. The membership functions of the linguistic terms in

Table 3-1 may look like the function graph in Fig. 3-2. In implementation, these

functions take floating-point number arguments and produce a floating-point fuzzy

value between 0.0 and 1.0. As mentioned earlier, the difficulties in deciding

membership functions are in the choice of criteria, i.e., the a, b values as indicated in

Fig. 3-2. Every fuzzy behaviour has several fuzzy control rules, each ofwhich may

include several fuzzy input variables. Because the choice of membership functions for

one fuzzy variable may affect the others, to select a set of suitable a, b values manually

may need much effort and a time-consuming trial and error process. Chapter 5 will be

devoted to deal with the problem through an automatic learning approach.

3.1.2.3 Fuzzy Control Rules

The central component of a fuzzy behaviour is its fuzzy rules. This is where the action

is: rules define how fuzzy input variables are transformed into fuzzy control values,

which ultimately are combined to create a set of control parameters for the robot. The

most important task of designing a fuzzy behaviour is to derive a set of effective

control rules. There are many ways described in the literature[Lee90] [Sugen085]

34

[Kruse94] [Cox94] on how to derive fuzzy control rules. In fuzzy logic controller

design, four commonly used approaches are based on:

1. operator's experience;

2. control engineer's knowledge;

3. fuzzy modelling of the operator's control actions;

4. fuzzy modelling of the process.

Most fuzzy logic controllers are based on the knowledge and experience which are

expressed in fuzzy if-then rules[Sugen085]. Sugeno designed a fuzzy controller to

control a model car and park a car into garage[Sugen085][Sugeno89]. The fuzzy

control rules are derived by modelling a driver's control actions. In driving, a driver

employs subconsciously, a set of fuzzy if-then rules to control his car. We can derive

such implicit control knowledge to control a mobile robot. In MARCO, fuzzy control

rules for fuzzy behaviours are designed using the combination of Sugeno's method and

heuristic control knowledge. However, the structure of a fuzzy rule is different because

with MARCO, a fuzzy singleton value is used, instead ofa linear function. In the

design of a fuzzy behaviour, first a driver's control behaviour is examined. For

example, to derive fuzzy control rules for an avoid obstacle behaviour, we first

examine our driving actions to avoid collision with other cars or obstructions in a road.

We probably will outline our driving actions like this:

if there is obstruction at the right, turn the wheel left; if there is obstruction at the

left, turn the wheel right; if there is obstruction ahead, slow down and turn left or

turn right.

For a mobile robot, although the obstacles can be very different from the obstructions

found in the road, their effects are similar. Therefore, the above heuristic control

knowledge can be modelled into fuzzy control rules as follows:

ifobsJight is CLOSE then heading_left;

ifobs _left is CLOSE then heading_right;

ifobsJront is CLOSE then slow _down;

ifobs_jront is CLOSE then heading_left or heading_right.

35

The term CLOSE is a fuzzy set which represents the closeness of a robot to obstacles

from a designer's point ofview. From such translation, one can see how easily fuzzy

control rules can interpret heuristic control knowledge, though the above description

of driving actions and the fuzzy control rules need to be refined further to design a

competent avoid obstacle behaviour.

3.1.3 Fuzzy Behaviour Structure

The above sections have described the fuzzy behaviour components and their possible

design. A fuzzy behaviour should have an input part, a fuzzy control model, i.e. a fuzzy

ruleset, and an output part. These three components constitutes a complete fuzzy logic

controller. However, a fuzzy behaviour is a complete special purpose computational

module for the low level robot control, which needs other mechanisms to be able to

fully engaged in the control process. In MARCO, fuzzy behaviours at the low level can

be mediated by the higher sequencing layer. This means a fuzzy behaviour needs a

mechanism to connect with the higher layer through which the higher level of control

can monitor and influence the fuzzy behaviour. In the ATLANTIS architecture, such

connections are realised through channels which are implemented as a "circuit". In a

RAP, there is no such means because a RAP can directly control discrete actions. In

MARCO, a soft two-way channel is designed for the higher layer to change the control

parameters and also monitor the state information of fuzzy behaviours, such as

maximum speed, running state, activationallevel and their achievement. Apart from the

higher level monitoring and intervention, fuzzy behaviours also compete and co­

operate with each other for the control ofthe robot. Therefore, a competition and co­

ordination mechanism is also required in the low level control layer. For this purpose, a

structure, called a behaviour link is designed for a fuzzy behaviour. This behaviour link

will be described in details in the following chapter. For now, the structure of a fuzzy

behaviour in MARCO architecture can be presented. A fuzzy behaviour comprises a

complete fuzzy logic controller, a soft two-way channel to connect to a higher layer

and a behaviour link to connect with other behaviours. The complete structure of a

fuzzy behaviour is depicted in Fig. 3-3.

36

~~oft channel
~~

Rules:
ifA Then B

fuzzy ife ThenD
variables ~

States:
running
activation

behaviou
link

r

achievement
frustration

Fig. 3-3 Structure of a Fuzzy Behaviour in MARCO

3.1.4 Fuzzy Behaviour Processing Algorithm

The computational process of a fuzzy behaviour in MARCO consists of four parts.

First, necessary sensor information is extracted by perceptual subsystem for the

behaviour. The processing in this part varies for different behaviours. Some behaviours

need little computation, while others may need longer processing. Second, fuzzy logic

control process is carried out. This process includes four steps:

1. fuzzification of input sensor data to obtain the values offuzzy input variables;

2. calculations of the weights of antecedent parts offuzzy rules;

3. calculations offuzzy singleton values offuzzy control rules;

4. defuzzification.

37

The expense of the computation in this part also depends on individual behaviours.

Simple behaviour usually takes very little computation. Complicated behaviours may

take a longer time. However, the design of membership functions and the fuzzy

reasoning method guarantee fast computation time. Third, behaviour state information

is calculated. This process will

virtually take no time because
get_sensorjnputO;

most of state values will be
fuzzy_ control.J)rocessO:

available already from the
· fuzzification;

previous calculations. Finally, the
· antecedent weight calculation;

activation levels of fuzzy
· output singleton calculation;

behaviours are recalculated
· defuzzification.

through the energy redistribution
set_behaviour _statesO;

by the behaviour link network.
redistribute_activation _ energyO.

This process will be discussed

later. Fig. 3-4 presents the
Fig. 3-4 Processing Algorithm of a fuzzy

computational algorithm in a fuzzy
behaviour.

behaviour.

3.1.5 Fuzzy Behaviour Link

The basic building block of the MARCO's low level control layer is a fuzzy behaviour.

Individual fuzzy behaviours perform independent processing for their own functions.

However, their control outputs have to be combined to produce one set of control

output. In the above sections, a data structure built in a fuzzy behaviour, a behaviour

link, has been outlined for this purpose. Detailed description of the method for

combining fuzzy behaviours will be presented in Chapter 4. Here, the combination

mechanism is briefly introduced.

Fuzzy behaviours in MARCO's low level control layer are combined through a

behaviour selection network based on behaviour links. A behaviour link represents the

38

relationship of connected behaviours, namely promotion and inhibition, as shown in

Fig.3-5. A behaviour selection network is composed of all links between behaviours.

The selection network functions as an energy redistributor, continuously changes the

energy flow among the behaviours. The process results in the energy being

accumulated in the most suitable behaviour for the control of a robot, with respect to

the current state of environment and motivations of the control system. The behaviour

is then be selected and the control output is produced by composing the behaviour's

activation energy and the accumulated one. Unlike hard wired suppress channel

mechanism [Brooks89][Gat91a], a behaviour link provides a more flexible way to both

behaviour 1 promotion ~behaviour 2
+-+ inhibition

'--------'

Fig. 3-5 A Behaviour Link

combine and select behaviour with smoother transition ofcontrol. With the selection

network, layered structure for organising fuzzy behaviours are not needed and reactive

and task-oriented behaviours can both reside in a single low level control structure.

3.2 Higher Level Control Layer

In the above sections, the low level control layer ofMARCO architecture has been

described. This section introduces the higher control layer. The higher control layer of

the MARCO architecture is responsible for arranging the sequences of controlling

activities which are usually carried out at different time and places under various

conditions. This higher layer is called the sequencing layer[Hasemann95].

39

To complete a navigation task, a robot is provided with a plan which is produced either

by a high level planning system or a programmer. The execution of the plan is finalised

in the low level control layer. In MARCO, the low level control involves the

concurrent execution of active fuzzy behaviours and dynamic selection of behaviours

to control the robot. If no plan is provided, the low level control consists of only the

survival controlling activities which are realised through reactive behaviours. When a

plan is fed into the robot control system, the low level control activities comprise of

reactive behaviours as well as task-oriented behaviours. However, the low level control

alone is inadequate to complete a complex navigation task. It does not have abilities to

schedule the right sequences of tasks given in a plan and reorganise the current

execution when it fails.

Suppose that the robot is given a navigation task indicated in Fig. 3-6. The navigation

plan is as follows:

1. follow corridor A;

2. enter door B;

3. go to position C.

The preferable execution procedures would be like this:

1. move along and find corridor A, then follow it;

2. find door B, when close to door B, enter it;

3. go to position C.

It should be no problem for the

low level control layer to

execute these tasks when they

are submitted individually. The , ,
problem occurs when the robot I,

follows corridor A and moves n:L1-----'-"- , "-+-------'

close to door B, where it
A

\

'. - •• -­ .---- '--­ -.------­ C]

registers the door and starts to

enter it. If there is no Fig. 3-6 An Example Navigation Task

intervention, two active

40

..

purposeful controlling activities exist at the same time. One is "following corridor A"

because the robot is still in the corridor and the other is "entering door B". The first

activities have forward moving control output while the second try to turn the robot to

the right. These two control actions are contradictory and the result may be that the

robot oscillates endlessly, stops or crash into wall. To prevent such conflicting

controlling behaviours, an intervention or mediation mechanism is needed to organise

the correct order of controlling activities. For the above example, "following corridor

A" activities need to be stopped before "entering door B" starts. Such an intervention

mechanism should also be able to monitor the controlling activities and take

appropriate actions when things go wrong. For instance, the robot may be unable to go

through the door due to unforeseen reasons. The intervention mechanism should then

initiate retrying activities or start other failure recovery process, either readjust control

parameters, or activate other controlling activities, or even abandon the task step in the

worst case. Like other low level control structures [Brooks89] [Mataric90]

[Gat91a][Bonass091][Konolige92], MARCO's low level control layer is not capable

of taking care of such mediation jobs. The computational structure for such a

mechanism turns out to be very different from the low level control. In three layer

architectures [Bonass094,95] [Hexmoor93,95] [Chatila92] [Ingrand95][

Payton90][Gat92], this computational structure is the middle sequencing layer. To

organise the sequencing layer for MARCO's higher level control, an existing method,

RAP is exploited. The control method of the sequencing layer is heavily borrowed

from the RAP. In fact, MARCO's sequencing layer is a modified RAP system and

implemented with commonly used multiprocess operating system scheduling

technology. A brief introduction to the RAP has been given in Chapter 2. For more

detailed information, please refer to [Firby89]. In the following sections, the

organisation of MARCO's sequencing layer is described. The differences between a

pure RAP system and the sequencing layer are also discussed.

3.2.1 Interfacing to Low Level Control Layer

41

This section begins by examining the possible interface between the sequencing layer

and the low level control layer in MARCO. A RAP system is mainly used to directly

control the discrete actions of the robot movement. There is no low level control layer

in a RAP system. This is because RAPs are mainly developed for the robot applications

which involve many objects handling or manipulations. In MARCO, the sequencing

layer is responsible for organising the sequences of the task execution which is finalised

in the low level control layer. In a RAP system, control actions can be passed on

directly to the hardware through a method which only consists of primitive action

commands. In MARCO, no primitive actions can directly be sent to the hardware from

the sequencing layer. Instead, the sequencing layer issues commands to initiate the

control actions in the low level control layer. The sequencing layer intervenes with the

low level control layer in three ways. First, it can initiate or tenninate a behaviour in

the low level control layer. Second, it can monitor and change a behaviour's states in

the low level through a behaviour's soft channel. Third, it can adjust a behaviour's

action by altering the behaviour's control parameters. For every task-oriented

behaviour in the low level control layer, there are 3 types of routines involved in the

sequencing layer: initiation, monitoring and termination.

For example, we can invoke two different task-oriented behaviours at the same time.

We can also initiate or stop a task-oriented behaviour in the middle of another

behaviour execution. However, two task-oriented behaviours, which will interfere

with each other, must not be allowed to be active at the same time. This can be done

by the sequencing layer using the proposed interface. Take the example in the

beginning of Section 3.2 again. To resolve the contradiction that the robot is trying to

enter door B while still following corridor A, the sequencing layer first monitors the

current environment condition. When the robot moves close and its perceptual

subsystem discerns door B, the sequencing layer first terminates "following corridor

A" activities. It then generates the behaviour "enter door" and also starts a task which

monitors the progress of the behaviour. When the robot has entered the door, the

sequencing layer terminates the monitoring task and also removes the behaviour from

the low level control layer. Other possible control with the interface is the adjustment

of a behaviour's parameters through the soft channel. If the speed setting is too fast for

42

"enter door" behaviour, the sequencing layer can directly access the behaviour to reset

a slow speed so that "entering door B" activities can be more sustainable.

3.2.2 Task Template, Tasks and Task Queue

The next step is to develop the computational structure needed to manage the

activation and deactivation of controlling activities. We need a convenient way to

specify situation-driven or planned controlling procedures that will achieve the robot's

goal. In particular, we need to be able to tell the robot what to do when conflicting

situations rise.

As mentioned earlier, the solutions have been found using Firby' s RAP with some

modifications. The heart of the sequencing layer is a data structure called a task

template. A task template is similar to a RAP. The term is somewhat more direct to

describe the procedures of controlling activities instead of discrete actions. A task

template is a collection ofmethods(task nets) for accomplishing something, together

with annotations describing under what circumstances each method is applicable. A

task is the computing process of executing a task template code. For example, a task

template for entering a door might contain two methods, one for when the initial

position of the robot is close to the door, and the other for when it is not. The first

method might contain three steps: initiate a door-entering activities in the low level

control layer, monitor that controlling activity until it completes or fails, and then

finally tenninate the activity. The second method would begin with another task

template for corridor following and then start the same controlling activities as with

method one, when the task prescribed by corridor following task template is finished.

Fig. 3-7 gives the possible structure of this example task template based on a RAP

syntax. A simple annotation starting with "#" is given to the first method ofthe task

template. Please refer to [Firby89] for a complete description of the RAP structure.

(Define-Task Template # start to define a task template;
(Name (enter-room ?room» # specify the name of a task template and its argument;
(Succeed (state success» # success clause of the task template;
(Method # define the first method to select;

43

(Context (and (known ?room) # context to use method: room known
(near ?room») # and close to robot;

(Task-Net # define task-net for the method;

(to (start-behaviour room-entering ?behaviour) for t 1) # first step of the task net, a
created behaviour as
precondition for step tl;

(t1 (monitor-behaviour ?behaviour ?state) # second step, monitor
beh. state, achieved, as

(achieved ?state) for t2) # precondition for step t2;

(t2 (remove-behaviour ?behaviour ?state) # remove behaviour at step
12; set task state to success,

(success ?state»» # the method succeeds.
(Method

(Context (and (unknown ?room)
(known ?current-corridor)
(in-corridor ?room»)

(Task-Net
(to (start-task corridor-following ?current-corridor)

(found ?room) for tl)
(tl (remove-task corridor-following) for t2)
(t2 (start-behaviour room-entering ?behaviour) for t3)
(t3 (monitor-behaviour ?behaviour ?state)

(achieved ?state) for t4)
(t4 (remove-behaviour ?behaviour ?state)

(success ?state»»)

Fig. 3-7. A Simple Example Task Template

The context of using the second method is that the location of the room is unknown

and the robot is currently in a corridor where the room resides. The robot must first

find the room and then enter it. This method is realised by a task net with five steps. In

the first method, the task net only involves the initiation, monitoring and tennination of

behaviours at the low level control layer. In the second method, the first step invokes

another task template for management of corridor-following activity. After the room is

found by the perceptual subsystem as the result offollowing the corridor, this activity

is stopped by the removal of the task. The rest of the control activity is the same as the

one prescribed in the first method. It should be noted that the tennination of the

44

cOrridor-following task involves both the higher level managing task and its initiated

behaviours at the low level control layer.

Methods may do the following things in MARCO's sequencing layer. They may

initiate, terminate, and monitor controlling activities at the low level control layer.

They can also instantiate other task templates. Ordinary computation can also be

carried out in steps within a method's task net. In this aspect, a method is similar to a

TCA's task net[Simmons90] and different from pure RAP's definition. The advantages

of such structure will be discussed in the next section, together with other

modifications. Once a task template is instantiated, it becomes a task and is inserted

into a task queue. A task queue is the same as RAP task agenda. The terminology was

changed because the name, task queue is more descriptive.

3.2.3 Task Scheduler

Task Queue Task Scheduler Activation

Task 0
 deactivation

Task 1 Tasks Instantiate a behaviours

method Low Level
t-----~

Taskn Control Layer
(Tasks waiting to
execute)

Newiasks

Fig. 3-8 Task Execution Diagram

MARCO's sequencing layer mainly consists ofthree parts: a set of task template

programs, a task queue and a task scheduler. Unlike a RAP system, the sequencing

layer does not exclusively possess a sensor memory but shares a sensor model

maintained by a perceptual subsystem with the low level control layer. The task

sch d 1 e u er IS a SImp 1 , · . I·tied RAPl 'nterpreter which mainly involves the creation,

45

execution and termination of tasks in the task queue. It does not interpret an

instantiated task template because a task template is directly implemented as a program

in MARCO. This is also the reason we use the name task scheduler. However, many

issues in the RAP interpreter addressed extensively by Firby are still very well suited to

the task scheduler in MARCO.

A task execution requires that a task template description and environment information

contained in a sensor model be available. The task is executed by the task scheduler

according to the algorithm shown in Fig.3-8 which has the following steps:

1. 	 Choose a task to run from task queue;

2. 	 Check the task state to see if it is finished;

3. 	 If finished, remove the task, subtasks from the task queue and invoked

behaviour from low level control layer;

Ifnot finished, choose a method and execute the task net step;

4. 	 If current step contains another task template, instantiate a subtask and put it

on the task queue;

If current step contains normal computation, execute it;

return to task queue;

5. 	 Go to step 1 and repeat.

Deciding what task should be selected for execution and what method should be used

are fairly complex problems which Firby addresses extensively. The selection criteria

and heuristics developed in RAPs are mainly for the application which involves many

object recognition and manipulation processes. In MARCO's sequencing layer, such

complex criteria are not necessary because MARCO is mainly intended for navigation

tasks which involve moving from place to place. The procedural ordering of the task

execution is less complex and more straightforward. Another difference is caused by

the way the world model is constructed. The construction of the RAP memory or

sensor model is done by RAPs explicitly designed for world modelling. It may be the

part of a RAP task execution and result in a very complex RAP. In MARCO, an

independent perceptual subsystem is employed to perform world modelling which is

46

mainly the extraction of environment features. A task template only needs to access the

sensor model for the information. This again makes the task execution procedures

simpler. These differences mean that the structure of a task template and its invocation

process by the task scheduler can be further simplified.

In the RAP's execution, the RAP interpreter chooses the task from task agenda

because many tasks can be waiting on the agenda and it is ineffective to execute them

in tum. The interpreter also has to choose a method because more than one method

may be included. These selection processes employ various criteria and heuristics, need

to trace the history of task execution and demand extra time overhead. To avoid the

complicated selection processes, a simpler structure is proposed for a task template,

together with a simple task execution strategy. Each task template only contains one

method consisting ofa task net. The ability of describing task execution is maintained

through the task net and introduction of more task templates. A step in a task net

contains either another task template or a normal function. The difference between a

task template and a function is that a task template can be instantiated and inserted into

the task queue and a function can only belong to a task template and be executed as a

part of task net but not as a task. However, a function can include any process related

to a subtask, such as instantiating another task template, as well as normal

computation.

In this aspect, MARCO's task template is similar to TCA's task net. There are two

obvious advantages ofthis structure. First, the selection of methods within a task

template is no longer needed as only one method exists. Second, since many

processing steps of a task net can be implemented as a function, the number of the

tasks in the task queue can be greatly reduced, allowing all tasks to be executed in tum

and eliminating task selection process.

In a RAP system, once a method is chosen, all subtasks in its task net are created and

put on a task agenda. An ordering relationship imposed by annotations between steps

is set-up for these subtasks. A subtask keeps waiting on the task agenda until its

preceding subtasks are all finished. In MARCO's sequencing layer, the removal of the

47

PM

selection processes requires that a different task management strategy be used by the

task scheduler. Instead ofinstalling all the subtasks, only the subtask created by the

current step is inserted into the task queue. To manage the tasks on the task queue, a

simple task scheduling technology similar to those used in multiple-process operating

systems is employed[Tanenbaum92]. Each task is assigned a state by the task

scheduler. A task state represents either the current step of execution in a task net or

one of pre-defined states, such as IN1T, TIMEOUT, WAIT, SUCCESS, REMOVE.

Although all tasks are executed by the task scheduler, the actual execution depends on

the current state ofthe task. Task states can be divided into two categories: executable

state or unexecutable state. Executable states include the actual steps of a task net and

some of pre-defined states, such as !NIT. A task is eligible to run at these states by

executing the current task step. Unexecutable state, such as WAIT, means that the

task scheduler puts the task back to the task queue to wait without further execution.

A task is executed when its state is executable and is removed by the task scheduler

when it finishes and enters REMOVE state. At every cycle ofexecution, the task

scheduler executes the tasks in turn, checks their states, executes their current steps or

puts them back to the task queue and reset their states according to their execution

constraints. A task state is changed when the task enters another step or its running

conditions have changed.

With the above scheduling technology, each task is actually a finite-state machine.

Subtasks in a task net no longer need to be put on to the task queue at the same time

and their ordering relationship can be better preserved. Because the number of tasks in

task queue is small, the tasks can be executed very fast. More importantly, it allows the

concurrent processing of multiple tasks. Because of the similarity of a task template

and a RAP, Firby's task execution constraints can be used unchanged to specify the

ordering information for a task and related task net. These constraints include: explicit

ordering constraint, temporal constraints and internal state constraints. More details

can be found in [Firby89].

Fig. 3-9 presents the task scheduling algorithm used by the task scheduler.

For(i=O; i<TASK_NUMBER; itt)
{

48

task_state = task[i]. state;

switch(task_state) {

case REMOVE:

remove _task_from _ queue(i);

break;

case unexecutables:

if(time_to_change)

task_state == change_task _ state(i);

break;

case executables:

execute_task(task_state, i);

itrtime_to _change)

task_state = change_task _ state(i);

break;

}
rearrange_task_queueO;

task[i]. state = task_state;

}

Fig. 3-9 Task Scheduling Algorithm

From the algorithm, we can see when a task state is REMOVE, it is removed from the

task queue by the task scheduler. This state arises from the success or failure of a task.

When a task has successfully finished and method task net wants it to be removed, the

state is set. In unexecutable states, a task state mayor may not need to be changed. If a

task is suspended forever, its state will never be changed and the task will never be

actually executed again. But if a task is suspended for 1 second, its current SUSPEND

state will become some other state when 1 second passes. The task can then be

executed next time as long as its state is executable. The current task state can also be

changed during execution. The changed state will become its new state when it is put

back to the task queue. The task scheduler continuously executes tasks in the task

queue, examines and changes their states correspondingly.

3.3 Summary

This Chapter described a two layer architecture, MARCO for the control of a mobile

robot consisting a low level control layer and a sequencing layer and the basic building

blocks for the construction of the layers.

49

The low level control layer is based on fuzzy behaviours, a control structure consisting

of a fuzzy logic controller, a soft channel and a behaviour link. The fuzzy logic

controller employs a triangular and half-triangular form of fuzzy membership functions

and a singleton representation of fuzzy output for the simple representation and fast

computation. The method of deriving fuzzy control rules uses the combination of

Sugeno's fuzzy modelling of the operator's action and heuristic control knowledge.

With fuzzy If-Then rules, human control knowledge can be easily translated to

compose the functions ofa fuzzy behaviour. A fuzzy behaviour can also accommodate

sensor noise, uncertainty and imprecision. Fuzzy behaviours are combined to produce a

set of control outputs for a robot through a behaviour selection network. This network

can be built on behaviour links and used to redistribute behaviours' activation energy,

resulting in the selection of the best suitable behaviour for the robot control.

The sequencing layer organises temporal sequences of controlling activities in the low

level control layer. The sequencer is essentially based on Firby's Reactive Action

Package(RAP). However, some changes are required to support fuzzy behaviour­

based low level control. The sequencing layer consists of a task queue which contains a

number of tasks instantiated from task templates. A task template is a simplified RAP

which contains only one task net. Steps in a task net contain either a function or

another task template. When a task is run, it can do the following things: it can initiate,

monitor or terminate a fuzzy behaviour through the behaviour' s soft channel, or it can

carry out normal computation and insert a new task into the task queue, it also can

change the control parameters of a fuzzy behaviour. A task scheduler replaces a RAP

interpreter to manage the task execution.

Central to the functioning of the task scheduler is the use ofa simple multiple-process

scheduling teclmology. The execution ofa task is traced by the task state, either the

current step of the task net or a pre-defined state. After every cycle of execution, a

executable task progresses one step and is put back to the task queue with a new state

while an unexecutable task is put back to the task queue without execution but with

possible changed state. The task scheduler executes all the tasks in turn on the task

50

queue without the need of task or method selection. The structure of a task net in a

task template and task scheduling method lead to the significant reduction of tasks on

the task queue and allows the concurrent execution of tasks.

51

Chapter 4 Fuzzy Behaviour Organisation and Fusion

This Chapter will describe the organisation and fusion or selection of fuzzy

behaviours for the implementation of a low level control layer for mobile robot indoor

navigation tasks. This is characterised in the organisation of fuzzy behaviours, based

on the sphere of influence of environment features typically presented in an indoor

environment, such as corridor, door, etc. The Chapter starts with a brief description of

a sensor model and perceptual subsystem which maintains an environment

representation. Then it proceeds to discuss how to organise fuzzy behaviours based on

the sphere of influence of environment. This will be extensively described through the

implementation of several example fuzzy behaviours. These behaviours are combined

through the behaviour selection network, which will be discussed in detail. The

behaviour fusion and selection algorithm will also be presented.

4.1 A Sensor Model

This section briefly describes a sensor model and a related perceptual subsystem used

in MARCO. The sensor model provides the state information of the world which is

necessary for the MARCO control system. Because the main focus of the thesis is in

the robot control architecture, this discussion will be limited to mainly addressing the

needs of feature-based fuzzy behaviours. This is the reason that the sensor model is

described before the organisation of fuzzy behaviours, though the sensor model

should be shared by other layers of a control system.

4.1.1 Overview

An efficient sensor model should contain different types of information to meet

different requirements. Although all control systems require sensor input information,

sensor data can be handled very differently, from traditional world modelling, to

directly "wiring" sensors to actuators [Brooks89][Conne1l89]] and the minimum use

52

of state data[Gat91a]. The principle behind the elimination of a centralised world

model[Brooks89] is because the centralised world model is prone to error. However,

by doing so, the robot has a lack of overall estimation of environments. Some

complex and high level tasks especially need such information to complete longer

term planning goals. In a behaviour-based architecture, such a world model can also

be useful to co-ordinate multiple behaviours, especially when these behaviours are for

the purposes ofrecognition[Saffiotti95]. Without an overall estimation of the world

state, the robot can only perform limited tasks[Leonard89].

Traditional sense-model-plan-act architecture has been very much criticised on the

ground that planning and acting are explicitly based on an uniform analogical

representation of the world[Brooks86]. Sensor data are processed only for

constructing a world model upon which the other processing follows. This type of

sensor processing has been augmented by little processing and even direct use of

sensor data in many mainstream architectures, which results in much faster low level

interaction with the environment. Such an approach is employed to implement the

MARCO sensor model.

4.1.2 Structure of Sensor Model

In MARCO, an independent perceptual subsystem is responsible for sensor

interpretation and world modelling. The perceived sensor data are maintained in a

sensor model and shared by the whole system. In the low level control layer, fuzzy

behaviours can access these sensor data during their control processes but with

different requirements. Some behaviours need more abstracted types of information,

such as an analogical representation of environment features; others need only little

interpreted data, such as range values. MARCO's sensor model allows such different

types of sensor information to be maintained for the different processing needs. The

structure of MARCO's sensor model is mainly based on Firby's RAP memory,

incorporating the above intuitions to support the control architecture.

53

Firby uses a RAP memory including a local sensor model and long-term memory

[Firby89]. Explicit sensing strategies are provided for the task execution which

involves complicated object recognition and manipulation tasks. Similarly,

MARCO's sensor model consists of a local sensor model and a long term model

which is the same as the long term memory in RAPs. The main difference between

the RAP memory and MARCO's sensor model is that MARCO's local model only

contains little assimilated sensor data and the RAP's one holds abstract environment

descriptions. MARCO's local sensor model supports fast control processes which

need only raw sensor data. World modelling is performed by an independent

perceptual subsystem which extracts abstract environment information from the local

sensor model and registers the information in the long term model. In RAP, the long

term memory is maintained by a perception system in a different way. The perception

system does not perform world modelling based on a local sensor model but migrates

the necessary content from a local sensor model to the long term memory, which

involves many migration strategies. Firby does not address how to support tasks

which require little interpreted data for fast control process. However, many issues

addressed by Firby are equally applicable to MARCO's sensor model.

In MARCO, the long term model contains information provided by a map and also

environment features acquired by the perceptual subsystem during navigation. The

perceptual subsystem also performs the registration of sensed information to the map

data and at the same time localises the robot position. Information in the long term

model is the analogical representation of the environment, mainly based on feature

descriptions, such as wall, door, corridor, which is similar to Firby's object

description. In this thesis, the same strategy used in subsumption-like architectures

[Brooks89] [Kaelhling90] is employed to only extract just enough information for

navigation purposes, but in the analogical fonn. A richer analogical representation of

the world is left as a future research topic.

4.1.3 Perceptual Subsystem

54

The functions of the independent perceptual subsystem are sensing, sensor

interpretation, world modelling, and localisation. In this thesis, these tasks are treated

as standard routines, not controlled by MARCO. This subsystem provides three types

of sensor information: raw range data, robot position data and abstract environment

features. Raw range data are directly stored in MARCO's local sensor model and then

maintained by the subsystem through a local data pool. To keep the pool size constant,

old data are abandoned to make space for newly arrived data. Abstract environment

features are either extracted from the local pool or retrieved from a map by the

perceptual subsystem and then maintained in long term model. In this thesis, a laser

range scanner is used as the primary example sensor, which is modelled on a real

scanner, a high performance AccuRange3000 laser scanner. The sensing system can

produce the maximum 720 points of range data with 0.5 0 angle resolution in every

40ms. In the example implementation, the perceptual subsystem samples 40 different

positions in every scan and these samples constitute the main sources of sensor data

for a MARCO sensor model. All sensor data and environment features are based on a

robot-centered co-ordinate system which makes it easier to manipulate and maintain

sensor information.

4.2 Fuzzy Behaviour Organisation

Having examined the fuzzy behaviour structure, its computational processing and

MARCO's sensor model, this section further discusses how to partition the function

of a low level control layer into different fuzzy behaviours for mainly indoor

navigation tasks. Here, an indoor environment means a relatively "structured"

environment where the main features of the environment, such as wall, door, corridor

can be easily identified using necessary sensing technologies.

To complete a navigation task, a robot is engaged in two types ofactivities. First, the

robot must interact with its surrounding. Although, the robot's environment can be

known prior to task execution, this knowledge is mostly approximate and the

environment can also be modified. The robot cannot predict that a person will stand in

55

its route or a small object lies in front of it. The robot may also run into a nearby wall

before its perceptual subsystem extracts this feature and initiates an appropriate

action. This type of activity is not predetermined by the robot's navigation plan.

However, these activities are the by-products ofexecuting a navigation plan and the

robot's abilities to deal with these situations are the preconditions of successful

navigation. They constitute the robot's basic survival capabilities. In behaviour-based

architectures, such capabilities are called reactive behaviours [Gat94] [Saffiotti et al

93b] [Hasemann95]. Their main characteristics are fast response and robustness in

dealing with environment contingencies. Sensor input to these behaviours is mostly

crude sensor data with little interpretation, indicating the immediate surroundings. The

second type of activity involves the robot's purposeful actions with respect to its

navigation task. A typical task is to go to a specified position. These capabilities of

completing purposeful actions are called task-oriented behaviours[Saffiotti et al

93b][Hasemann95]. The sensor input to these behaviours includes more meaningful

description of the parts of the environment and takes a longer processing time to

acqUIre.

In MARCO, reactive and task-oriented behaviours ofthe low level control layer are

organised in the following way. Reactive behaviours constitute basic survival abilities

for the robot and provide the ground for the success of task-oriented behaviours. Task­

oriented behaviours form individual task performing bodies required for a navigation

task. Reactive behaviours can run concurrently and task-oriented behaviours must be

chained to complete a task. Each behaviour has its own sphere of influence in relation

to the environment. Environment features or task goals are the activation stimulus of

behaviours.

4.2.1 Reactive Behaviours

56

For a navigation task, a robot control system is constantly required to provide the two

control outputs, speed and heading, whatever control method is used. Reactive

behaviours should be able to control the robot even when no task-oriented behaviours

are present. To do so, moving and avoiding hitting objects are the two most important

functions. In addition, some purposeful control actions can be implemented without

the provision of abstract information by a plan or perceptual system, such as edge

following. These actions can also be treated as reactive because of the simple and fast

sensor input. Four example reactive behaviours were implemented from the above

observations and are presented in this section for discussion. They are Keep Moving,

Avoid Obstacle, Follow Edge and Recover Stall. Similar behaviours have been

reported in the literature. However, the sphere of influence ofenvironment is

employed as the basis of the organisation of different behaviours, as well as the

provision of the support for task-oriented behaviours. The sphere of influence of

environment is defined for a behaviour with respect to its function. Each behaviour is

associated with a sphere of influence of environment. A behaviour can be active when

within its sphere of influence and inactive otherwise. Fig. 4-1 shows the sphere of

influence of environment for the three example reactive behaviours. Avoid Obstacle

behaviour becomes active when the robot is close to any object. Its sphere of influence

is the close surrounding of objects. Keep Moving behaviour is active when the robot

is in its sphere of influence, an open space. Follow Edge is a quite special behaviour

which can be treated as both a reactive and task-oriented behaviour. In the reactive

· ,, . , .·,· . · . ·.·.·.· . · . · . · . · . · .

Avoid

: 0 :, .,

Keep Moving

· . , ,
, ,

·. , ,

· . ·. : :+--___'~'-t--Follow Edge· . · · ·':
,
'.. '
.

· . · , ,, o

........ - -- - _ ---"

Fig. 4-1 Sphere ofInfluence of Environment

57

front
~.-.-.-.-.-.~

.,.. .,..
I I

I rightleft I

I I
~ ~

Fig. 4-2 Sample Point Coverage for Avoid Obstacle Behaviour

sense, the behaviour can be activated automatically when the robot moves close to a

wall or a relatively linear object sensed but not extracted by the perceptual subsystem.

The behaviour acts in a way similar to a rat following an edge of wall. Its sphere of

influence is around walls or similar objects. In the task-oriented sense, its sensor input

does take a little longer to be produced even though it is not a description of features.

It also needs to avoid conflict with other task-oriented behaviours. This dual purpose

behaviour can be very useful for some types of indoor tasks. In the following

sections, the implementation of these example behaviours is described.

4.2.1.1 Avoid Obstacle

As described in Chapter 2, a fuzzy behaviour consists of three parts: a fuzzy logic

controller, a soft channel and a behaviour link For Avoid Obstacle behaviour, its

sensor inputs to the fuzzy logic controller are the range data from the local sensor

model, gathered by the robot sensor, in this example implementation, a laser scanner.

Local sensor model contains data sampled from positions covering the front, right and

left sides of a robot as shown in Fig. 4-2. Newly acquired data are cached into the

local sensor model and old data are removed to keep the amount of data constant.

Minimum distances to obstacles in the three directions are taken and fed into the fuzzy

behaviour. A fuzzy logic controller for this behaviour is implemented using the

method introduced in Section 3.1.2.3, the combination of fuzzy modelling of

operator's control action and heuristic control knowledge, as well as a trial and error

approach. Four fuzzy control rules are used in the behaviour. They are:

58

II

min_dist

IfobsJight is CLOSE and obs _left is not CLOSE Then left_heading

Ifobs _left is CLOSE and obs _right is not CLOSE Then right_heading

IfobsJront is CLOSE Then decrease_speed

IfobsJront is CLOSE and obs_left is as CLOSE as obs_right Then left_heading

Here, the first two rules prevent the robot from colliding with obstacles at the right

and left by generating a heading change truncated by a rule antecedent weight. The

third rule slows the robot's speed down when it approaches an obstacle at the front.

The final rule forces the robot to tum left and escape when the robot runs into a dead

end. The output, left_heading can also be replaced by right_heading when preferred.

CLOSE NOT CLOSE

obs_1eft L&obs_right
max_dist obsjront -a a

Fig. 4-3 Membership Functions of Fuzzy Variables of Avoid Obstacle
Behaviour

The membership functions offuzzy variables obs_right, obs_left and obsJront are

shown in Fig. 4-3. The membership function CLOSE is determined by two distances,

a minimum distance and a maximum distance which marks the beginning of the

sphere of influence of environment for the behaviour. Note that the min. and max.

distances for obs _left and obsJight are different from those for obsJront, though

they have the same structure of the membership function. The membership function,

as CLOSE as, is used to measure the degree of equality between two fuzzy variables

in order to prevent a non-action caused by conflicting control rules. When the robot

approaches symmetrically a comer or a straight wall, obs _left and obsJight usually

have a very close measurement value which causes a very close control output for

turning left and turning right. The two opposite control outputs result in a non-action.

The membership function as shown in Fig. 4-3, measures the situation and the related

control rule takes action when it occurs. The above four rules produce synthesised

control actions through defuzzification.

59

In the example implementation, the following state information is defined for each

fuzzy behaviour: running, activity, frustration, achievement. A behaviour can be

enabled or disabled by setting or resetting the state, running, only by a higher layer.

The state activity represents the current activation level of the behaviour, calculated by

taking the maximum of all weights of the fuzzy rule antecedents. The state frustration

indicates the frustration level of the behaviour execution, currently referring to

motionless and very slow of the robot movement. Activation and frustration

information are accessed by behaviour links in behaviour selection process, which

will be described later. The state achievement indicates the progress of a behaviour to

achieve a goal and is accessible only by a higher layer. For Avoid Obstacle behaviour,

the state achievement is

meaningless.

l~/ FAST

speed
4.2.1.2 Keep Moving

Fig. 4-4 Membership Functions of Speed

This behaviour provides the robot

with a constant speed when no task-oriented behaviours are available to activate the

speed control. Its main sphere of influence of the environment is an open space. The

behaviour is not involved in any heading control. The design ofthis example fuzzy

behaviour is relatively simple. It takes a required normal speed and the current robot

speed as sensor input and creates a new speed for output. The fuzzy control rules are

as followed:

Ijspeed is FAST Then decrease_speed

Ijspeed is SLOW Then increase_speed.

The first rule decreases the robot speed by the amount with decrease_speed truncated

at the antecedent weight when the robot moves too fast. The second rule does the

opposite. The membership function of the fuzzy variable, speed, is shown in Fig. 4-4.

60

Like Avoid Obstacle behaviour, the state achievement bears no meaning to Keep

Moving behaviour.

4.2.1.2 Follow Edge

This behaviour becomes active when a wall edge is sensed but not extracted by the

perceptual subsystem. The purpose of this example behaviour is to help perform some

tasks which require the robot to move along the edge of wall or barrier closely. This

behaviour can be employed as either a reactive behaviour or a task-oriented

behaviour. In some implementations[Saffiotti93], the wall following behaviour is

considered as a task-oriented behaviour in which walls are specified as goals for the

behaviour to act on. In ATLANTIS's reactive layer, a wall following behaviour is

designed as a reactive behaviour using an ALF A circuit. However, its ability is

limited. Follow Edge behaviour is quite different from the others [Saffiotti93] [Gat91b]

[Cheng97]. First, the behaviour can be used as both reactive and task-oriented

behaviour. Second, only simple infonnation of a wall is needed instead of an abstract

description of a wall. Third, the abilities ofthe behaviour are enhanced. It can allow

the robot to follow a straight edge as well as concave and convex comers without

subgoal positions being planned beforehand. The capabilities of the behaviour are

illustrated in Fig. 4-5. The behaviour

can make the robot control simpler for

some tasks along wall edges. The

o 	 behaviour can also provide support for

some task-oriented behaviours, such

. -.... ~ -...
as goal reaching behaviours. The

behaviour can first guide the robot to

Fig. 4-5 Edge Following Actions an easy position around a barrier

without high level planning and then

be taken over by a task-oriented behaviour. The time needed to plan subgoals can

therefore be reduced.

61

y-!'

Fig. 4-6 Angle Histogram Calculation

Follow Edge behaviour takes a sensed wall angle and an imaginary track along the

wall as sensor input. Locally sensed angle is calculated using an angle-histogram

method[HinkeI88]. With the range data provided by a high quality laser scanner, it is

possible to have an accurate estimate of a wall angle, though the accuracy of a single

measurement is not essential as the robot constantly senses the nearby wall. The

angle-histogram has been originally developed for world modelling and localisation

[HinkeI89][Hoppen89][Weip94]. Angles between two adjacent reflected data point,

with respect to the robot current position, are calculated over an entire scan. The main

features of the robot environment, usually walls, are reflected through the biggest

counts of the same angles. By normalising the angle, two other histograms in X, Y

axles can be calculated respectively. Three data sets can be obtained from the

calculations, the robot's direction to the wall and its distances to the main walls. The

angle-histogram is depicted in Fig. 4-6.

To provide simple and fast information for Follow Edge behaviour, the angle­

histogram is used

differently here, only to
get_Iaser_dataO;
find_min _distance -positionO; calculate an angle over a

while(not discontinuous) small local section instead
extend_to _certain Jocal_scopeO;

calculate _local_angle _ histogramO; of an entire scan. The

calculation algorithm is
Fig. 4-7 Local Angle-histogram Calculation Algorithm

given in Fig. 4-7.

62

p

After the calculation, two angles are selected indicating possible wall segments with

maximum reflected points. The structure of a local wall section can be inferred from

the data, either a single straight edge, two edges with a concave corner or with a

convex comer. A wall angle is selected and an imaginary track is constructed based on

the above data. The information gives the robot a little sense about its vicinity without

more abstract processing. This method is not suited to sonar based sensing because of

its wide beam angle. The calculation takes little time over a small section and is only

carried out after a certain distance or an angle change. A wall angle and imaginary

track, as well as sensor data from a local sensor model, are provided to Follow Edge

behaviour.

The behaviour has six fuzzy control rules as followed:

Ifspeed is FAST Then decrease_speed

Ifspeed is SLOW Then increase_speed

Ifwdist is NEAR and

(obs_right is not CLOSE and angle is NEGATIVE BIG) Then turnJight

Ifwdist is NEAR and

(obs _left is not CLOSE and angle is POSITIVE BIG) Then turn_left

Ifwdist is NEAR and

(obs_right is not CLOSE and angle is not POSITIVE BIG) and

wdist is POSITIVE BIG Then turn_right

Ifwdist is NEAR and

(obs_left is not CLOSE and angle is not NEGATIVE BIG) and

wdist is NEGATIVE BIG Then turn_left

The first and second rules control the speed of the robot. The rest rules control the

robot heading during edge following and only have effects when the robot is near a

wall. The third and fourth rules steer the robot to the direction parallel to a wall while

the fifth and sixth rules guide the robot towards an imaginary track along a wall. The

membership functions of fuzzy variables are provided in Fig. 4-8. Follow Edge

behaviour does not need an achievement indicator.

63

;

SLOW FAST NEGATIVE BIG POSITIVE BIG

angle

NOT CLOSE

'-_-'-___~	obsJeft
obs_right

Fig. 4-8 Membership Functions of Follow Edge Behaviour

4.2.1.3 Recover Stall

This reactive behaviour is active when the robot is trapped in a local minima and all

other behaviours fail to pull the robot out of a motionless state. The behaviour uses

the robot movement states as inputs and exercises an escaping strategy with one

control rule as followed:

Ifmove is SMALL or stop _time is LONG Then increase _speed.

The control output is the escaping speed which stimulates the robot to move again.

The behaviour is automatically activated when other fuzzy behaviours contribute their

activation energy to it through their behaviour links.

4.2.2 Task-Oriented Behaviours

Task-oriented behaviours are responsible for completing the robot tasks. In this thesis,

these tasks are mainly navigation from place to place in indoor environments, such as

64

office building, construction sites, etc. A typical task is to go to a specified position.

Another such task could be to find and then enter a designated room. Two types of

task-oriented activity can be involved in the navigation. One is the direct control

action for completing a given task. For example, Reach Position task causes the robot

to steer directly towards the direction leading to the position. The other is indirect

control activity which mayor may not directly result in the completion of the task

goal but provides the support for the robot to complete its final goal. Following a

corridor is not the activity that can direct the robot to enter a room. However, without

this purposeful corridor following activity to guide the robot near the door, the robot

cannot find and then enter the room. Of course, the robot can wander around and try to

find the room itself. But this is not an efficient or even feasible way in a complex

environment. These two types of activity should be supported by task-oriented

behaviours.

To support indoor navigation tasks, some of task-oriented behaviours are specifically

organised based on the typical indoor environment features, such as corridor, door.

These behaviours can be activated by a higher level when their related environment

features are present in the long term model. The sphere of influence ofenvironment

for such a behaviour is from the related feature to the current robot position. In the

example implementation, four task-oriented behaviours were developed. They are

Follow Corridor, Track Path, Cross Door, Reach Position. These behaviours can be

used for both the direct or the indirect control purpose of completing the robot task.

Their input data are provided in the long term model, though corridor and door

features are extracted by the perceptual subsystem or provided through a map while

path and position

Follow Corridor Track Path Cross Door Reach Position

'.

-----i: : l---­

.~ .

Fig. 4-9 Acting Pattern ofFour Task-oriented Behaviours

65

4 &H

data are given by a high level planning system or human. Their control actions are

illustrated in Fig. 4-9. Note that Follow Corridor, Track Path and Cross Door

behaviours have the same pattern of control actions, but use different input data.

Follow Corridor behaviour controls the robot to follow an actual corridor comprising

of two parallel walls while Track Path behaviour is for following a lane which can be

seen as an imaginary corridor. Cross Door behaviour guides the robot in or out of a

door way which can also be abstracted as a short corridor. The same set of control

rules is employed to implement the three example fuzzy behaviours. Their different

perceptual features can be converted to a similar data structure representing a passage

way which can then be used by the same fuzzy logic controller. Here, Follow Corridor

and Reach Position behaviours are presented.

4.2.2.1 Follow Corridor

Follow Corridor behaviour uses a corridor feature from the long term model as well as

range values from the local sensor model as sensor input and controls the robot to

move along the centre of the corridor. A corridor feature is extracted by the perceptual

subsystem or provided through a map. It consists of two parallel wall segments and

has a certain width and length constraints. The perceptual subsystem extracts a

corridor feature according to these constraints and stores it in the long term model.

Corridor following is a common behaviour for indoor navigation. The behaviour is

implemented with the following fuzzy control rules:

Ifspeed is FAST Then decrease _speed

Ifspeed is SLOW Then increase_speed

Iflane_dist is NEAR and

(obsJight is not CLOSE and angle is NEGATIVE BIG) Then turn Jight

If lane_dist is NEAR and

(obs _left is not CLOSE and angle is POSITIVE BIG) Then turn_left

Iflane dist is NEAR and

(obs_right is not CLOSE and angle is not POSITIVE BIG) and

66

InM]'*

(lane_dist is POSITIVE BIG) Then turnJight

Iflane_dist is NEAR and

(obs_left is not CLOSE and angle is not NEGATIVE BIG) and

(lane_dist is NEGATIVE BIG) Then turn_left

Iflane_dist is not NEAR and

(obs_right is not CLOSE and lane_dist is POSITIVE BIG) Then turnJight

If lane_dist is not NEAR and

(obs_left is not CLOSE and lane_dist is NEGATIVE BIG) Then turn_'eft.

Fuzzy Variable lane_dist refers to the perpendicular distance from the robot to the

centre line of a corridor. The distance has positive value when the robot is at the left

and negative at the right. The fuzzy variable angle is the corridor angle in a robot

centred co-ordinate system. Ifnegative, the robot points to the left of a corridor central

lane, otherwise to the right. The first two rules control the robot following speed. The

3rd and 4th rules steer the robot to the corridor direction when the robot is in the lane.

The 5th and 6th rules guide the robot back to the track when the robot drifts to the two

sides of the central lane but remains close. The 7th and 8th rules forces the robot

towards the track when the robot is very much out of the position. Follow Corridor

behaviour has four state indicators: running, activation, frustration and achievement.

The state achievement indicates the progress of following to the end position of a

corridor. Once the robot arrives at the position, the behaviour is removed. Note that

the first six rules are very similar to those ofFollow Edge behaviour. They also have

similar membership function structures.

4.2.2.2 Reach Position

Navigation means that a robot moves from a starting position, negotiates with its

environment and finds its way and moves to a goal position. Getting to a specified

position is a common task ofa mobile robot navigation system. In the above sections,

other example behaviours are described which control the robot survival in its'

environment and finding its way. This section describes one of the most important

67

task-oriented behaviours, Reach Position. With the other behaviours taking care of

survival and path following activities, the design of this behaviour becomes relatively

simple. The behaviour is only responsible for steering the robot towards a goal

position. The control strategies of the behaviour is similar to a potential field goal

reaching behaviour[Arkin90] [Payton90][Slack93]. A goal position presents an

attractive force to the robot, expressed as a speed vector. The robot approaches the

goal with the same speed as the magnitude of the vector and heading of the vector.

The sphere of influence of the goal reaches as far as the robot position. Therefore, the

farther the robot is away from the goal, the stronger the attractive force. The robot

moves towards the goal position under the constraint of maximum velocity.

Reach Position behaviour needs an XlY goal position in robot co-ordinates, the robot

speed and range data from the local sensor model are used as sensor input. The goal

position is provided and placed in the long term model by a high level planning

system or human. Because of the use of the local robot co-ordinates, the goal position

is updated towards the origin of the co-ordinates, making it easier to check the

progress. The fuzzy behaviour employs six rules as followed:

Ifspeed is FAST Then decrease_speed

Ifspeed is SLOW Then increase _speed

Ifangle is POSITIVE MEDIUM and dist is not SMALL and

(angle is BIG or obs_left is not CLOSE) Then turn_left

Ifangle is NEGATIVE MEDIUM and dist is not SMALL and

(angle is BIG or obsJight is not CLOSE) Then turnJight

Ifdist is very SMALL Then decrease_speed _stop

Ifangle is BIG Then decrease_speed _stop

68

lIIE Om

NEGATIVE MEDIUM POSITIVE MEDIUM BIG degree
VERYV

~ LC L---~/[<-.~[--~)degre
--_-'-----'-_-L-_L-__ angle

0.7 1.0

CLOSE NOT CLOSE NOT SMALL

obsJeft '---_-"~L-_.L.-_--->"--__.,. obsJight ____~) dist

Fig. 4-10 Some Membership Functions of Fuzzy Variables of Reach Position

The first two rules are for the control of the speed. The 3rd and 4th rules steer the

robot towards the correct direction when the heading deviation is not big. The 5th rule

decreases the robot speed sharply when the robot arrives at the goal. The 6th rule also

slows down the robot sharply when the heading deviation is too big, allowing the

robot to tum to the correct direction first. In the 5th rule, a fuzzy hedge very is used to

reduce the degree of the truth of SMALL to intensify the sense of the closeness to a

goal. Its membership function is depicted in Fig. 4-10, together with some other

variables. The state achievement is indicated by the arrival at the goal position.

4.3 Fuzzy Behaviour Fusion

A central problem for an autonomous mobile robot

operating in uncertain and dynamic environment is how

to combine task-oriented activities with reactivity. For

instance, a mobile robot should reliably avoid

unforeseen or moving obstacles during task-oriented

navigation. The previous sections have described the a A
organisation and possible implementations of

Fig. 4-11 An Example of
Behaviour Coordination behaviours individually responsible for reactive and

task-oriented control activities. To examine how we

should co-ordinate these activities, let us see one example presented in Fig. 4-11. The

robot is asked to reach position D from its current position A. The robot is first

69

j h %WB ..

controlled by Reach Position behaviour which assumes there are no obstacles ahead of

the robot. When the robot moves close to the obstacle at the position B, the obstacle

causes Avoid Obstacle behaviour to become active. Now there are two active

behaviours that have conflict over the control output for the robot movement. Reach

Position behaviour tries to steer the robot towards D while Avoid Obstacle behaviour

produces the opposite escaping heading output. Because they have the same activation

strength, this contradiction leads to a non-action or oscillation, called a local minima,

in the robot movement. The robot totally freezes or oscillates endlessly at the vicinity

of the obstacle.

To resolve such contradiction, one method is the use of global path planning

[Arkin87] [Payton90] [Garcia-Alegre93] [Vandorpe94], especially when the obstacles

are complex and sensing can give an accurate picture of this complexity. As global

path-planning is the task at the highest level of a robot control system and not the

focus of this thesis, another method, local combination or co-ordination ofbehaviours

is considered. This method, in one form or another, is widely used in the robot

literature for mixing goal directness and reactivity. In Brook's subsumption

architecture[Brooks89], behaviours are organised hierarchically as layers, with

reactive behaviours at lower layers and goal directed behaviours at higher layers. The

control actions of the robot are produced by co-ordinating mUltiple layers by means of

a suppression mechanism. Higher layers subsume the roles of lower layers when they

wish to take control. This suppression mechanism is realised through hard wiring

between layers. The switching of behaviours is not smooth. The similar scheme is

used in ALFA[Gat91a] in which behaviour switching is realised through "circuit"

channels. Arkin[Arkin90] uses a weighted averaging scheme to combine reactive and

goal-directed behaviours. Each behaviour is a motor schema functioning in a potential

field. A fixed weight is assigned to each behaviour. The vector forces produced by

behaviours are then weighted and combined using a potential field summation to

produce the final control. While it is possible to create a smooth control action, to

select and adjust weight can be difficult. This method can also be problematic when a

decisive control action is required because of its summation nature. Saffiotti proposed

a method which is somehow a combination of Brook's hierarchical switching and

70

Arkin's weighted averaging. This method is called context dependent blending and is

used to fuse fuzzy behaviours[Saffiotti et al 93a]. Each behaviour is prioritised

according to its importance in the navigation activity and is associated with a

desirability function which determines the applicability of the behaviour given the

current context of the environment. The desirability function is created by aT-norm

operation based on the behaviours' activation level and its priority. Higher priority

behaviours can suppress lower priority behaviours by means of desirability functions.

The control action is produced using weighted summation in which the weight is

actually the desirability measure of the behaviour. This approach is very effective in

producing smooth goal-directed control output in the face of a dynanlic and uncertain

environment. However, local minima still exist because of the lack of a dominant

control action which can lead the robot out of such local equilibrium

point[Saffiotti95]. The success of the scheme depends on detailed task planning.

Another approach reported is fuzzy multiplexing [Goodridge94], which uses an

additional fuzzy controller to perform the weight assignment to fuzzy behaviours.

Qualitative rules are used to determine the gains for each behaviour using sensor input

and behaviour state information. The difficulties lie in the derivation ofthe selection

rules under various circumstances. This method is only useful if behaviours are not

mutually incompatible and can be safely blended by a weighted

summation[Goodridge94].

In the following sections, a different behaviour fusion scheme is described to combine

fuzzy behaviours in MARCO's low level control layer. Before proceeding to the

detailed discussion, the organisation ofMARCO's fuzzy behaviours is revisited

briefly. Fuzzy behaviours are organised into reactive and task-oriented behaviours

according to the sphere of influence of environment features. These behaviours use

sensor information from the local sensor model and the long term model and perform

control processes with their fuzzy logic controllers. The output of a fuzzy behaviour

includes the control output for a robot actuator and its state information which can be

accessed by the sequencing layer and behaviour links. In particular, two state variables

are provided to indicate a behaviour's activation level and execution frustration level,

and can be used by behaviour links. The robot survival ability is strengthened by a

71

failure-recovery behaviour. This organisation needs a behaviour fusion scheme which

can facilitate the individual robustness of fuzzy behaviours and also maintain an

effective, smooth transition of behaviour control towards task achievement. Such a

scheme has been developed to fuse MARCO's fuzzy behaviours. The scheme is called

a behaviour selection network and is inspired by Maes's work[Maes90] in artificial

life research.

Maes used a bottom-up mechanism to select behaviours for artificial low level

animals, such as bug, hen, etc. In her method, the selection of a behaviour is based on

the internal motivational states of a creature as well as external circumstances. The

different behaviours of a creature are linked in a network with "predecessor",

"successor" and "conflicter" links. Through these links, behaviours activate and

inhibit each other, respectively increasing and decreasing each other's activation level.

At the same time, the activation energy accumulates in a behaviour that represents the

"best" choice, given the current situation and motivational state of the creature. Once

the activation level of a behaviour reaches a certain threshold, it may be selected, and

its processes start operating. In designing MARCO's behaviour selection network, the

concepts of situational and motivational activation/inhibition and a bottom-up, not

centrally controlled, selection dynamics are adopted. The behaviour selection scheme

is however, realised in a very different way. Maes's method is used in artificial low

level creatures that have no specific goal during their activity. MARCO's selection

scheme is mainly to create task-oriented navigation. Maes assigns a set of integral

numbers as situational and motivational activation levels. MARCO utilises smoothly

changing fuzzy predicates produced during fuzzy control processes instead. In Maes's

method, the activation energy is distributed through predecessor, successor and

conflicter links. MARCO uses behaviour promotion/inhibition links. Another

difference is that no threshold is needed to select a behaviour. The behaviour with the

highest activation level is always selected. As a result, the activation level of a

behaviour changes more naturally and smoothly as the environment and the robot

state change, enabling an effective and smooth change of behaviour control.

72

.,. @# 'W !'

4.3.1 Behaviour PromotionlInhibition Links

Reach Position

inhibition link

)

promotion link

Fig. 4-12 An Example Behaviour Selection Network

Fuzzy behaviours in MARCO low layer are linked into a network through behaviour

links. A behaviour link is a "soft" data structure which distinguishes itself from the

suppression "circuit" used in subsumption and other similar architectures [Brooks89]

[Gat91a][Kaelbling88]. As described in the fuzzy behaviour structure in Section 3.1.3,

each fuzzy behaviour has such an entity to contain its relationships with other fuzzy

behaviours. There are two types of relationships between fuzzy behaviours: promotion

and inhibition, separately represented by promotion and inhibition links. An example

of a network connected with behaviour links is shown in Fig. 4-12. Through a

promotion link, a fuzzy behaviour increases the activation level oflinked fuzzy

behaviours and at the same time decreases its own activation level. The purpose of a

promotion link is to distribute a behaviour's activation energy to other behaviours in

order to satisfy the motivation of the overall robot control system. A behaviour can

also use an inhibition link to decrease the activation level of the linked behaviours in

order to have more chance to control the robot.

4.3.2 Behaviour Activation

The activation level of a fuzzy behaviour in the MARCO control layer, which

determines whether or not it can be selected, consists of two parts: situational

activation and motivational activation/inhibition. The situational activation level

73

depends on a behaviour's current environmental conditions, or the sphere of influence

of environment. Motivational activation/inhibition is the method used to distribute

activation energy through behaviour links.

4.3.2.1 Situational Activation

Each behaviour is associated with a situational activation level which is an actual

behaviour state, activation. This level is continuously changed as the robot's

environment and moving state change. In the example implementation, the value of

the activation level is calculated by taking the maximum fuzzy predicate of the

antecedent parts of all the fuzzy rules of a behaviour. This maximum fuzzy predicate

reflects the highest degree ofthe influence of the environment to the behaviour. For

example, suppose that an obstacle is very close to the left of a robot and the fuzzy

input variable obs _left has the value of 1.0, the full strength of closeness and

obs_right and obsJront has 0.0 and 0.5 respectively. The situational activation level

of Avoid Obstacle behaviour is therefore 1.0. Under normal situations when

motivation activation/inhibition has little influence, the activation energy of a

behaviour is mainly determined by the situational activation level.

4.3.2.2 Motivation ActivationlInhibition

Motivations are defined for the overall robot control system. Fuzzy behaviours

distribute their activation energy through behaviour links to reflect the current

motivation of the robot control system. Three types of motivations have been defined

in the example implementation. They are task completion, safety and aliveness. Task

completion is the motivation for achieving a goal and is used to support task-oriented

behaviours. Safety is the motivation for survival and not crashing into the

environment and is employed to strengthen the robot survival ability. Aliveness is the

motivation to keep the robot alive; the robot should not stop, stall or move very slow.

These motivations are supported through the organisation of different fuzzy

74

behaviours and behaviour selection network. Motivational activation causes the

distribution of one behaviour's activational energy to other linked behaviours when its

execution is frustrated by the current situations in order to safeguard the overall

interests of the current robot control, i.e., motivation. On the other hand, motivational

inhibition helps a behaviour to subdue other behaviours by decreasing their activation

energy. This inhibition also serves the current need of the robot control. At any time,

a behaviour's overall activation energy is determined by three types of activation

energy: situational activation, motivational activation and inhibition. There is a

continual flow of activation energy among behaviours in matching the current

situation and motivation of the robot control. After energy redistribution, the

behaviour with the highest activation energy represents the best one matching the

current robot control requirement. This behaviour is then selected to control the robot.

4.3.3 Behaviour Selection Network and Algorithm

The behaviour selection network consists of all the links among behaviours. In a

MARCO control system, only one task-oriented behaviour is allowed to exist in the

low level control layer with several reactive behaviours. However, all ofthe task­

oriented behaviours have similar links to the reactive behaviours. Fig. 4-13a shows a

complete

Reach Position behaviour
Follow Corridor

Cross Door
 selectionTrack Path

Follow Edge

network for the

example fuzzy

behaviours in

MARCO's low

level control

layer. Fig. 4-13b

~==:@
'-::J

(b)
(a) shows some of

Fig. 4-13 Behaviour Selection Network
(a) a complete network; (b) some possible subnetworks: 	 possible
AO- Avoid Obstacle, KM-Keep Moving,RP-Reach Position,
TP- Track Path, RS - Recover Stall. subnetworks of

75

Ii

behaviour selection.

Note that Avoid Obstacle behaviour and Keep Moving behaviour are always needed

in any combination of behaviours. The two behaviours are bonded together to provide

basic speed and heading control.

The behaviour link which connects the behaviour has a
Link Type

data structure shown in Fig. 4-14. Link type defines the

type of the link, promotion, inhibition or - promotion

factor

- inhibition factor promotion/inhibition. The last one means that both links
-linked

exist between the linked behaviours. Promotion factor

Fig. 4-14 Behaviour Link determines the level ofpromotion with respect to
Structure

promoting the behaviour's current activation level.

Inhibition factor detemlines the opposite in decreasing the recipient behaviour's

activation energy. Linked behaviour is the name ofa linked behaviour. To select a

behaviour, the foHowing information is needed:

a_level - activation level of a behaviour;

a_Ievels - situational activation level;

Clevel - frustration level of execution;

i_valuei - inward inhibition energy, to be decreased from the recipient

behaviour's;

i_valueo - outward inhibition energy, to decrease the recipient behaviour's;

p _ valuei - inward promotion energy, to be increased in the recipient behaviour's;

p_valueo - outward promotion energy, to increase the recipient behaviour's;

i_factor - inhibition factor;

p _factor - promotion factor.

Fig. 4-15 presents the behaviour selection algorithm. Here a more detailed description

of the selection process is given. For every currently active behaviour in a network, its

initial activation level is the same as the behaviour's state value, activation. Its final

activation level is determined by the redistribution of activation energy through the

76

for(i=O; i< CURRENT_BEHAVIOUR_NUMBER; i++)
{

initialiseO;

a _level[i] = a _levels[i];

for(j=O; j<LINKED_BEHAVIOUR_NUMBER; j++)

{

if(LINK_TYPE == PROMOTION)
{

p_valueoO] = ClevelO] * p_factorD];
p_valuej [i] += p_valueoD];
a_IevelO] -= p_valueoO];

}
if(LINK_TYPE == INHIBITION)
{

i_valueo[j] = a_Ievelsm * i_factorD];
i_valuej [i] = MAX(i_valuej [i], i _ valueouD;

}
}

a_Ievel[i] += p_valuej [i] - i_valuej [i];
a_Ievel[i] = MIN(a_Ievel[i], 1.0);

}
selected_behaviour = get_behaviour_withJargest_aJevelO;

Fig. 4-15 Behaviour Selection Algorithm

network. The distributed activation energy may consist of two parts: an increased

portion and a decreased portion. The increased portion, called

inward promotion energy, comes from all promotion-linked behaviours which also

reduce their activation energy by the same amount, outward promotion energy. The

decreased portion, called inward inhibition energy, is produced by selecting the

maximum outward inhibition energy from all inhibition-linked behaviours. The final

activation energy is the sum of situational activation energy and the distributed

portions of energy. This final activation level is clipped at the full strength 1.0. The

behaviour with the highest activation level is then selected. The final control output is

produced by fusing the activation level and fuzzy control output through

multiplication. Because the number of active behaviours is small(maximum of 4) and

the behaviour selection process is also not complex, the algorithm takes very little

time to select a behaviour.

77

Reach Position

Recover

(a) (b)

(c) (d)

Fig. 4-16 Energy Redistribution Process for Robot Control in Fig. 4-11.

(a)(b): behaviour selection at position B;

(c)(d): behaviour selection at position C;

s: situational activation level, f: frustration level, a: activation level.

+: promotion, -: inhibition.

For example, in Fig. 4-11, the robot is controlled by three reactive behaviours and

one task-oriented behaviour. Suppose the promotion and inhibition levels are set as

15% and 20%, respectively. At position B, the situational activation levels are 1.0,

1.0,0.8, and 0.0 for Avoid Obstacle, Reach Position, Keep Moving and Recover Stall

respectively. At position C, they becomes 0.8, 1.0, 1.0 and 0.0. Fig. 4-16 gives the

energy redistribution process in the behaviour selection network. Fig. 4-16(a) shows

the situational activation level and their distributed energy at position B. The final

activation energy is indicated in Fig. 4-16(b). As a result, Avoid Obstacle behaviour is

selected to control the robot at position B, while Reach Position behaviour is selected

at position C, which is shown in Fig. 4-16(c) (d). At position B, the robot is close to

78

the obstacle. It must move away to avoid collision and temporarily abandon the

reaching position task. At position C, the robot moves out of the danger of collision

and the main task is resumed. The behaviour selection network ensures that the

correct behaviours take control of the robot at all times in order to complete a task.

4.4 Summary

In completing a navigation task, a mobile robot is involved in two types of activities:

basic surviving control activity in face ofdynamic and uncertain environments and

purposeful control activity leading to the task accomplishment. In the MARCO

control layer, the capabilities of carrying out these control activities are constructed

into fuzzy reactive and task-oriented behaviours with the following intuitions.

Reactive behaviours constitute the basic survival abilities for the robot and provide the

grounding for the success oftask-oriented behaviours. Task-oriented behaviours form

individual task performing bodies and can be sequenced to complete an ultimate task

goal. These fuzzy behaviours are then organised, based on the sphere of influence of

environment features. Every behaviour is associated with one type of environment

feature and becomes executable when such a feature is available in MARCO's local

sensor model or long term model. Such an organisation supports the robot's direct

interaction with the environments. The efficiency of the organisation can be further

improved by allowing behaviours to access different abstract information from

different sensor space, either for fast or more abstracted processing. With feature­

based organisation, indoor navigation control can also be easily implemented by the

introduction of fuzzy behaviours associated with rich types of indoor environment

features. Several such example fuzzy behaviours are implemented and described to

give an indication of how fuzzy logic-based behaviours can be organised for possible

indoor tasks using the above mentioned approach.

While allowing multiple behaviours to be active at the same time, conflicting control

actions from behaviours must be resolved through behaviour fusion or selection. A

behaviour selection network has been developed for this purpose. Behaviour

79

promotion/inhibition links are designed to introduce situational activation and

motivational promotion/inhibition among behaviours to redistribute their activation

energy. This selection dynamics operates from the bottom-up and is not centrally

controlled. At any time, the most favourable behaviour is selected for the robot control

with respect to the current environment conditions and the motivations of the control

system. The final control output is then produced by fusing the accumulated energy

with the behaviour output through multiplication. Because of the use of fuzzy

predicates created during fuzzy control processes, the activation energy flows

continuously and smoothly among the behaviours. This results in the effective and

smooth transition of the robot control among the behaviours in order to accomplish

tasks.

80

Chapter 5 Learning of Optimal Mobile Robot Control Behaviours

5.1 Introduction

Navigation through a dynamic and uncertain environment to a specified destination

without hitting objects is a complex task. The robot control system must be robust

enough to cope with various possible environmental conditions. In developing such a

robust system, a reactive control approach has proved to be superior to a traditional

approach. A fuzzy behaviour based reactive control system is more capable than the

systems based on the other methods[Saffiotti et al 93a] [Garcia-Alegre93]

[Goodridge94]. The main advantages of such systems is that expert knowledge and

human experiences can be easily translated into fuzzy control rules offuzzy

behaviours. A fuzzy logic controller is also capable ofaccommodating approximate,

imperfect and noisy information presented in real world environments and producing a

smooth control output [Saffiotti et al 93a] [Vandorpe94][Garcia-Alegre93].

Developing a non-fuzzy logic based reactive control system requires the selection and

structuring of the control parameters that underlie the behaviours of the robot

[Pearce92][Arkin87]. Similarly, a fuzzy behaviour-based reactive system needs the

selection and tuning parameters which characterise the control rules for a fuzzy

behaviour, and also the weights which affect fuzzy behaviour selection in the behaviour

selection network. A fuzzy logic controller of a fuzzy behaviour consists of several

fuzzy control rules, each ofwhich may contain several fuzzy variables. The

performance of the fuzzy logic controller depends on the appropriate design of all the

membership functions of all the fuzzy variables. One set ofmembership functions may

be effective or optimal for some control rules but may have adverse effects on the

other control rules. The selection or adjustment of these membership functions have to

be carried out to improve the overall performance ofall the control rules. Generally,

the selection and tuning ofmembership functions has been based on knowledge derived

from imprecise heuristic knowledge of operators or control

process[Sugeno85][Lee90]. Because this is mostly a manual process, it is difficult to

obtain an optimal set of fuzzy membership functions for a fuzzy logic controller

[Cooper93]. A lot of effort is needed to configure them, usually by trial and error

81

-

methods, and often the results are still far from optimum. The robustness of individual

fuzzy behaviours developed in such approach is limited. Apart from this, obtaining an

optimal behaviour selection strategy is also a difficult task. A mobile robot can face

various environment conditions during navigation. The behaviour selection mechanism

should be able to produce effective and smooth control transition between fuzzy

behaviours under all these conditions. Manually chosen behaviour selection parameters

may work well under some environments. However, it cannot guarantee the

effectiveness for a whole range of environment types. This will, therefore, affect the

robustness of the robot control system. Facing the above difficulties, it is necessary to

find a systematic approach for the design of optimal fuzzy behaviours and the

behaviour selection mechanism. Chapter 5 describes such an approach for building

robust mobile robot control behaviours. In particular, the approach, based on genetic

algorithms, is used to develop a robust low level control layer of MARCO architecture.

In the remainder of this Chapter, the genetic algorithm learning technology is reviewed.

The learning methodology based on genetic algorithms is then described and simulation

experiments in learning fuzzy behaviours and behaviour selection network are

discussed.

5.2 Genetic Algorithms

A genetic algorithm is a search technique modelled after natural evolution, where

survival of the fittest is the principle. Genetic algorithms were first presented by

Holland as a component of a larger framework caned a classifier system[Holland75].

The genetic algorithm was used as a mechanism to evolve new elements which

contribute most to improve the survival of the system in a non-stationary environment.

In 1975, Dejong separated genetic algorithms from the classifier system and treated it

as a function optimisation technique[Goldberg89]. From this study, it appeared that

genetic algorithms were better alternatives to conventional optimisation methods. This

was demonstrated by Goldberg[Goldberg89] that genetic algorithms could be used as a

standalone multi-dimensional optimisation technique.

82

5.2.1 BasRc Process

A genetic algorithm(GA) is a population-based search and test method. Multiple

solutions are generated and then evaluated in parallel. Solutions to be evaluated in the

next generation are constructed by taking the good solutions in the current population

and mixing them. The basic process is outlined as follows:

(1) Generate initial population of solutions. Initially, all members of the population

are randomly initialised;

(2) Evaluate members of population and assign each a fitness value. The fitness value

will be used to guide reproduction process;

(3) Generate the next generation. Use genetic operators to select and construct new

solutions from the existing population of solutions;

(4) Go to step 2 until some stopping criteria is met. The stopping criteria could be

one when the best solution reaches a given performance measurement or the process

has passed a given number ofgenerations.

Unlike some conventional search techniques, a GA considers a space of search points

for an optimal solution. Therefore, the chance of converging to local optima is

reduced[Goldberg89]. Furthermore, a GA simply requires that a solution can be

represented as a string of element, not a complicated function. This makes GAs

attractive for various applications. A simple and interesting example has been

presented in Dougal(Demonstration Of Using Genetic Algorithm Learning)

[Parker93], in which a genetic algorithm was used to search for an optimal round trip

route for students planning inter -railing holidays to a dozen European cities.

5.2.2 Genetic Representation and Operators

83

----- -----

Crossover----- -~) ----­
Mutate[@t@ ____

-~) ----­
Figure 5-1 Genetic Operators

Genetic algorithms apply their operators to a representation of the search space points.

In a traditional GA, the representation is a position-dependent bit-string, where each

bit is a "gene" in the string "chromosome"[Goldberg89]. The choice of bit strings

allows chromosomes to be conveniently cut into substrings, enabling the exchange of

information between individuals. Typically, each generation ofthe GA begins by

decoding the bit-string into search space points and using the search function to

evaluate the fitness of the individual. Once the population has been evaluated, a set of

genetic operators is applied. The three most commonly used are reproduction,

crossover and mutation. These operators are expressed graphically in Fig. 5-1. Note

that each of the rectangles in the figure represents a single bit of string. In practice,

most representation use much longer strings.

The reproduction operator selects the fittest individuals and copies them exactly,

replacing less-fit individuals so the population size remains constant. This increases the

ratio ofgood individuals to the number of poorly-performing ones. The selection

process uses a weighted roulette wheel, or biased selection; the best individuals are

preferred, but not guaranteed, to be reproduced.

The crossover operator allows two individuals to exchange information by swapping

some part of their representation. This creates a pair ofnew individuals that mayor

may not perform better than the parents. For example, if the string [0000000] was

crossed with string [1111111], the result might be [0001111] and [1110000]. The

84

choice of which individuals to cross and where to cut the chromosome is random. This

random search component gives GAs much of their power[Goldberg89].

The mutation operator is mainly used to prevent the loss of information that occurs

when a population cannot improve because all of the individuals in the population have

the same value for a given gene. Since no amount of selection or exchange of the same

value will change it, mutation allows lost information to be recovered, and further,

maintains variety during conv~rgence.

A GA can be thought as a search method that exploits points in the search space that

have already been reached and explores other points that are yet to be tried. The

reproduction operator exploits the knowledge present in the population by increasing

the numbers offitter individuals. The crossover operator explores the search space by

producing new points to evaluate. This simultaneous exploration and exploitation

moves the algorithm toward populations containin~ the fittest substrings in the fittest

combinations. The GA eventually settles on a set of optimal or multiple sets of near­

optimal individuals. The convergence time and solution quality depend on the nature of

the problem and the parameters that control the GA.

5.3 Robot Learning

There are several factors to be considered in designing a robot navigation system that

learns. To ensure adequate generalisation ofa given environment, many trial runs are

required during training. Due to time and costs for both robot and instructor, it is

impractical to have a human instruct the robot during the learning. This problem can be

more complicated when training the robot for multiple environments. Therefore,

unsupervised learning is required. Further, because a goal is reached or an obstacle hit

through the combination of many simple actions, it is impossible or very difficult to

design a mathematical model to evaluate the robot's performance and therefore

difficult to assign credit and blame in navigation. The learning system must evaluate the

robot's navigation based on easily measurable characteristics of the system. For

85

-

example, the travel time of a robot from start to goal can be easily and objectively

measured and used by the learning system.

Although learning is an important feature of intelligent and autonomous robot systems,

work beyond the conceptual stage is limited, especially for fuzzy behaviour-based

reactive control system. Fikes, Hart, and Nilsson extended the STRIPS robot

navigation system to anow it to learn from its failures[Fikes, et al 72]. Barto,

Anderson, and Sutton attempted to solve non-linear robot navigation tasks using a

two-layer neural network[Barto et al 82]. This simulation allowed the robot to learn an

association between a landmark and the direction of travel that would lead it to the

goal, which would provide positive reinforcement. Previous researchers have also

applied genetic algorithms to robot navigation. Dorigo and Schnepf used this method

to train simulated robots to avoid obstacles and follow moving targets[Dorig091]. The

genetic algorithm was used to determine when the robot should switch from one

behaviour to another, as only one behaviour is active at a time. Thus the learning is at a

fairly high and coarse level. The robot could not learn how to optimise their individual

behaviours. Grefenstette, Ramsey, and Schultz's SAMUEL system takes a different

approach; rather than optimise individual behaviours which are constructed using

"decision rules", a genetic algorithm is used at the level of tactical plans comprising an

entire set of decision rules for a given task[Grefenstette et al 90]. A GA has also been

used in the optimisation of a mobile robot reactive control system by [Pearce92]. In the

schema-based reactive control system, a set of parameters controlling motor-schemas

are optimised to produce the different types of the robots for the purpose of safety,

speed and directness. Training happens at the level of the combination of schemas, not

for individual schemas. This is determined by the architecture of the reactive control

system. The control output is produced by synthesising the results from all of the

schemas at any time. Intended for learning a fuzzy behaviour-based reactive control

system, a learning methodology different from the above methods is developed.

The learning methodology includes two parts oflearning processes. It first focuses on

the optimisation of individual components in the robot control system and then the

overall control system. The learning methodology consists of several principles.

86

Individual behaviours are learned for its own functionality. Learning processes are

generalised to obtain real useful results. Learning follows a simple-to-complex

multistage course to enhance better exploration of solutions. Genetic algorithms are

designed to facilitate efficient exploitation and exploration in the simple-to-complex

multistage learning processes. Such a learning method can be more effective in building

a real world mobile robot because it allows a good foundation to be built first and then

the higher level of the control system through a general learning process. The

methodology has been used to learn membership functions of the fuzzy behaviours and

also the behaviour selection network for the MARCO's low level control layer in

simulation. As a result, near-optimal fuzzy behaviours and a behaviour selection

network have been automatically learnt. The results show it is possible to

systematically learn a fuzzy behaviour-based reactive control system using the above

learning methodology, therefore, greatly reduce the difficulties and efforts involved in

the development of such systems.

Although GAs have been used in learning robot control systems, the use of GAs to

automatically learn fuzzy behaviours and a behaviour selection network has not been

reported in the literature. The developed methodology is mainly intended for the

learning of MARCO's low level control layer. However, it is believed that such

learning principles can also be applied to other systems because of the nature oftheir

generalisation capabilities. The following sections introduce the learning of fuzzy

behaviours and the behaviour selection network ofMAReD's low level control layer

using the learning methodology. The characteristics of the learning methodology will

be exposed through the in-depth description of the learning processes.

5.4 Learning of Fuzzy Behaviours

5.4.1 Structure of fuzzy behaviour to be learnt

Let us first briefly review the structure of a fuzzy behaviour. A fuzzy behaviour in

MARCO's low level control layer contains a fuzzy logic controller which is

87

ill eM "

implemented with a set offuzzy control rules. A triangular or half triangular forms of

fuzzy membership functions are used in the antecedent part of a fuzzy rule. Fuzzy

singleton representation is used in the output part of a fuzzy control rule. For example,

Avoid Obstacle behaviour can have four rules to build up its function as follows:

if obs _left is CLOSE and

obsJight is not CLOSE then right_heading;

if obsJight is CLOSE and

obs _left is not CLOSE then left_heading;

ifobsJront is CLOSE then speed_decrease;

ifobsJront is CLOSE and

obsJight is as CLOSE as obs _left then left_heading.

Fig. 5-2 presents the membership functions of the fuzzy variables used in the rules.

Note that, fuzzy set CLOSE for obs_left and obsJight is different from CLOSE for

obsfiont. Using a triangular and half triangular forms, every membership function of

a fuzzy variable can be represented by the base values of its two extremes. For the rule,

if	obsJight is CLOSE and

obs _left is not CLOSE then left_heading,

the low and high end values of the membership function of fuzzy variables, obs_left

and obsJight are min_dist and max _dist. To select or tune fuzzy rules means the

manual adjustment of the base values for all the fuzzy variables. It is a difficult task to

tune fuzzy control rules one by one. Particularly, the range of sensor data and possible

outcomes of actions taken by the robot can be unpredictable. Tuning one rule may

CLOSE NOT CLOSE

min_dist max_dist

I -X­obsJeft 	 obsJront ~
obsJight

Fig. 5-2 Membership Functions ofFuzzy Variables for Avoid Obstacle

88

p j AA

affect other rules. A fuzzy behaviour tuned in one environment may not work properly

when the robot is placed in a different new environment. A set of fuzzy rules have to

be designed, tested and redesigned many times. The use of GAs as an unsupervised

learning method can greatly reduce the difficulties and efforts involved. To translate a

fuzzy behaviour into genetic code, all the base values which characterise the

membership functions of all fuzzy variables in the behaviour can be used. For example,

fuzzy variable obs _left can be represented by the two ends of its membership functions,

called side _low, side_high, into a pair of "gene"s in a genetic "chromosome". By

I side low I side high I front low I front_high I tum I speed I
Fig. 5-3 Genetic Chromosome of Avoid Obstacle Behaviour

encoding all the fuzzy variables of a fuzzy behaviour into genes, the result is a

complete genetic chromosome for Avoid Obstacle behaviour as shown in Fig. 5-3.

In this chromosome, genes side_low and side_high stand for obs_left and obsJight,

genes front_low and front_high are for obsJront, turn represents the singleton

values left_heading and right _heading, and speed controls the singleton value

decrease_speed. The tuning ofmembership functions of a fuzzy behaviour, therefore,

can be replaced by the search for an optimal set ofgenes through genetic algorithms.

5.4.2 Fuzzy Behaviour Learning Method

Since the performance of a fuzzy behaviour is determined by the values of membership

functions of its fuzzy variables, genetic algorithms can be used to optimise these

parameters using the navigational performance of the robot as a fitness metric. Fuzzy

behaviour learning processes are designed using the developed learning methodology.

In order to provide a systematic way of designing membership functions, the learning

requires that fuzzy behaviours are allieamt from scratch. The learning does not rely on

premeditated data. The only constraint is that every element, or gene has low and high

limit values which cannot be exceeded. The range ofthe two limit values is wide

enough to ensure that the learning is from almost zero knowledge. Individual

behaviour is also learnt for its own functionality. Every :fuzzy behaviour performs a

89

,f m

'"'"
¥J\

different role in the low level controlling activities. To learn the behaviour is actually to

build up its functionality for the role. To do this, the robot is placed in different types

of environments for learning different roles. This is because MARCO's fuzzy

behaviours are implemented based on the sphere of influence of environment features.

Fuzzy behaviours are activated when their associated environment features are

provided by the robot control system. To learn these feature-invoked functionalities,

different and specific environment configurations must be presented for learning

different behaviours. For example, Avoid Obstacle behaviour should be learnt in

various types of environments scattered with obstacles. Follow Edge behaviour should

be given different shapes of wall edges. Various goal configurations should be available

for the learning of Reach Position behaviour. During the learning of one behaviour,

other behaviours should be disabled and the robot should be solely controlled by the

learning behaviourt .

It is impractical to learn the fuzzy behaviours of the robot in real environments from

scratch because the robot can easily be damaged. The cost ofthe resources is also

much too great for such learning to be realised. Simulation is, instead, a very efficient

approach to do the learning. Simulation allows the learning of the control system to

occur by moving the robot thousands or millions of times without the presence of

persons and the risk ofdamage. By appropriate design ofthe simulator and the

learning system, the final learnt results can then be used as a base for further learning in

the real robot. A simulated learning system has been developed for experiments in the

learning of fuzzy behaviours and the behaviour selection network.

5.4.3 A Multistage Learning Course

For each behaviour, the learning follows a simple-to-complex multistage course for a

complete learning process. Behaviours are learnt consecutively through three types of

environments from simple to difficult. The learning progresses from a simple stage, to

t There is an exceptional case in this experiment. The learning of Avoid Obstacle behaviour needs
Keep Moving to provide speed support because obstacle avoidance can only reduce and not increase
speed. This is discussed later.

90

an intermediate and a final stage. These stages are defined by the degrees of difficulties

of the environment configurations with respect to the behaviour's functionality. For

some behaviours, they are determined by the varying clutter degrees of learning

environments, where the clutter is defined by the percentage of the learning

environment occupied by obstacles. For other behaviours, they are defined by the

complexity of the environment features. Furthermore, the learning environments are

randomised to provide a variety ofconfigurations for a behaviour to interact with.

Noise factors are also introduced into sensor data and the robot movement. The

purpose of this randomised simple-to-complex learning process is to provide a gradual

and general learning method to search for optimal solutions which can be applied in

general circumstances. Three stages are currently selected in this learning process.

They represent three typical types of simple, intermediate and complex environments

with regard to a behaviour's function. At the simple stage, the learning environments

provide sparse spaces or simple features for an initial population to begin with. After

initial suitable solutions emerges, the population enters more demanding learning

processes for better solutions. The learning in simple environments has many chances

to find parameters that give a fast and safe behaviour. These good solutions in sparse

or simple world are also more likely to be effective in denser or more difficult

environments. At every stage, learning environments vary constantly but with the same

degree of complexity. This varying property is especially important to produce general

results because it presents a large number of situations to the learning process and

helps to reduce the chances oflocal optimas. In general, a complex, denser and

changing environment often requires more times for a converged result[Ram94]. The

simple-to-complex multistage course provides a more efficient way to search better

solutions[Qiu97 a] [Qiu97b].

5.4.4 Fuzzy Behaviour Learning Environments

Different types of learning environments are provided for the learning of different fuzzy

behaviours. In this experiment, four fuzzy behaviours are used to test the learning

methodology. These behaviours are Avoid Obstacle, Reach Position, Follow Edge and

91

Track Path. In the learning of Avoid Obstacle behaviour, Keep Moving behaviour is

needed to provide speed support because Avoid Obstacle behaviour can only reduce

speed and cannot increase speed. Keep Moving behaviour is easy to implement and

therefore learning this behaviour is not necessary. However, because the learning of

Avoid Obstacle involves the interaction of two behaviours, their behaviour links also

need to go through the learning process. This is done through the encoding of

o +d II~D D + +
D LJ~J r=:=db +
(a) (b) (c) (d)

Fig. 5-4 Patterns of Learning Environments
(a) scattered obstacles in Avoid Obstacle learning environment;
(b) edge features for Follow Edge behaviours;
(c) paths for Track Path behaviour;
(d) goal configurations for Reach Position behaviours.

behaviour link factors into Avoid Obstacle chromosome. This is, in fact, a part of the

behaviour selection network learning which will be described later. Fig. 5-4 presents

example patterns of learning environments used in the learning of these fuzzy

behaviours.

Fig. 5-5 shows some typical simulated worlds in three different stages, respectively, for

the learning of Avoid Obstacle behaviour.

Note that in each row, 3 simulated worlds have same degree ofcomplexity but

different obstacle locations. In each column, while still randomly created, the

complexity ofthe worlds is increased with 10% clutter differences. For the other

behaviours, their example learning environments are shown in Fig. 5-6.

The generalisation of the learning environments is of great importance to the success of

a leaming process. The feature based configuration of the learning worlds provides the

92

"*, '!!!!!1M N'

necessary environment conditions for the individual behaviour's functionality to be

learnt.

'.'~ , <>...." , ,"
... W,' ,"'"',_....... _ ,,,. "_ L· ,........ _ h"

LJ

(a)
i­
I

_.--1-.­

(b)

o
o

, " .: m

, ;,. ~:- '';..:.,-" - ,.." ."~
",. ...,"- '-- -- "'~

, ,
'---'

, I II ~ L-
i

J~LJci(c) " LJ 0 , I

~~ d~
c'-;-;'.-.__._--­

:;'ri ,,-,,-,--,-

Fig. 5-5 Some Typical Simulated Worlds for Avoid Obstacle Behaviour
(a) 10% clutter worlds in stage l~
(b) 20% clutter worlds in stage 2;
(c) 30% clutter worlds in stage 3.

93

p 	 pM

,.'" _,oj

!' .~ - -, ..,

I

(a)

Ii L. ___...__...__ - -"-"_.,"------ ­
1::.....-l-'_--=. .. __.._~_-_~___..-.•

QifO!.• , , = . '.,. '~,,,,,..... "- "'."

I +
(b) 	

+ .j, ! + (]+i,f> 	

I
+i +

r:;--r- ~.:-:::.~:~ ::.--:,-:_. ~,-,-:.:::,~=::-:-::-~-:-- ~-"

[II

II(c)

0	 1.)
11

e:
, 	

11

Fig. 5-6 Some example worlds for other behaviours in 3 stages:
(a) Follow Edge behaviour learning worlds;
(b) Reach Position behaviour learning worlds;
(c) Track Path behaviour learning worlds.

5.4.5 Behaviour Genetic Chromosomes

The search for optimal fuzzy behaviours is implemented via genetic algorithms. A

population representing each type of fuzzy behaviour is maintained and manipulated

through genetic operations. Individual members of the population are represented as

strings of floating point values. This is different from traditional GA coding using a

binary string or character string[Goldberg89]. Because the number of the fuzzy control

rules and the number of fuzzy variables for a behaviour is relatively small compared to

other GA applications, a floating point coding is more direct and efficient for the

reproduction processing. For each behaviour, the low and high end values ofall

membership functions ofall fuzzy variables are taken as position-dependent "gene"s

94

w UH.a #&&

and encoded into a "chromosome" representing a behaviour. Fig. 5-7 are the structures

of four fuzzy behaviour chromosomes. Note that Follow Edge behaviour and

(a) Avoid Obstacle Behaviour

(b) Follow Edge behaviour

(c) Track Path behaviour

(d) Reach Position behaviour

Fig. 5-7 Structures of Fuzzy Behaviour Chromosomes

Track Path behaviour chromosome have very similar structures. The only difference is

that Track Path behaviour is a task-oriented behaviour and needs to measure the

completion of the "follow path" task, while Follow Edge behaviour just senses and

follows the edge at its vicinity acting like a reactive behaviour. They have the same set

of fuzzy control rules despite their different sensor inputs.

A member of the population can easily lend itself to the task of controlling the robot

after its genes are extracted and used as parameters for the membership functions of a

behaviour.

5.4.6 Design of Genetic Operators

A new population during the learning is produced by the combination ofgenetic

reproduction operations. This learning algorithm uses five genetic operators. They are

random initialisation, a crossover operator, a mutation operator, an average operator,

and a reproduction operator. The design ofthe operators are mostly based on the

existing technologies[Goldberg89][Davis91][Janikow91][Whitley89], and have been

modified to meet the requirement of the learning methodology. The design ofgenetic

95

algorithms are equally applicable to the learning of the behaviour selection network.

The reason for the inclusion of the detailed design of the genetic algorithm in this

section is that this learning methodology was first used for learning fuzzy behaviours.

Three main operators, crossover, mutation and average are each assigned with a

probability level which determines their chances of being selected for the current

reproduction.

5.4.6.1 Random Initialisation

This operator produces an initial population from which the genetic evolution process

starts. One of the principles of the learning algorithm is that the fuzzy behaviours are

learnt from scratch. In the initialisation, the value of a gene of a chromosome is

randomly created between its lowest and highest limit values. The limit values are

chosen based on the role of the gene in the chromosome and possible meaningful

extremes. For instance, the genes angle_low and angle_high for Follow Edge

chromosome in Fig. 5-7 both have 0 as the lowest and 2n as the highest limit ofthe

value. The genes obs_low and obs_high both have the range from 0 to 2m. These

wide ranges ensure the learning commences from almost zero knowledge. The random

initialisation operator creates the initial population by producing the genes within these

wide ranges. The initial population is, therefore, a less constrained random result. This

operator can also be used in local optimisation where a small range of the possible

variation to provided data is set as the limits.

5.4.6.2 Crossover

A crossover operator is used to bring in new members ofpopulations. In this learning

algorithm, an unifonn crossover operator is designed for the purpose. The genes of

two parents may be exchanged at the positions where they differ, under the control of

an exchange probability. In a bit string representation, a two-point crossover is often

used. After two random positions in a chromosome are selected, the gene between two

96

points are exchanged completely[Goldberg89][Janikow91]. In a floating point

representation, such exchanges often have huge impacts on a chromosome. A variation

of this form of the operation have been used to avoid this problem [Pearce92]

[Davis91]. In this design, instead of the complete exchange between points, exchanges

take place at positions where the genes differ and a probability test is satisfied. The

exchange probability is selected at an appropriate level which would not have huge

impacts on chromosomes while still allowing sufficient exchanges to enable wide

exploration. For example, to crossover two chromosomes

10.500000,0.300000,0.700000, 0.4000001 and 10.300000,0.800000,0.700000, 0.100000 1

using the method, 0.2 is selected as the exchange level. The genes at the three

positions are exchangeable. Suppose that the randomly created exchange probabilities

are 0.1, 0.3 and 0.8 respectively for the three positions. Because 0.1 is small than the

level 0.2, the pair ofthe genes at the first position are exchanged while the genes at

the two other positions remain unchanged. The results of the operation are two new

chromosomes:

10.300000,0.300000,0.700000, 0.400000 and 10.500000,0.800000,0.700000, 0.100000 I

5.4.6.3 Mutation

The design of the mutation operator has two purposes in this learning algorithm. First,

the mutation operator produces a new member for the next population by operating on

a selected parent. Second, the operator is designed to help support the simple-to­

complex multistage learning principle. Learning environments change from simple to

difficult as the learning progresses. Initial wide and deep exploration can be more

effective in simple environments and a local search can be more effective with difficult

learning environments. Some good solutions can be learnt from the simple

environments but cannot be obtained from difficult environments and vice-versa. This

has been observed by other researchers[Pearce92] and also in this experiment. Because

the learning is started from almost zero knowledge, there is not much benefit in finely

tuning a gene of a chromosome at the early stage ofpopUlations, which will consist

largely of rough forms of solutions. Instead, the whole range of search, from shallow

97

to deep, should be applied to the genes of chromosomes to have a deep "scrambling"

for better ones to emerge in simple environments. As the population grows and better

solutions surface, this search is gradually localised by finely tuning the genes of a

chromosome in difficult environments for even better solutions. To support such a

search method, an adaptive unifonn mutation operator has been designed. The

mutation is applied to the genes of a chromosome only when a probabilistic rule

permits. The probability control level is also appropriately selected. The effects of the

mutation operators on a gene are determined by two parts. One is a random variation

from the current gene value within the gene value limits. The other part controls the

level of this variation applied to the gene and changes adaptively as the generations

progress. The formula of the mutation is adopted from Michalewicz[Michalewicz92]

and represented as follows:

old~ene + 8(t, VB - old ~ene); if a random boolean test is false
{new~ene=

old~ene + 8(t, old~ene - LB); if a random boolean test is true

(1)
where,

8(t, a) = a*(1- ~l- tJTY), returns a value in the range [0, a];

p - random probability value [0, 1];

T - the maximum generation;

t - current generation;

r - exponent controlling the speed of probability distribution change.

DB, LB - gene's upper and lower boundary values.

5.4.6.4 Average Operator

An average operator is also used, operating on two parents in order to obtain more

ways of exploration for better children, while a close link to parents is still maintained.

5.4.6.5 Reproduction Operator

98

I
.....

In reproduction, parents are selected randomly but with a bias towards the fittest

individuals. The best individuals are more likely, but not guaranteed, to be selected for

reproduction. Newly produced members compete with the old population and the

weakest individuals are removed by a razor cut method in order to keep the new

population size constant.

5.4.7 Evaluation Functions

How a solution is evaluated often determines the success of a genetic algorithm. In

learning mobile robot control behaviours, it is difficult to find a mathematical model to

evaluate the performance of the mobile robot reactive control system because of the

lack of the precise predictions in the robot movement, environment uncertainty and

sensor noises. Extensive research for such an evalution function diminishes the

advantage of using genetic algorithms. Instead, some directly measurable performance

indexes can be used to evaluate the fitness of a solution. In this experiment, time,

distance, range and collision measurement are chosen as the indexes because they can

be readily retrieved. The learning of each behaviour is evaluated separately from the

others because the functionalities to be learnt are different. For example, Avoid

Obstacle behaviour is required to be able to control the robot to avoid collisions with

the environments, to move the robot fast and to move the robot close to the objects in

the various environments. With these requirements, the behaviour is checked for the

time steps taken by the robot, the collision of the robot with the environment and the

minimum range of the robot to the environment after the robot travels a certain

distance. Time steps are also used in measuring the collision penalty. The longer the

robot has survived before a collision happens, the less penalty it receives. A squared

root time step function is used in order to limit the effect of the time steps. These

observable data sets are used to form the following evaluation function:

eval_value = time_weight * time_steps + distance_weight*distance +

range_weight*minimum_range + collision_weight * collision! time_steps~; (2)

99

s

The raw evaluation value is directly used to evaluate the performance of a behaviour.

The fittest individual has the minimum evaluation value. Similarly, the evaluation

functions for Follow Edge, Track Path and Reach Position behaviours are given as (3)

(4) (5):

eval_value = time_weight * time_steps + range_weight*sum_oCminimumJange +

collision_weight * collision! time _ steps'2 ; (3)

eval_ value = time_weight * time_steps + distance _ weight*distance +

angle_weight*sum_of_angle_change; (4)

eval_value = time_weight * time_steps + distance_weight*distance +

goal_weight*goaIJeft + achieve_weight * sum_oCminimum_distance_to~oals; (5)

With these evaluation criteria, Follow Edge behaviour is learnt in order to control the

robot to follow a wall edge fast, smoothly, closely and without collision. Track Path

behaviour is learnt in order to quickly move the robot into a designated path and

follow it accurately, fast, smoothly to the end. Reach Position behaviour is learnt in

order to move the robot fast, directly and precisely to reach goal positions.

There are three stages in a complete learning process. When the population progresses

from one learning stage to the next more difficult stage, its members are first re­

evaluated in the new environment and then start the new stage of learning. This

process is necessary to ensure all members of a population are evaluated in the same

new environment with an equal opportunity to start the new competition. Thus, a

smooth stage transition is completed in the learning process.

5.4.8 Control Parameters and Learning Algorithm

The implementation of a genetic algorithm requires the specification of a number of

parameters that govern the effectiveness of the algorithm, such as the probabilities of

100

--~
~.I'is

crossover, mutation and reproduction. The choice ofthese parameters is heuristic, and

is based on guidelines[Goldberg89] [Davis9 1][Janikow91] and has been empirically

studied in this experiment. These guidelines include maintaining a diverse population to

prevent premature convergence and a balance between exploration and exploitation. In

addition, the simulation design factors are also considered, such as the speed ofthe

simulated robot, the time needed to complete a learning process and the exploitation of

the learning environments to support the exploration of the population.

F or the uniform crossover operator, a too low exchange probability can prevent a wide

exploration. A too high one can exert too much impacts on chromosomes. A value of

0.2 was found to be the appropriate level. There are two parameters to control the

uniform mutation operator. One is the probability of mutation, the other is the

exponent to determine the speed of the adaptation. For the probability, a too high

value reduces the algorithm to a random walk, while a too low value defeats the

purpose of the operator. A value of 0.2 was selected as an optimal level. The exponent

determines the speed of the adaptation as the generation progresses. A value of 3.0

was chosen as the appropriate exponent after trials. The selection probability of

crossover, mutation and average operators were 0.2,0.2, and 0.1 respectively and

were not changed in the learning process. After reproduction, a population of 50

members was maintained. The new population is then explored with the uniform

mutation operator, average operator and exploited with the uniform crossover

operator. These specially designed operators help to maintain a diverse and yet

converged search.

A rank-based selection was used to select parents with a 1.5 bias towards the fittest

individuals in the population. 5 new members are produced in every generation and

their ranking is determined with 50 members of the current population. Afterwards, the

weakest 5 members are removed to form the new population and keep the population

constant. The number of the generation for the genetic algorithm was set to 1000 to

allow adequate time for the multistage learning. The first stage ranges from 0 to the

299th generation. The second stage is from the 300th to the 599th and the final stage

starts from the 600th and ends at the generation 1000.

101

eo M.

The high level structure of the learning algorithm is presented in Fig. 5-8.

Randomizejnitialyopulation();
for(i=O; i<GENERATION; I++)
{

for(j=O; j< NUM_OFFSPRING; j++)
{

createJeaming_environment((type _ oCstage);

selectyarent_forJeproduction();

select_operation:

CROSSOVER, MUTATION, AVERAGE.

while(! end _ oCa _ training_circle)
moveJobot();

getyerforrnancejndexesO;

evaluate _ fitnessO;

reproduction()~

}
}

Fig. 5-8 High Level Structure of the Learning Algorithm

5.4.9 Simulation Results Analysis

The learning of four example fuzzy behaviours were carried out in simulation and the

results were recorded for analysis. The effectiveness of the learning algorithm was

checked from several aspects including the variations of fuzzy membership functions,

genetic algorithm convergence and visualisation of physical movement.

5.4.9.1 Learnt Membership Functions

102

Table 5-1 The first 5 members of the initial population at stage 1 for Follow Edge Behaviour

angeJow angleJlg, absJow obs.hi~ nearJow nearj-rig, align low align big, widlfUow widtl hig,

0.111983 1.0959 430.917736 685.433138 144868537 550.708239 0.22263 1.5:l7288 252.2124 133.9624

0.742808 0.214144 216.451728 861.447839 167.5:l1085 560.670737 0.192419 0.404823 434.4416 101.6808

0.153649 1.261797 301.651998 383.932265 152.174064 830.036857 0.099227 0365512 157.4104 356.4492

0.413723 0.370342 250.862662 1183.979189 94.092752 595.493343 0.419816 1125918 268.5932 136.092
0.784763 0.43788 369.724193 1642.348454 134.317972 499.257881 0.323119 1.247509 326.8936 2. 8628

Table 5-2 The first 5 members of the initial population at stage 2 for Follow Edge Behaviour

angeJow angIe.bi~ obsJow abs.hi\tl near.1ow nearJig, align_low align_big, widlh low widlh bi\tl

0.164199 0.717262 203.269094 540.403546 188.526037 550.708239 0.22263 0.923196 161.03 255.8336

0.164199 0.906581 203.269094 685.433138 167.422071 550.708239 0.22263 0.624126 145.8328 175.244

0.164199 0.717262 203.269094 685.433138 188.526037 550.708239 0.249367 0.923196 161.03 255.8336

0.153649 1150595 203.269094 685.433138 146.318104 550.708239 0.22263 0.325:l57 130.6356 133.9624

0.165274 0.933928 203.269094 609.912373 188.526037 5:l1.800023 0.249367 0.723955 161.03 194.898

Table 5-3 The first 5 members of the initial population at stage 3 for Follow Edge Behaviour

angle low angIej"d~ obsJow obs_hi\tl near low near hi\tl align low align tig, widlh_1ow widlh hi\tl

0.164199 0.813576 203.269094 685.433138 188.526037 550.708239 0.22263 0.923196 161.03 225.3656

0.162099 1.493876 209.815193 685.433138 188.526037 316.830616 0.22263 0.624127 161.03 225.366

0.164199 0.717262 203.269094 685.433138 188.526037 550.708239 0.22263 0.923196 161.03 255.8336

0.164199 0.717262 203.269094 685.433138 188.526037 I 550.708239 0.22263 0.923196 161.03 255.8336

0.162099 1.493876 209.815193 685.433138 188.526037 316.830616 0.22263 0.624127 158.3008 225.366

Table 5-4 The first 6 members of the final for Follow Edge Behaviour

ange.1ow angIej"dg, obs.low obs_hi~ near_low near_hi~ aignJQN align_ti~ widlhJem widlh.hig,

0.16081 0.813576 203.269094 685.433138 188.526037 550.708239 0.219495 0.923196 161.03 225.3656

0164199 0.813576 203.269094 685.433138 188.526037 550.708239 0.219495 0.773661 161.03 225.3656

0.164199 0.813576 203.269094 685.433138 188.526037 550.708239 0.219495 0.923196 161.03 225.3656

0.164199 0.717262 203.269094 685.433138 188.526037 593.868019 0.219495 0.773661 161.03 225.366

0.164199 0.813576 203.271036 685.433138 188.526037 593.869123 0.219495 0.923196 161.03 225.3656

The membership functions ofthe behaviours were learnt as intended. The

chromosomes representing the membership functions were changed from initial

random values to converged values within a small range after the learning process

stops. Tables 5-1, 5-2 , 5-3 and 5-4 give the comparisons ofthe first 5 chromosomes

of Follow Edge behaviour from the initial population at stage 1, 2, 3 and the final

population respectively. In Table 1, the five chromosomes are very different because

they were produced randomly within the limits. After first stage of learning the 5

members of Table 5-2 are much more similar than of Table 5-1. As the learning

progresses, the similarity of the 5 members increases further as shown in Table 5-3 and

Table 5-4. The level of the change on the membership functions of individual fuzzy

variables can vary greatly because of the different initial values and different roles in a

103

http:angIe.bi

fuzzy control rule. The most significant changes occur during the first stage of the

learning because wide and deep exploration by the crossover and mutation operations

make the suitable solutions surface quickly. In the later stages, these changes become

smaller because wide and deep explorations were gradually replaced by locally tuning

of the genes of the chromosomes.

Fig. 5- 9 graphically compares the change of membership function for one fuzzy

variable of Avoid Obstacle behaviour. It shows the membership functions of obsJeft

from the best individual of initial population at stage 1,2 and 3, the final population

and manually tuned behaviour. The similar trend of changes to the above 5 members

of Follow Edge behaviour can be observed. Interestingly, it can also be seen that the

differences between manually tuned values and learnt values are significant. In

manually tuning of the fuzzy behaviour, some of the learnt values will be less likely to

be considered as they seem to be unsuitable. In fact, they turn out to be optimal control

values when combined with other ones. This is because manually tuning offuzzy

control rules, one by one, is difficult. There are many factors to influence the control

output ofa fuzzy controller. The learning allows the optimisation of the entire set of

fuzzy control rules for a behaviour. Good overall performance ofa fuzzy behaviour is

learnt instead of finely tuned individual rules. The difficulties and efforts are greatly

reduced.

104

CLOSE X NOT CLOSE

-

1= (b) 2nd initial

(a) 1st initial

1= (c) 3rd initial

(d) final

>< (e) manual

sideJow side high

lstiniial 577.311401 753.700301

2nd iniial 38.611232 909.932132

3rd initial 105.507143 874.094843

inal 96.397641 937.302441

manual 400 700

Fig. 5-9 Membership functions of fuzzy variable obs_left of Avoid Obstacle
behaviour during the learning process:
(a) the initial best at stage 1; (b) the initial best at stage 2; (c) the initial best at stage 3;
(d) the best offinal population; (e) one of manually tuned behaviour.

5.4.9.2 Genetic Algorithm Convergence Evaluation

The performance of the learning algorithms is also analysed for their convergence at

every stage of the learning. The best, the worst and average evaluation value of each

generation have been recorded for analysis. For each example fuzzy behaviour, the

fitness values ofthe population converges to a set ofvalues within a maximum of2%

105

--Best
Avoid Obstacle - - - Worst

- - - - - ·Average
30000 ,..I

20000 i 	 II

10000 .r:---:0- ~~ _o! , ---::-:--­
o 100 200 300 400 500 600 700 800 900 1000

(a)

Follow Edge

300000]l
IJ) 250000· ~ CIJ
c::....
u: 200000150000'"I' rI

100000 	. ':..

50000 r'~-~~'~-~-~--------__~~~--~-~?m
______________~~h---___________________

0 ._ ... ,_ . ..j.,--, ­

o 100 200 300 400 500 600 700 800 900 1000

(b)

Reach Position
60000

IJ) 50000 i\
IJ)
CIJ 40000 t~
.....
u::
r: 	

30000 1 1:
20000 t'-· ~ ,~ ,J:.Fr_____________

10000 ~::!~="""""---....i:}I...=------___...I.1
o t ---.-+--. ---I ..., 	 . --, ---+.,"--"L

o 100 200 300 400 500 600 700 800 900 1000

(c)

Track Path

800000 -~,,:
600000 .~

4000001

2000~i ___ ~~~.-~~~-~,~~~~~~~L~,=~:~-------.-~---~-.~:-_~~~~~~~_-_-_-~-_-_-_-.-.
o 100 200 300 400 500 600 700 800 900 999

Generation

(d)

Fig. 5-10 Generation VS. Fitness charts of learning processes for fuzzy behaviours:
(a) Avoid Obstacle; (b) Follow Edge; (c) Reach Position; (d) Track Path.

106

variation after the learning process terminates. The small variation is mainly caused by

the random noise introduced in the sensor and the robot movement and will exist even

for the same set of membership functions. At the ends of earlier learning stages, the

fitness values were also seen to have converged but with higher variation ranges. The

transition between learning stages does have impacts on the populations. This is

because the learning environment becomes more difficult and presents more chances

for failure. This can be seen in evaluation chart Fig. 5-10. At the start of a new stage,

there are big increases in the worst evaluation values. As the learning continues, this

phenomenon gradually reduces towards the end of the stage and then reappears when

the learning process again enters a more difficult stage. Although the worst evaluation

value of a later stage may exceed that of a previous stage, the average value of the

later stage is smaller than that of the previous one. This indicates that the overall

performance of the population improves over the whole learning process.

5.4.9.3 Effects of Multistage Learning

A simple-to-complex multistage learning course is one ofthe main principles oftrus

learning methodology. The effectiveness of the multistage learning is evaluated by

comparing it to a non multistage learning process. In the non multistage learning, the

most complex environments used in multistage learning are employed in the whole

learning process. Other factors, such as the genetic algorithm control parameters,

performance evaluation functions and randomisation of the learning process all remain

unchanged. Some of the genetic algorithm control parameters are listed as follows:

genetic operators:

uniform crossover: 0.2 exchange prob., 0.2 selection prob.;

uniform mutation: 0.2 mutation prob., 0.2 selection prob., 3.0 speed exponent;

average: 0.1 selection prob.

population size: 50

new population size: 5

generation: 1000

107

p

selection method: 1.5 biased rank-based selection.

The comparisons were made mainly on the convergence of the genes. The initial

populations for the two learning processes are the same as given in Appendix B.

Starting from the same initial population, the two learning approaches produced very

different learning results as indicated in Table 5-5 and Table 5-6. Table 5-5 shows the

first 1 0 members of populations at the ends of stage 1, 2, and 3 as well as the genes'

evolution measurement for the multistage learning approach. Table 5-6 gives the first

10 members of population at generation 299, 599 and 1000 and the measurements of

the variations of their gene values for the non multistage learning. We can see that in

the multistage learning, the gene values evolved faster and converged to within the

maximum 5% variation range, much smaller than that of non multistage learning, 26%.

At the end of the first learning stage, the population still had a more diverse

combinations ofgenes than that of the single stage learning. This is because simple

environments provide more chances for initial deep and wider exploration of

population for possible better solutions. In contrary, the complex environment did not

help to yield variety of initial solutions after the equivalent 300 generations for the non

multistage learning. The population lacks diversity, which is needed for an efficient

learning process. A complex environment prevents the initial suitable solutions from

emerging quickly. With the multistage learning process, the population was able to

continue to efficiently evolve, based on the diverse initial solutions produced in the

earlier stages, and finally settled on a small variation range. For the non multistage

learning, the evolution process was slow and the final genes, though converged, had

much less stable structure than that of the multistage learning. Some of the gene values

are obviously unsuitable for practical applications, such as the speed values, which are

too high for reversing. The multistage learning process was also much faster than the

non multistage learning process. For example, in learning Avoid Obstacle behaviour,

the non-multistage learning took nearly 3 times as

108

Table 5-5 The first 10 members of the end population at 3 stages for multistage learning

Stage 1 sideJow side_high fronUow front_high turn speed

38.611232 909.932132 808.111097 833.125097 1.906284 -51.136032
108.978043 869.801743 812.622531 837.029931 1.940549 -45.594978

~ 121.558446 962.463246 808.111097 831.911897 0.960112 -40.284876
CD
.0 105.507143 874.094843 812.nB144 837.184644 1.906284 -41.348488
E
CD 121.558446 962.463246 808.111097 833.12fiE7 1.906284 -51.136032
E 48.681906 943.620606 792.46435 816.26515 1.003953 -43.845314
0 ..­ 55.971152 950.909852 792.46435 808.42945 1.834982 -41.845314

121.558446 800.146146 808.111097 831.911897 1.906284 -40.284876

38.611232 933.549932 792.46435 816.26515 1.003953 -43.845314
22.502554 863.407354 808.111097 831.911897 0.960112 -51.136032

Average
Deviation 48% 4% 1% 1% 18% 8%

Stage 2 sideJow side_high fronUow front_high tLlrn speed

105.507143 874094843 812.nB144 837.184644 1.906284 -41.348488

108.978043 953.664943 808.111097 832.517597 2.146008 -43.747959

!!: 105.507143 886.234643 812.nB144 837.184644 1.906284 -41.348488
CD
.0 88.764799 909.039199 808111097 832.518497 1.906284 -45.710454
E
CD

96.397641 m.140241 817.133966 842.147966 2.146008 -47.441996

E 55.810886 938.546486 808.111097 823.229297 1.906284 -43.747959
0 88.764799 956.686399 800.287723 824.088523 1.905118 -42.065095

82.474597 940.798597 817.133966 841.844066 1.906284 -47.441996

96.397641 991.336341 792.46435 816.26515 1.903953 -43.84531~

72.059188 960.896188 802.621247 826.724747 1.905118 -42.596901

Average
Deviation 14% 5% 1% 1% 4% 4%

Stage 3 sideJow side_high fronUow front_high tum speed

96.397641 937.302441 808.111097 833.125097 1.906284 -51.136032

96.397641 896.875952 808.111097 833.12fiE7 1.906284 -43.747959

!!:
CD

.Q

96.397641

96.397641

881.685741

881.685741

808.111097

808.111097

833.12fiE7

833.125097

1.906284

1.906284

-51.136032

-51.136032

E 96.397641 937.302441 808.111097 833. 12fiE7 1.906284 -51.136032
CD
E 96.397641 937.302441 808.111097 833.125097 1.906284 -51.136032
0 ..­ 96.397641 937.302441 808.111097 833.125097 1.906284 -43.747959

96.397641 937.302441 808.111097 833.125097 1.906284 -51.136032

96.397641 937.302441 808.111097 833.125097 1.906284 -51.136032

96.397641 937.302441 808.111097 833.125097 1.906284 -51.136032

Average
Deviation

0% 2"'{' 0% 0% 0% 5%

109

long as the multistage learning did to finish 1000 generations. Much of time was spent

in the early stage of learning in the complex environments and the many initial random

solutions caused extremely slow movement of the robot and resulted in a very

inefficient learning process. The multistage learning was able to avoid such problems

Table 5-6 The first 10 members of the population 299, 599, 1000 for non multistage learning

299th sldeJow side high fronUow front h!.\Lh turn speed

500.90647 1393.7134 395.37882 467.99442 1.87938 -64.58798

423.42118 574.75978 395.37882 461.03982 1.87938 -98.90892

403.75825 764.50435 395.37882 458.97012 1.99936 -94.15747
~
CD 217 .03148 571.67528 395.37882 467.99442 1.99936 -57.63856
.0
E 403.75825 731.83945 395.37882 467.99442 1.99936 -94.15747
CD
E 214.92408 677.78028 395.37882 458.97012 1.99936 -57.63856

0 403.75825 1065.2021 395.37882 458.97012 1.99936 -97.05541
"...

21703148 571.67528 395.37882 467.99442 1.99936 -57.63856

403.75825 1065.2021 395.37882 458.97012 1.82697 -94.15747

403.75825 555.09685 395.37882 458.97012 1.82697 -94.15747

Average
Deviation 24% 28% 0% 1% 4% 21%

599th side_low side_high front low front hig h turn speed

500.90647 1393.7134 395.37882 467.99442 1.82697 -94.15747

403.75825 1065.2021 366.39735 429.98865 1.87938 -95.53073

403.75825 643.46815 395.37882 458.97012 1.87938 -94.15747
~
CD 500.90647 1393.7134 381.01173 453.62733 1.82697 -94.46457
.0
E 403.75825 55509685 395.37882 446.36562 1.95165 -95.53073
CD
E 500.90647 1393.7134 395.37882 467.99442 1.85427 -94.15747

0 ..­ 403.75825 758.40205 395.37882 458.97012 1.82697 -90.00019

403.75825 700.93525 395.37882 458.97012 1.85427 -92.07883

403.75825 555.09685 395.37882 461.22612 1.87938 -94.47566

403.75825 555.09685 395.37882 458.97012 1.99936 -94.15747
Average
Deviation 9% 36% 2% 2% 2% 1%

1000th sideJow side_high fronUow front_high turn speed

500.90647 1393.7134 395.37882 467.99442 1.82697 -94.15747

403.75825 643.46815 395.37882 458.97012 1.87938 -94.15747

~ 403.75825 758.40205 395.37882 458.97012 1.82697 -90.00019
CD
.0 310.39487 563.38607 395.37882 463.48212 1.93937 -75.89801
E
CD 403.75825 1065.2021 395.37882 458.97012 1.82697 -75.14691

E 403.75825 555.09685 395.37882 458.97012 1.87938 -94.15747
0 ..­ 403.75825 643.46815 395.37882 461.22612 1.91317 -94.15747

403.75825 731.83945 366.39735 417.38415 1.87938 -95.53073

403.75825 555.09685 395.37882 458.97012 1.87938 -94.15747

403.75825 555.09685 395.37882 458.97012 1.92545 -94.15747

Average
Deviation 5% 26% 1% 2% 2% 7%

110

by exploiting the initial simple environments and this speeded up the whole learning

processes.

5.4.9.4 Visualisation of Learning Results

In the learning of our example fuzzy behaviours, the visualisation provided a

qualitative feel for the success of the learning algorithms. The simulation system is able

to reproduce the traces of the robot with learnt chromosomes. This section discusses

some of the typical traces of the robot in the learning of the example fuzzy behaviours

as the last evaluation point.

Fig. 5-11 and Fig. 5-12 shows the snapshots of the traces of the simulated robot in

order to indicate the navigational abilities of different fuzzy behaviours in the learning

processes. Fig.5-11(a) shows how the best Avoid Obstacle behaviour of the initial

population, the best of the final population and the manually tuned behaviour

controlled the robot movement in a 30% clutter environment. The courses of the robot

were displayed as dot curves. The course leading to the low right part of the

environment was produced by the best of the final population. The course leading to

the upper left part of the environment was created by the manually tuned one. The

control by the best of the initial population results in the course around the starting

area. Table 5-7 shows their measured performance indexes. As seen in Fig. 5-11 a, the

robot controlled by the best ofthe final popUlation travelled a longer distance, moved

faster, straighter and moved closer to the environment than the others. Although the

best of the initial population was able to control the robot to avoid collision with the

environment, the robot moved very hesitantly and slowly. After the learning process,

its final counterpart exhibited much more robust abilities and performed better than the

manually tuned one.

Fig. 5-11b is the comparison ofFollow Edge behaviours of the initial worst, the final

worst and the manually tuned. The robot was asked to follow a concave-shaped wall

edge, which is very difficult without navigation planning. In the development of this

111

I
~ Fde

u
',. '--t---_

Wi!

main
main

File Edit Confi9il'e Drew Ste~ Tr.oln Pause

n.- ..-~.. -\ . f·

"1

\ i\ I -~
"

x! 15

.: 10 x: 36

St..ttge: 3: CClPoplexlty: 30%: Gen: GoO .: Z4.~. t.h: 0 s~; 3; Coaplexit\:l: 30%: Gen: GOO ~ th: 182---..;;=--------_.....
(a) (b)

/' r' main
..~J main

< File Edit COn;l9\,re Dr_ Step Trllln

File Edit ConFigure Drow Step Train
...... ­

(c)

':
x: 11

I th:

.:

~; 30 St.ltge: 3; COIIIF'lextt\:H 30%; Gen: &03
~_~:~30~3______________________~

(d)

Fig. 5-11 Snapshots of the course of the robots controlled by four fuzzy behaviours:
(a) the initial best, the final best and the manually tuned Avoid Obstacle;
(b) the initial worst, the final worst and the manually tuned Follow;
(c) the initial 50 Reach Position behaviours for two goals;

Cd) the final 50 Reach Position behaviours for four goals.

behaviour, many hours were spent in manually tuning the behaviour and the tuned

behaviour still did not function satisfactory before the learning was introduced. A more

satisfactory result was obtained for time steps min. dist. collisions

final best 1163 99.4 0
 Follow Edge behaviour through the
initial best 1830 1207.26 0

manual 1401 489.81 a learning process. In Fig. 5-11 b, three
Table 5-7 Perfonnance Indexes of th ree Avoid

courses were produced by the
Obstacle behaviours

112

-

2

11't!

f
3

Fig. 5-12 Snapshots of the course of
the robots controlled by Track Path
1. the initial average at stage 1;
2. the initial average at stage 2;
3. the initial average at stage 3;
f. the final average;

mm. the manually tuned.

robot controlled by the three selected behaviours. The inner-most course was created

under the control of the final worst. It shows that the robot followed the edge

smoothly and closely, turned at the inside and outside comers accordingly and moved

fast, though it was the weakest behaviour in the final population. In contrast, the

course next to it was created under the control of the manually tuned behaviour.

I
I 113

eM M

Although the robot followed straight edges reasonably well, it did not exhibit robust

abilities in turning at the corners and took more time to finish the task. The course

leading out of the display area was the result of the initial worst which showed the

intention offollowing the edge, but was not able to function properly.

Fig. 5-11c shows all of the courses of the robots controlled by the initial population of

the Reach Position behaviours to reach two goal positions. Fig. 5-11 d shows the

courses of the robots under the control of the final popUlation to reach four goal

positions. In Fig. 5-11c, the robot started from the low left comer of the environment

and was asked to reach the first goal on the robot's left and the second goal on its

front. Most of the 50 robots failed to complete the task and created circular-like

courses in attempting to steer towards the first goal. In Fig. 5-11 d, the robot started

from the near centre position of the environment facing to the right side of the

environment. The first goal was at the right side of the environment and the second

was at the left side. The third goal was located at the upper side of the environment

and the fourth one was at the lower side. After 1000 generations ofleaming, the 50

members of the population were able to control the robots to reach the four goals in an

ordered sequence and produced straightforward "4" shaped courses with only small

variations. Fig. 5-12 displays the courses produced by the average member of the initial

population at stage 1,2, and 3, the average one of the final population, and the

manually tuned Track Path behaviour. The difficulty level of the learning environment

was increased by decreasing the width ofthe path as the learning progressed over

stages. The robot was asked to follow the path three times with each chromosome

from different initial heading positions, which, therefore, imitated the different path

positions. These paths are imaginary so that only the "following path" functionality

was learnt, without influences from any physical objects. From Fig. 5-12, it can be seen

that the performance of the initial average members ofthree stages was improved

significantly. At the end of the learning process, the behaviour was learnt as intended

and was able to control the robot by quickly steering to the centre of the path, then

following it straight away to the end ofthe path. Compared to the leamt behaviour, the

manually tuned behaviour did not perform very well and its courses were not as

straight as those of the average learnt behaviours.

114

p

5.5 Learning of Behaviour Selection Network

5.5.1 Components to be learnt

After individual fuzzy behaviours are learnt, the behaviour selection network, which is

responsible to select the best behaviour for the control of the robot at any given time,

must also be learned. Here, the structure and function of a behaviour link are first

reviewed. According to the definition in Section 3.1.5, a behaviour link is a data

structure used to represent the relationship of two linked behaviours. In MARCO, two

types of the relationship have been defined: promotion and inhibition. Promotion is the

way of distributing one behaviour's activation energy to other behaviours. This usually

happens when some behaviours experience execution failures, or unfavourable robot

control activities, such as motionless or very slow movement of the robot. Inhibition

does the opposite. It is used by one behaviour to subdue other behaviours from taking

the control of the robot. The promotion/inhibition links are set-up between the

behaviours based on their importance with respect to the safety, goal, and other robot

navigational motivations. A behaviour's activation energy is determined by its own

situational activation energy and the synthesised energy from all the linked behaviours.

Although it is quite obvious to determine the relationship ofthe behaviours, the

selection of appropriate levels of promotion/inhibition is not so straightforward.

According to the behaviour selection algorithm described in Section 4.3.3, the outward

promotion and inhibition level of one behaviour is calculated as :

p_valueo= p_factor * frusJevel;

i_valueo= i_factor * a_levels;

The frustration level and situational activation level ofthe behaviour are produced in

the fuzzy control process of the behaviour. They do not need to be learnt. It is

p Jactor and iJactor that need to learnt in order to maintain optimal promotion!

inhibition levels for the behaviour selection.

115

ME

5.5.2 An Incremental Learning Approach

The learning of behaviour links is very different from the learning of individual

behaviours because more than one behaviour is involved. To design a practical learning

process, several problems have to be considered. First, the behaviour links between

some basic reactive behaviours should be learnt first. Once learnt, these behaviour links

should not be changed in the learning of other behaviour links. In the robot's

navigational activities, some basic reactive behaviours, such as Keep Moving and

Avoid Obstacle behaviour must be always present in the low level control layer. They

are the most fundamental part of a reactive control system. More purposeful control

activities, brought up by other fuzzy behaviours, such as Follow Edge, Reach Position,

depend on the support of these reactive behaviours for success. An optimal selection

network of those reactive behaviours, once learnt, will fonn a solid foundation for a

robust robot control system. Second, conflicting behaviours should not be learnt

together. A behaviour can have promotion/inhibition links with several other

behaviours. However, some ofthem may cause conflicting control activities when

becoming active at the same time. For example, to learn behaviour links between

Avoid Obstacle and other behaviours, we should not put Follow Edge and Track Path

behaviour into a single learning process because they have contradictory control

behaviours. In MARCO, such conflicting control activities are resolved by the higher

level of the control system, the sequencing layer, which organises a collection of

behaviours in hannony for the control of the robot. Therefore, the learning of the

behaviour selection network should be carried out for the learning of the behaviour

links of every such collection ofbehaviours, which will be activated by the sequencing

layer in a navigation task. The above considerations lead to an incremental learning

approach for the learning ofthe behaviour selection network. Behaviour links between

fundamental reactive behaviours are learnt first. The behaviour selection network

between those fundamental behaviours and the task-oriented behaviours are then learnt

to obtain an optimal behaviour selection network.

.J

I 116

~

I

I
I

5.5.3 Simulation Design and Results

U sing an incremental learning approach, the behaviour selection network for our

example fuzzy behaviours is learnt through the learning of several collections of

behaviours as shown in Fig. 5-13.

To learn the behaviour links is to learn an optimal set of promotion/inhibition factors

---+~ oromotion
--~) inhibition

, I
Obstacle Keep Moving cj';d0 ~~

, I

,I

(a) (b)

Fig. 5-13 Behaviour Selection Network to be Learned

(a) subnet between fundamental behaviours;
(b) sub net between task-oriented and fundamental behaviours.

which decide promotionaliinhibitionallevel for a behaviour. These factors are taken as

genes to form a behaviour link chromosome. Fig. 5-14 presents the chromosomes for

the learning of the behaviour selection network.

(a) \p factor \ i factor I (b) lijactorl Ipjactor2 lijactor2 I

Fig. 5-14 Structure of behaviour link chromosomes:
(a) Avoid Obstacle - Keep Moving; (b) Task-oriented - AO and KM.

I
t Fig. 5-14(a) is the chromosome representing behaviour links between Avoid Obstacle

and Keep Moving behaviours. Fig.5-14(b) is the structure of all chromosomes used to

I learn the links between example task-oriented behaviours and two fundamental reactive

behaviours. Note that the chromosome in Fig. 5-14(b) does not include genes

representing the links between Avoid Obstacle and Keep Moving, which has to be

learnt first and then remains unchanged.

117

w My

As already mentioned in Section 5.4.4, the learning of Avoid Obstacle behaviour needs

the support ofKeep Moving behaviour. This means their behaviour links also have to

be encoded into the Avoid Obstacle behaviour's chromosome and then becomes a part

of the integrated learning for the Avoid Obstacle behaviour. In this experiment, their

optimal behaviour link has already been learnt during the learning of the behaviour and

the results are used in the learning of other behaviour links.

The same learning methodology and algorithm used in the learning of individual fuzzy

behaviours was employed for the learning of behaviour selection network. It was my

intention to verify the effectiveness of such a learning methodology in the robot

learning, both for individual behaviours and overall robot control systems. In the

simulation, the same set of control parameters was used in the genetic algorithms, such

as genetic operators' probability, population size, generation number, etc. The learning

of the selection network for the 3 clusters of the behaviours was evaluated in a similar

way to the learning offuzzy behaviours as described in Section 5.4.7. The evaluation

functions are as follows:

Reach Position - Avoid Obstacle & Keep Moving:

eval_ value = time_weight * steps + ach _weight * closest_distance +

collision_weight * collision _ flaglsteps·2; (5)

Track Path - Avoid Obstacle & Keep Moving:

eval_value = time_weight * steps + disp_weight * sum_oCdist_to_center +

swing_weight * sum_oCdrifted_angle + ach_weight * closest_distance +

(6)

Follow Edge - Avoid Obstacle & Keep Moving:

eval_ value = time_weight * steps + range_weight * sum_oCminJange +

turn_weight * sum_oCturning_angle +

(7)

118

Some of the simulation

results are presented. Fig. 5­

15 gives the visual displays

of the courses produced by

the best member of the initial

population at the stage 1, 2,

3 and the final population, as

well as manually tuned links

of the behaviour selection

network between Reach
Fig. 5-15 Snapshots of the courses of the robot for
the learning of the behaviour selection network, Postion, Avoid Obstacle and

Reach Position-Avoid Obstacle+Keep Moving: Keep Moving behaviours.
1. the initial best at stage 1;
2. the initial best at stage 2; These courses are identified
3. the initial best at stage 3;
f. the final best; with 1,2,3, f and m
m. the manually tuned linle

respectively.

Table 5-8 Behaviour Link Chromosome and Their Performance Indexes

(a) Reach Position· Avoid Obstacle & Keep Moving

Pertormancelndexes
Stage Chromosome

steps achieve bump

1 st init. best 0.444158 0.347369 0.496497 94 6733.43457 1

2nd init. best 0.186135 0.347369 0.196298 931 78.521057 0

3rd init.best 0.171714 0.237879 0.336871 533 76.792549 0

final best 0.170712 0.261922 0.356444 433 43.017998 0

manual 0.15 0.2 0.15 942 43.009029 0

(b) Follow Edge· Avoid Obstacle & Keep Moving

Pertormancelndexes
Stage Chromosome

steps range sum turn sum bump

1 st in it. best 0.180584 0.475453 0.034198 1115 61007.82422 145187.2344 0

2nd in it. best 0.232373 0.390271 0.103924 1075 50201.22656 145786.625 0

3rd init.best 0.227366 0.393437 0.255269 943 48587.01953 138190.4844 0

final best 0.211281 0.302934 0.158032 877 47963.66016 112254.3516 0

manual 0.15 0.2 0.15 1059 58607.65625 127951.6641 0

(e) Track Path· Avoid Obstacle & Keep Movin~

Pertormance Indexes Stage Chromosome
steps disp sum swinQ sum ach bump

1 st init. best 0.329041 0.275558 0.065886 277 165275.375 20931.38281 280.888733 0
2nd init. best 0.123675 0.48875 0.148572 277 142484.1406 21601.01367 367.796265 0
3rd init. best 0.123675 0.48875 0.123436 264 138280.4219 20452.76172 229.148087 0

final best 0.103805 0.402376 0.185513 252 129932.9297 18063.29492 616.036926 0
manual 0.15 0.2 0.15 275 146009.2813 19343.53125 691.950623 0

119

p---I

./
j

x'! :3'3 x: 21
.: 2~ SU!gc: 3: Co.plcxt t~; 30%: Gen: 700 'd: 24 S~ge: 3; COIIIPlextt>,j: 30%; Gen: 700,til: 162 ! t:.h: 1:7

o
-- ---,.. -'

i
J

\

--...'----.~-

x: 21 x: 25
'd: 24 !;j: 24

, th: 177
I th: 181

3 f

.-.'_..­
\

Fig. 5-16 Snapshots of the courses of
the robot for the learning of the
behaviour selection networks:
Follow Edge - Avoid Obstacle+Keep Moving:
1. the initial best at stage 1;
2. the initial best at stage 2;
3. the initial best at stage 3;
f. the final best;
m.and the manually tuned.

;11:: 30
.: 24 Stago: 3: eo.pLultw: 30%: Gen: 700

I th: 11S

m

I
'1

I 120

2

f
3

Fig. 5-17 Snapshots of the courses of
the robot for the learning of the
behaviour selection networks,
Track Path - Avoid Obstacle+Keep Moving:
1. the initial bests at stage 1;
2. the initial best at stage 2;
3. the initial best at stage 3;
f. the final best;
m. the manually tuned link.

m

In Fig. 5-15, the robot was asked to reach the goal position at the upper right corner

of the environment from the lower left corner. The robot was to manoeuvre through

densely scattered obstacles and get to the destination fast, take as straight route as

possible and arrive the position precisely. Because the robot had learnt near optimal

I
" 121

..

individual behaviours, which will take their own responsibilities robustly, the overall

control fitness of the robot for the task lay in the selection of the behaviours. From the

display, we can see that fis the best of the 5 courses, in terms of fastness, straightness

and precision, while 2 and 3 are reasonably good and 1 is the least favourite. The

robot, controlled by the manually tuned behaviour links, performed not as well as the

learned candidates, f and 3. Their behaviour link chromosomes and the robot

performance indexes are listed in Table 5-8(a). The similar results for the other two

behaviour clusters are presented in Fig. 5-16, Fig. 5-17 and Table 5-8(b)(c).

Fig. 5-18 gives the evaluation charts of the learning algorithms for the behaviour

selection networks respectively. A similar convergence pattern to the learning of

individual behaviours was observed in the learning processes.

The simulation results show that with an incremental learning approach and the simple­

to-complex multistage learning methodology, near optimal behaviour selection

networks have been obtained. The genes representing promotion/inhibition factors all

converged towards a set ofvalue within small range ofvariations. The measured

performance indexes show a gradual improvement of the controlling performance of

the robot through the whole learning processes. The evaluation values also converged

at the every stage of the learning and in the final population. These results indicate the

effectiveness of the learning methodology in the learning of the behaviour selection

network, though the improvement to the robot movement during the learning

processes was not as significant as in learning individual behaviours.

5.S Summary

In this Chapter, a learning methodology has been developed to automatically learn

membership functions of individual behaviours and the behaviour selection network.

This methodology is based on genetic algorithms and contains several principles. To

build a robust fuzzy behaviour-based reactive control system, individual fuzzy

122

RP-AO-KM

98 198 298 398 498 598 698 798 898 998

(a)

--best
FE-AO-KM - - - worst

- - - . - . average

! ::1(. ~
S
u:: -

200000,
II

100000 :-~_______...L

O~---+----r----+----~----r----+----~--~----------

o 100 200 300 400 500 600 700 800 900 1000

(b)
TP-AO-KM

8000000

IJJ 6000000~
IJJ
4l 4000000 .c:...
u:

2000000 r .'------=:o~b~=====~"""""'........_______

o I

o 100 200 300 400 500 600 700 800 900 1000

Generation
(c)

Fig. 5-18 Generation vs. Fitness charts of the learning processes for the
behaviour selection network:
(a) the cluster with Reach Position behaviour;
(b) the cluster with Follow Edge behaviour;
(c) the cluster with Track Path behaviour.

behaviours are first learnt to obtain robust individual functionality in the control

system. Then, the behaviour selection network are learnt to obtain good overall control

of a mobile robot control system. The learning methodology emphasises the

following points. First, every component ofthe control system is learnt for its own

functionality. Specific environment features and configurations are provided for the

learning process of each component in order to ensure that each component is learning

for its own role in the control system. Second, learning environments are generalised

and a variety ofrandomised configurations are presented in the course of learning, in

order that the learning results are useful for building real world mobile robots. Finally,

the learning process follows a simple-to-complex multistage learning course for the

123

!Mrie MF'

better search for optimal solutions. The design of the genetic algorithms enables an

initial wide and deep exploration and a gradually localised tuning of the population as

the learning progresses.

The learning methodology has been used to learn both membership functions of

individual fuzzy behaviours and the behaviour selection network for MARCO's

experimental low level control layer. The effectiveness of the learning methodology has

been demonstrated in the simulations. For all example fuzzy behaviours, near optimal

membership functions have been automatically learnt. Their near optimal behaviour

selection network has also been learnt. From the experiment, it can be seen that it is

possible to automatically learn a low level control system using this learning

methodology and therefore greatly reduce the difficulties and efforts in configuring a

fuzzy behaviour-based reactive control system for a robot.

124

Chapter 6 Experiments

The preceding chapters described MARCO, a two layer control architecture for mobile

robot navigation and the learning oflow level control layer. This chapter will attempt

to demonstrate that an actual implementation of a MARCO control system will indeed

robustly control mobile robot navigation in real world indoor environments. Ideally one

would like to prove that MARCO can solve the navigation problems in dynamic,

uncertain and unpredictable real world in face of noisy and imprecise information.

Unfortunately, it is very difficult to prove anything about MARCO because it is hard to

give rigorous definitions for terms like "robust behaviour" and "unstructured

environment". To quote Firby, "without a rigorous definition to prove things about,

evaluation of the system must lie in actual performance"[Firby89].

Before studying MARCO system's performance on realistic mobile robot navigation

problems, MARCO was implemented into a simulated mobile robot, SIMAR, to

perform two simulated navigation tasks. One is a construction task, concrete floor slab

finishing and the other is building security patrolling. As evidence that a MARCO

control system can navigate and complete tasks effectively, this chapter produces the

following types of information: traces of mediating activities in the sequencing layer

which organises control activities in the low level control layer, traces of fuzzy

behaviour activation levels in the low layer and traces of physical movement of the

robot.

The simulation results presented shows that a MARCO system does indeed behave as

suggested in the preceding chapters.

6.1 A Simulated Robot System

A simulated robotic system has been developed for the research ofMARCO control

architecture and possible applications. The system consists of two major parts: a

controller and a simulator. The controller is, in fact, a MARCO control system, which

125

performs sensor interpretation, world modelling and the two levels of control

activities. The simulator contains simulated world construction, sensing, robot motion,

servoing and other modules. The two subsystems communicate over a TeplIP link.

The robot controller solicits sensor and robot movement data from the simulator and

sends control commands to the simulator after fuzzy behaviour-based control

processes. The design of the simulated robot system is partly based on the

configuration of a real experiment robot; Marcot is a 4-wheel driven mobile robot and

is equipped with a laser scanner, a sonar radar, odemetry encoders and a bump ring. In

simulation, sensor data is produced from a simulated laser scanner, odemetry encoders

and a bump ring. Range data and encoder readings are perturbed with noise. The

simulated worlds are 2D world models, constructed by the simulator. World models

are analogical real worlds, with linear segments representing the

MARCO
Task Template-based

Display SubsystemSequencer

Fuzzy Behaviour-based

Control Layer
 IPerceptual Subsystem

Communication Subsystem

TCPIIP links

Communication

Kinematic Servoing Simulated Sensing

DisplayISimulated Motion

Simulator

Fig. 6-1 Diagram of A Simulated Robot System, SIMAR

vertical surfaces of corridors, hallways, walls and the objects in an environment. The

architecture of the simulated robot system is presented in Fig. 6-1. The parameters of

t Mobile a-utonomous r-oOOt for co-nstruction

126

SIMAR are selected mainly based on a commercial mobile robot, Pioneer, and given as

follows:

MTV = 300rnmls - max. translational speed, in millimetre per second;

l'vlRV = 1.0 rad/s - max. rotational speed, in radian per second;

100 mm/S2 - max. translational acceleration at slow speed« 10 mmJs);

1

!

MfA = 100 mmls2 - max. translational accelaration at normal speed;

200 mmls2 -- max. translational acceleration at braking speed« 0 mm1s);

0.4 rad/s2 -- max. rotational acceleration at slow speed;

MRA = 0.4 rad/s2 - max. rotational accelaration at normal speed;

0.8 rad/s2 - max. rotational acceleration at braking.

wheel encoder noise: 1% randomness in readings;

angle encoder noise: 2% randomness in readings;

angle drift over distance: 0.3% randomness on 0.5 degree every 100mm distance;

The robot motion is servoed through a simple kinematic model, a trapezoidal velocity

function as shown in Fig. 6-2(a). When the simulated robot receives a speed command,

it accelerates or decelerates at a constant rate set internally to the required speed.

Rotational headings are achieved in the similar way by the rotational heading servoing

as shown in Fig. 6-2(b).

translational
speed

- - - - . ­ - - - • - - - - - - ­ - - ­ - • - • - - •••• - ••• - •• ­ - - • - - ­ - - •••••••.••••• max. speed

initial speed +-----<
\. set speed achieved

----~~--_+twe

(a)

rotational
speed

max. speed

____-+________~__________~~--~----~--~-------+twe
heading\.. start heading heading achieVed
achieved

(b)

Fig. 6-2 A Simple Kinematic Servoing Model
(a) translational speed servoing;
(b) rotational heading servoing.

127 1

I

The simulated system has been developed in SPARe workstation lO(55MHz) with

32.MB memory and 1GB hard disk. The development environment is given as follows:

1. Solaris 2.4 Operating System;

2. XI1R5 X window library;

3. Motif 1.2.4 library;

4. SPARC work professional C, version 3.1.

This simulated robotic system vvill be used for both of the experimental tasks, concrete

slab finishing and building security patrolling. In reality, the two tasks will require very

different end effectors for the very different operations, which may have very big

disparity in navigation performance using the same robotic system. It is assumed that

the impacts ofdifferent end effectors and tasks to the navigational performance of

MARCO control architecture can be reduced by means of more elaborate design ofthe

mechanics and control systems, considering robot dynamics and employing more task

templates and fuzzy behaviours with regard to various aspects of a task execution. The

purpose of the experiments here, is to demonstrate the abilities of the two layer control

architecture in the robot navigation.

6.2 A Concrete Slab Finishing Task

I

Concrete slab finishing in construction site is usually done by plasterers using a

troweler[Arai89][Wing89]. After concrete is placed on floor slab, roughly levelled and

allowed to harden, the rough surface of the concrete is then flattened and smoothed.

Generally, this work requires a plasterer to operate and guide a trowel in a regular

I
pattern over the whole surface of the setting concrete slab. This experiment will not

consider the physical troweling actions but the navigation and control which guides a

troweling machine over the entire area of the floor surface. SIMAR's objective is to

find and enter a room, finish the concrete floor slab ofthe room and then exit the
~

room.

,I

128 I

y

00
Klt.:hc'tl

-U ""
-5

1'12 III FI!i ~

Ir
0 0

..J

FI5

!IX

COITldor #2
~~____~______~__________________-L________ _______~)~ X

o

Fig. 6-3 The Layout of the First Floor of the Spire Research Centre

6.2.1 Experiment Set-up

Fig. 6-3 shows the layout of the experiment world, a simplified real environment, based

on the 1st floor of the Spires Research Centre. In this simulated world, the walls are

represented by line segments. Doors are the openings in line segments with a single

coimected line segment indicating close or open state. Rooms are represented by a set

of enclosed line segments with openings. Corridors are identified by a pair of

parallel line segments outside of rooms with certain width and length constraints. The

robot's main experiment area consists of corridor #2 and room FlO. This simulated

world is constructed by the
;; Simplified feature-based map of the first floor of the Spire

;; Research Centre simulator using

;; corridor(id) x, y, th, length, width

;; door (id) x, y, th, width, name approximately measured

data from the real floor CORRIDOR(l) -3000, -500, -90, 12000, 1600

CORRIDOR(2) -3000, 350, 0, 12500,2000
 map. From the simulator's
CORRIDOR(3) 7000, -1250, 0, 7500, 1000

point of view, the entire

DOOR (1) 5500, -750, -90, 900, FlO

DOOR (2) 8000, -1780, -90, 890, Fll world consists of line

DOOR (3) 13500, -1780, -90, 890, F12

segments. The simulator
DOOR(4)

does not have any
ROOM (1)

Fig. 6-4 Simplified Feature Map ofthe First Floor

129

perceptions ofenvironment features, such as wall, door, corridor, etc. These

perceptions are actually derived by the perceptual subsystem of the controller, which

receives and interprets the simulated environment data from the simulator. Except for

the sensor information interpreted through the perceptual subsystem, a simple feature

based map is also provided to the robot controller in order to have an approximate

world model in advance. This simplified floor map is presented in Fig. 6-4. The

controller loads this map and constructs these features and stores them in the long tem1

model. Note that this map is based on the robot co-ordinates. The simulator still uses

geometrical co-ordinates for all of its processing. Fig. 6-5 gives a glimpse of the robot

centred view of the environment, which includes the part of room FlO, door and

corridor #2.

Fig. 6-5 Part of Environment in the Robot Centred Co-ordinate

..•.. : sensed location;

- : map location.
= : doorway

6.2.2 Navigation and Task Execution Pian

A navigation plan is usually produced and provided by the highest level of the robot

control system, caned the deliberative layer in a three layer architecture. Since planning

130

;;; Plan for slab fmishing in room FlO

;;; This plan consists ofstarting positions and paths.

;;; Two end points ofeach path, together with their out

;;; angle defme each path or finishing lane. Lane order is

;;; from right to left.

;;; lane width: 400

;;; lane overlap: 0

;;; edge: 234

;;; LAl'lE (id) xl yl x2 y2 thl th2 width

",
;;; ANCHOR (id) x y th

;;; lane(i) = 400 *i +134;

POS (1) 8234 2659 90

LANE (1) 8234 2659 8234 9977 90180

POS (3) 7634 11435 -90

LANE (3) 7634 11435 7634 2011 -90 180

POS (5) 7034 1201 90

LANE (5) 7034 1201 7034 11435 90 180

POS (7) 6434 11435 -90

LANE (7) 6434 11435 6434 1201 -90 180

POS (9) 5834 1201 90

LANE(9) 5834 1201 5834 11435 90180

POS (11) 5234 11435 -90

LANE (11) 5234 11435 5234 1201 -90180

POS (13) 4634 634 90

LANE (13) 4634 634 4634 11435 90 180

POS (15) 4034 11435 -90

LANE (15) 4034 434 4034 634 -90 180

POS (17) 3434 634 90

LANE(I7) 3434 634 3434 11435 90180

POS (19) 2834 11435 -90

LANE(19) 2834 11435 2834634 -90180

FOS (21) 2234 634 90

LANE(21) 2234 634 2234 11435 90180

POS (23) 1634 11435 -90

LANE (23) 1634 11435 1634634 -90180

POS (25) 1034 634 90

LANE (25) 1034 634 1034 10 139 90 180

POS (27) 434 10139 -90

LANE (27) 434 10139 434 1234 -900

ANCHOR (1) 5265 10011 0

ANCHOR (2) 5265 6070 0

POS (3) 1634 434 0

FROM (2) 2634 434 0

TO (1) 434 1034 0

Fig.6-6 Task Plan for Concrete Slab Finishing

I

I

I 131

is not the topic of this thesis, it is

assumed that a plan has already

been given and reactive planning

problems need not to be

considered. In this experiment, the

navigation plan is presumed to

consist of the following parts.

First, the robot finds and enters

room FlO. Second, the robot

executes its main task, finishing

the room. Finally, after the task

has been completed, the robot

moves out of the room. This

navigation plan is sketched as

follows:

1. find and follow corridor #2

until close to door of room FlO;

2. find and enter FlO;

3. execute concrete slab

finishing task;

4. find and move out of room

FlO.

The execution of step 1,2, 4

involves the checking of the long

term model for the availability of

related environment features. This

is different from step 3, which

entirely depends on a task

execution plan produced using

extensive domain knowledge.

Here, the experiment employs

t

mostly a regular pattern [Kajima89] and also some special types ofoperation to form

such a task plan. The regular pattern of operations consists ofup and down straight

movement actions of the robot to cover most of the rectangular area. Other areas, such

as the vicinity of pillars and wall edges, which are difficult to operate using the regular

pattern, are finished with special types of movement control. It is supposed that a

detailed task execution plan as shown in Fig. 6-6 has been generated and given to the

control system for the concrete slab finishing task. This plan is made up of the

sequences of action goals for the task. The term, POS, represents a position point the

robot must reach to. LANE means a straight path to be trawled. ANCHOR, FROM

and TO represent points for the robot to position itself during its special types of

operations. The control system activates the plan after the robot enters the room and

then carries out the concrete slab finishing task by executing the sequence of these

movement control actions prescribed by the plan.

6.2.3 An Implementation of Two Layer Control System

The main objective ofthis experiment was to demonstrate the capabilities ofthe

MARCO control architecture and its possible applications in real world problems. The

key points that make this experiment a good test of MARCO are the realistic and rich

types of environment features presented for the evaluation ofMARCO's feature­

invoked fuzzy behaviours at the control layer and the chances of organising these low

level control activities in the sequencing layer. At the low level of control, the

following fuzzy behaviours were employed in the experiment: Avoid Obstacle, Keep

Moving, Reach Position, Follow Edge, Follow Corridor, Track Path, Cross Door and

Recover Stall. These behaviours can be organised into various behaviour clusters by

the sequencing layer. The actual controlling activities were carried out by these

behaviours. At the sequencing layer, the mediation oflow level controlling activities

was realised through task templates. The task net in a task template consists of either

functions or other task templates. The function in a step ofthe task net can only be

executed when a task template is instantiated. In this experiment, 3 main task

templates, sequence, follaw, monitor and 6 functions, check, switch, terminate,

132 I

fetchylan, invoke, set, were developed. The main task template, sequence is defined

below.

Define-Task Template
(Name (sequence»
(Succeed (state SUCCESS»
(Method

(Task-Net

(tl (follow) for t2)

(t2 (check ?room)

(and (found ?room)

(near ?room) for t3)

(t3 (switch follow_corridor enterJoom ?beh ?state)

(SUCCESS ?state) for t4)

(t4 (terminate ?beh) for t5)

(t5 (fetchylan ?goal ?type)

(POS ?type) for t6

(LANE ?type) for t7

(ANCHOR ?type) for t8

(FROM ?type) for t9

(TO ?type) for tlO)

(t6 (invoke reach-"position ?beh ?goal ?state)

(ACHIEVED ?state) for tIl)

(t7 (invoke track-..path ?beh ?goal ?state)

(ACHIEVED ?state) fortll)

(t8 (invoke reachyosition ?beh ?goal ?state)

(ACHIEVED ?state) for tl2)

(t9 (invoke reach yositon ?beh ?goal ?state)

(ACHIEVED ?state) fort13)

(tl0 (check ?goal ?state)

(ACIDEVED ?state) for tl4)

(t 11 (tenninate ?beh) for t5)
(tl2 (switch reachyosition follow_edge ?beh ?state) for tIS)
(t13 (switch reachyosition follow_edge ?beh ?state) for t5)
(t14 (switch reachyosition leaveJoom ?beh ?state)

(ACIDEVED ?state) for t16)

(tl5 (check ?time)

(= ?time WAIT_TIME) for tS)

(t16 (terminate ?beh) for t 17)

(t17 (set SUCCESS ?state»)

This task template was the primary task template which initiated the sequencing

activities. It employed functions and another task template, follow to carry out the

mediation task. The functions can bring up other task templates, in this case, monitor,

and also perform nonnal processing. For example, the function invoke will initiate a

133 I

task-oriented behaviour in the low level control layer and also create a task with

monitor task template to monitor the progress of that behaviour.

.-~---.-----.---.-------.-.~-, first track
;-'1 : ~
10,
::=-H J

FlO,
! :

'
~ last track

I: , ,
routes by regular pattern

I:
, , " :1

":1I:
, ' ":1I:
; : : : fii routes by special pattern

J'~:<'I':~ -~~::~~.~ ~.~: ~ ~ ~._- ~'.-~-_-~ ~ -~: ~: ~-.-; ~ ~ ::)-' j-­

.'"
door Ai·...

, -. -.c. -. --. -. -. -------. -. ------------. -.. -li!- - .<£]

corridor #2

Fig. 6-7 Approximate Reference Trace Routes and Positions

6.2.4 Detailed Traces

One way to illustrate the effectiveness of the MARCO system is through the use of a

detailed execution trace. This section includes two traces: a sequencing activity trace

that shows the creation, execution and completion of all task templates required to

carry out the concrete slab finishing task, and a fuzzy behaviour activation level trace

that shows the way fuzzy behaviours competing and co-ordinating with each other

through the fuzzy logic control processes and their selection network. The traces are

intended to show the two layer control architecture adapting to the environment

changes and uncertainty and carry out effective navigation control. Traces also give

insight into the way the task scheduler functions. Fig. 6-7 gives some of expected

robot routes and approximate positions for the trace references in the whole operation .

• 6.2.4.1 A Sequencing Trace
r

134 I
1

To make the detailed trace easier to follow, an overall tracing and controlling

processes are first presented. According to the navigation plan in Fig. 6-6, the robot

will be started from (A), controlled by several reactive behaviours. Following corridor

activity will be initiated approximately at (B) when the corridor #2 is found. At

position (C), the robot will stop following corridor activity and start door crossing

when the door of room FlO is found. At position (D), the door crossing will be

terminated and reaching position activity will be initiated. This activity will lead the

robot to the starting position (E) ofthe first troweling path. The trace win show the

sequencing activity for finishing the first path from E to F. The rest ofthe straight up

and down troweling activities will be skipped. The trace will continue from (G), the

end of the last straight troweling path, showing the sequencing activities which change

the regular movement to a special troweling operation. From position (H), the robot

will be guided to move around a pillar and finish its close surrounding area. This

troweling operation cannot be efficiently finished using a regular pattern of operation.

Follow Edge behaviour will be initiated for the special operation. Fonow Edge

behaviour is unique that it does not need a specific plan to act like other task-oriented

behaviours. In this sense, it can also be seen as a reactive behaviour. However, more

purposeful uses of the behaviour can only be realised under the control of the

sequencing layer. The trace will demonstrate the uses ofFollow Edge Behaviour to

finish the first pillar with the help of an anchoring goal position, (R), from where the

edge following activities can start. The trace will then skip the second pillar and

proceed to show the sequencing actions for the initiation of edge following activities to

finish the inside edge of the room by using Follow Edge behaviour. The trace will

present the starting actions for the operation from position (1) and the termination

process at (1). The final trace will follow the robot leaving the room, involving finding

the door of room FlO at position (1) and completing the navigation task at the final

position (K).

In the trace description that follows, the reference will be made at the current

execution step ofa task template and the robot position, (X, Y ,TH). The state (X, Y,

TH) stands for the robot XJY position and its heading within the first floor co-ordinate

with the low left comer as origin, indicated in Fig. 6-3. This state information is mainly

135

for trace purposes. A robot-centred co-ordinate system is used in the actual control

system. In addition, the following uppercase characters, (A, B, C, D, E, F, G, H, I , J),

will also be used to reference approximate positions as indicated in Fig. 6-7. Before

the trace started, the robot perceptual task, communication task, low level control task

were first initialised and started. The trace was recorded for the task templates which

carried out the sequencing activities. The trace message is explained here. Line starting

with "&&" indicate the main sequencing actions by the task templates. Lines starting

with "--" show the current step oftask net executed by the task scheduler, perceptual

information or plan goal newly extracted. Lines with prefix"...." indicate the current

active fuzzy behaviours in the low level control layer.

The first line of the trace is:

&& starting sequence it, top level.

This output tells us the invocation of top level sequencing task template. The task

scheduler creates a top level task with the name "sequence it" and inserts the task into

the task queue. At this point, the task scheduler has not executed the task but has been

ready to start with the first step ofthe task template. After initialisation of the task, the

task scheduler starts next cycle of executions of the tasks on the task queue. When it

encounters the task "sequence it" again, the following trace continues:

Step: 10, state: #[Marco state X: 20.41rn, Y: 1.46m, TH: 180.0]

&& Starting following, dad sequence it
Current behaviour cluster:

.....Avoid Obstacle

....• Keep Moving

..... Recover Stall

The trace reports the execution ofthe first step in the task net of sequence task

template. The step tag is 10. A subtask, called following is generated and placed into

the task queue in this step. This subtask's parent is task "sequence it". The three

reactive fuzzy behaviours have been created by the low level control task. Currently,

the robot is still in its initial state and is controlled only by the three reactive

behaviours. Although "following" task has been in the task queue, its main function at

136

this stage is monitoring the availability of a corridor feature. From its starting position

(A), the robot moves along corridor #2. While the low level control layer takes care of

the robot survival by the three reactive behaviours, the sequencing layer currently

involves the activity brought about by two tasks, the top level "sequence it" and its

subtask "following". After generating the subtask, the task "sequence it" enters the
•

step which monitors a room feature, and at the same time, "following" subtask checks

a corridor feature until it is found by the perceptual subsystem.

Step: 20, state: #[Marco state X: 20.40m, Y: 1.46m, TH: 180.0]
Found a corridor

&& Starting follow it, dad following

&& Starting behaviour Follow Corridor

I
Current behaviour cluster:

·Avoid Obstacle

· Follow Corridor

· Keep Moving

· Recover Stall

t This trace is generated by the "following" subtask when it is executed by the task

scheduler and a corridor feature has been found at position (B). The subtask

"following" creates its own subtask, named "follow it" which is instantiated from

monitor-behaviour task template. The subtask "follow it" simply monitors the progress

of a behaviour and sets the success state when the behaviour achieves its goal. It has

not been implemented with more functions, such as failure reporting, or recovery in

this experiment. "fonowing" also initiates Follow Corridor behaviour at the same step.

The execution oftrus step results in three sequencing tasks in the task queue,

"sequence it", "following", "follow it" and four active fuzzy behaviours at the low level

control layer. From now on, the robot's activity is purposeful corridor following, not

just reactive survival. The task scheduler is still executing the tasks in turn. The top

level task "sequence it" keeps on monitoring for a room feature. The task "following"

checks its own state of execution and the task "follow it" examines the achievement of

Follow Corridor behaviour. The robot is guided by Follow Corridor behaviour to

follow the central lane of corridor #2. After travelling along the corridor for about 4m,

a door is detected and registered as the door of room, FlO at position (C). As required

by our sketch plan, the sequencing layer should stop corridor following and initiates

door entering activity. The trace below shows these actions:

I,
137

~'

I

Step: 15, state: #[Marco state X: 16.9lm, Y: 1.43m, TH: 195.8]
Found a door

&& Deleting following
&& Deleting follow it
&& Deleting behaviour Follow Corridor

Current behaviour cluster:
.....Avoid Obstacle
· Keep Moving
" ... Recover Stall

&& Starting enter it, dad sequence it
&& Starting behaviour Follow Door
-- Current behaviour cluster:
·Avoid Obstacle
· Cross Door
..... Keep Moving
..... Recover Stall

Note that this trace is produced by the task "sequence it". The step tags of a task are

independent of the ones of other tasks. These numbers only represent separate steps

and are not necessarily in order. The step tag, 15 of the current trace has no relation

with that of the last trace which is created by the "following" task. After the door of

FlO has been found and the robot is quite near the door, the task "sequence it" forces

the subtask "following" to stop by setting its task state to REMOVE. The task

scheduler then removes the task from the task queue in the next cycle oftask

execution. The removal of a task also means the deletion ofall its subtasks and

initiated behaviours by the task scheduler. This step causes the removal of"following",

"follow it" and behaviour Follow Corridor. Door entering activity is brought up at

position (C) through the creation ofthe subtask "enter if' and the behaviour, Cross

Door. The task "enter it" is also a subtask instantiated from the monitor-behaviour

task template. After this step, the task queue contains two sequencing tasks, "sequence

it" and "enter it". The low level control layer consists of four fuzzy behaviours, which

co-operate to control the robot going through the door. The task monitors the state of

the subtask "enter it", which, in tum, checks the progress ofCross Door behaviour.

When the robot successfully goes through the door to position (D), the task "enter it"

changes its state to SUCCESS and the task "sequence it" then sets the state to

REMOVE, resulting in the termination ofthe "enter it" task and Cross Door

behaviour. This is indicated by the following trace:

-- Step: 20, state: #[Marco state X: 14.94m, Y: 2.56m, TH: 90.6]

, 138

...

&& Deleting enter it
&& Deleting behaviour Cross Door
-- Current behaviour cluster:
.....Avoid Obstacle
..... Keep Moving
..... Recover Stall

The robot's main task is to trowel the floor ofroorn FlO. Once it gets into the room,

the sequencing task should start the task plan execution sequences.

Step: 40, state: #[Marco state X: 14.94m, Y: 2.56m, TH: 90.6]
Had a position goal

&& Starting go to pos, dad sequence it
&& Starting behaviour Reach Position

Current behaviour cluster:

.....Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

The above trace shows the current step, tag No. 40, executed by the task scheduler for

the task "sequence it", the only remaining sequencing task in the task queue. Step 40

functions as a plan dispatcher, which fetches a plan goal and initiates a corresponding

goal seeking activity. At this point, a position point, (E), is the first goal for the robot

to complete after it enters the room. The task "sequence it" instantiates a monitor­

behaviour subtask, "go to pos" and initiates Reach Position behaviour. The robot sets

off from position (D) towards the specified position (E) as the first task execution step,

controlled by four behaviours and monitored by two tasks.

Step: 85, state: #[Marco state X: 21.77m, Y: 4.78m, TH: 17.0]

&& Deleting go to pos
&& Deleting behaviour Reach Position

,Current behaviour cluster:
IAvoid Obstacle I
I..... Keep Moving

..... Recover Stall

The trace continues with the above information. As indicated at Step 85, the task

scheduler deletes the monitoring subtask "go to pos" and behaviour Reach Position

when the robot successfully arrives at the position (E). After that, the robot continues

to execute next goal of the task plan. This is initiated by the "sequence it" task as

shown in the following trace.

139

Step: 40, state: #[Marco state X: 21.77m, Y: 4.78m, TH: 17.0]
Had a track goal

&& Starting track it, dad sequence it
&& Starting behaviour Track Path

Current behaviour cluster:
.....Avoid Obstacle
· Track Path
..... Keep Moving
..... Recover Stall

The second goal of the plan is a track, between position (E) and (F), which the robot is

asked to trowel. The task "sequence it" generates the subtask "track it" and Track Path

behaviour in the low level control layer. The troweling activities are finished when the

robot moves to the end of the path, position (F), and the task scheduler removes the

subtask "track it" and Track Path behaviour at Step 50 of the "sequence it" task. The

robot has moved for about 8m as indicated by the robot's previous and current state in

the trace.

Step: 50, state: #[Marco state X: 21.67m, Y: 12.01m, TH: 108.7]

&& Deleting track it
&& Deleting behaviour Track Path

Current behaviour cluster:
·Avoid Obstacle
· Keep Moving
· Recover Stall

As discussed earlier, the robot employs mostly a regular pattern of troweling to finish

the main rectangular area of the floor. This regular pattern of action is mainly

controlled by two task-oriented behaviours, Reach Position and Track Path. They are

invoked respectively by the sequencing task when a position, or a track is provided.

The robot is first guided to a starting position and then trowels a specified track. The

two types ofcontrol actions are combined to finish one piece of straight track. From

the assumed plan given in Section 6.2.2. We know that there are 14 straight tracks.

This means that the robot must move up and down 14 times to finish the main area of

the floor. The trace of sequencing activities to finish the first track has been presented.

The rest of the traces are skipped because they are all the same except for the different

robot states. The complete sequencing trace for the slab finishing task is provided in

Appendix C. From here, we proceed to the last trace of sequencing activities when the

140

robot finishes the main area and starts to do some special type of finishing work. The

trace restarts below.

Step: 50, state: #[Marco state X: 14.22m, Y: 3.58m, TH: 271.9]

&& Deleting track it
&& Deleting behaviour Track Path

Current behaviour cluster:
.....Avoid Obstacle
..... Keep Moving
..... Recover Stall

The robot moves to the end of the last troweling track, position (G), and the task

scheduler executes Step 50 of the task "sequence it" which terminates the subtask

"track it" and behaviour Track Path. On the task queue, there is only one sequencing

task, "sequence it", while at the low level control layer, three reactive behaviours

remain. The current step of the task "sequence it" is Step 40, which is to be executed

in the next round of task execution by the task scheduler. The results of the new

execution is shown as the trace continues.

Step: 40, state: #[Marco state X: 14.22m, Y: 3.55m, TH: 274.9]
Had a anchor goal

&& Starting go to pos, dad sequence it

&& Starting behaviour Reach Position

Current behaviour cluster:

.. '...Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

This time, an anchor position, (H), is fetched from the plan and a goal reaching

activity is launched by the initiation ofReach Position behaviour. When the robot

reaches the anchor point, the sequencing task produces the following trace.

Step: 70, state: #[Marco state X: IS. 85m, Y: l2.03m, TH: 71.4]
Anchored to a wall edge

&& Deleting go to pos

&& Deleting behaviour Reach Position

Current behaviour cluster:

.....Avoid Obstacle

..... Keep Moving

..... Recover Stall

&& Starting hug it, dad sequence it

&& Starting behaviour Follow Edge

Current behaviour cluster:

141

'" .. Avoid Obstacle
· Follow Edge
'" .. Keep Moving
'" .. Recover Stall

The task "sequence it" removes the subtask "go to pos" and also Reach Position

behaviour. It then starts another subtask "hug it" and behaviour Follow Edge at

position (H). The purpose ofthis sequencing activity is to organise the low level

control layer controlling the robot to move around a pillar and finish its close

surrounding area. A goal position is used as an anchoring point where the edge

following activities can start. The task "sequence it" and its subtask make sure that the

right sequences of control actions are carried out. The completion of the surrounding

of the first pillar is indicated in the trace below.

Step: 80, state: #[Marco state X: 16.14m, Y: 13.84m, TH: 173.8]

&& Deleting hug it, dad sequence it
&& Deleting behaviour Follow Edge

Current behaviour cluster:
.....Avoid Obstacle
· Keep Moving
· Recover Stall

The troweling of the second pillar area is finished in the same way. After finishing the

pillars, the robot is asked to finish the inside edge of the room. We skip the second

pillar finishing trace and the trace continues from anchoring the robot close to the

position (I), where it starts to follow the wall edge ofthe room.

Step: 40, state: #[Marco state X: lS.4Sm, Y: 2.76m, TH: 240.0]
Had a from goal

&& Starting go to pas, dad sequence it
&& Starting behaviour Reach Position

Current behaviour cluster:
.....Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

Although ajrom position goal causes the same activation of goal reaching activities,

the sequences of actions that follow are different. The wall edge following activity

needs to have an end point, indicated by a to goal position, in order to stop. The

finishing of the anchoring activity and the initiation of wall following generates the

following trace.

142

po

step: 90, state: #[Marco state X: l6.l2m, Y: 2.66m, TH: 7.0]
Anchored to a wall edge

&& Deleting go to pos
&& Deleting behaviour Reach Position

Current behaviour cluster:
·Avoid Obstacle
· Keep Moving
..... Recover Stall

&& Starting hug it, dad sequence it
&& Starting behaviour Follow Edge
-- Current behaviour cluster:
·Avoid Obstacle
· Follow Edge
· Keep Moving
· Recover Stall

At this stage, there are two sequencing tasks on the task queue. One is "sequence it"

and the other is the subtask "hug it". At the low level control layer, four behaviours,

Avoid Obstacle, Follow Edge, Keep Moving and Recover Stall engage in the room

edge troweling operation. The robot's progress is monitored by the subtask "hug it".

The robot trowels along the edge of the room from the starting from position, (1). This

operation is finally stopped by the task "sequence it" when the task "hug it" monitors

that the robot has arrived at the end to position (1) and sets its state to SUCCESS. The

trace below gives the results.

Step: 100, state: #[Marco state X: l4.l0m, Y: 3.47m, TH: 259.6]

&& Deleting hug it

&& Deleting behaviour Follow Edge

Current behaviour cluster:

•....Avoid Obstacle

..... Keep Moving

..... Recover Stall

The robot has finished its main task at this point. It has trowelled the main area of the

room floor and also finished pillars and room edge areas. Now, it is the time to leave.

The remaining traces cover the final sequencing activities by the sequencing tasks.

Step: 150, state: #[Marco state X: 14.10m, Y: 3.47m, TH: 259.6]

Found a door

&& Starting go out, dad sequence it

&& Starting behaviour Cross Door

Current behaviour cluster:

.....Avoid Obstacle

143

s'

..... Cross Door

..... Keep Moving

..... Recover Stall

At Step 150, the task "sequence it" checks and finds the exiting door of room FlO and

initiates the going out of the door activity at position (J). The subtask "go out" is

created and inserted into the task queue and the behaviour Cross Door is invoked in

the low level control layer. The robot starts to leave the room under the control of the

one task-oriented behaviour and three reactive behaviours. Finally, the robot gets out

of the room FlO at position (K). The trace shows.

Step: lBO, state: #[Marco state X: 14.BOm, Y: l.B3m, TH: 254.5]

&& Deleting go out

&& Deleting behaviour Cross Door

Current behaviour cluster:

.....Avoid Obstacle

..... Keep Moving

..... Recover Stall

At the higher level, there is now only one sequencing task "sequence it" left. the

control system has finished its task and the sequencing activity is no longer required.

The task "sequence it" enters its final step of task net. The trace shows the termination

of the task.

Step: 200, state: #[Marco state X: 14.BOm, Y: 1.81m, TH: 256.0]

&& Task succeeded, sequence it!

&& Deleting sequence it

Current behaviour cluster:

.....Avoid Obstacle

..•.. Keep Moving

..... Recover Stall

The top level sequencing task is removed from the task queue. From position (K), the

robot is only controlled by the low level control layer with three reactive behaviours.

The robot wanders on.

6.2.4.2 A Behaviour Activation Level Trace

144

In the last section, the task execution of the sequencing layer has been traced.

However, the actual robot control is finalised in the low level control layer, which

always consists of a cluster offuzzy behaviours. The detailed trace of these fuzzy

behaviours activity will help us to check how the behaviours and behaviour selection

network work together to effectively control the robot to complete the given task. It is

difficult to record the behaviours' activation graphs. Therefore, the behaviours'

activation levels at each cycle of the task execution are first recorded. The activity data

vs. time step are then plotted into an activity graph for every fuzzy behaviour. The

robot takes about 24850 time steps to finish the whole concrete slab finishing

operation. Each step in the simulation measures 0.1 s. This section will trace fuzzy

behaviours' activities for the most parts of the robot operation as described in the trace

of the sequencing activities. This makes it easy to cross-examine the actions in the two

layers. Some of typical activities pattern of the behaviours will also be discussed. The

traces presented here are plotted with 20 steps, i.e. 2s scale. To distinguish from the

sequencing trace, a list of lower case characters, (a, b, c, d, e, f, g, h, i, j, k, 1), are used

as approximate reference positions in graphs and nearby figures. The sketched robot

routes in Fig. 6-7 can also be referred. The first trace starts from the robot's initial
I

position (a), when it is only controlled by three reactive behaviours, and ends when the

door of room FlO is found in the position (c) and Follow Corridor behaviour is

terminated. This is indicated in Fig. 6-8.I
j
;

The robot started from almost the central line of corridor #2 facing the other end of the

corridor. No obstacles present nearby and the walls at the two sides are quite far.

Avoid Obstacle and Recover Stall behaviours will not be active under such

circumstances. The robot is started only by the Keep Moving behaviour. The trace

graph shows that between positions (a) and (b), only the Keep Moving behaviour is

active and has a full activation strength 1.0. The other two reactive behaviours, though

running, play no part in the control. After travelling a short distance, corridor #2 is

sensed and Follow Corridor behaviour is brought up immediately_ This task-oriented

behaviour has a promotion/inhibition link to Keep Moving behaviour, which

145

-

Activation

0.8
0.6

0cz: 0.4
0.2 	 Time

0

::E
lC

0.8

0.6

0.4
,
1

0.2 ,
0

1

Time

0.8

0.6

I
OArn

0:: 0.2 	 Time

0

0.8 '
0.6
0.4 .

u.. 0.2 i

u

O _______-..-...JI , ----I
o 000 0 0 0 0

N "I:t to Q) 0 N
~ y­ :!

(a)

/! 	 rl ('~
C···-- ··-··....r··~

\ I
(b)

Time

Fig. 6-8 The Trace of Fuzzy Behaviour Activity for Following Corridor
(a) activation graph; (b) course and positions.

146

at this time, subdues Keep Moving behaviour and takes over the control of the robot

from the position (b). The other two reactive behaviours still remains silent. The robot

is controlled by Follow Corridor behaviour until it is tenninated at the position (c).

During this part of the robot movement, Keep Moving behaviour is suppressed at an

activation level around 0.8 while Follow Corridor Behaviour exerts the full activity

strength. The trace continues in Fig. 6-9.

From the position (c), the robot begins to perform room entering activities, controlled

by Cross Door behaviour. Things go smoothly until the robot is guided to the position

(d), where Avoid Obstacle behaviour detects that the robot is too close to the obstacle,

the door edge at the left. The activation level of the behaviour increases, which also

results in the decrease of the other behaviours' activation energy. Finally, Avoid

Obstacle behaviour takes over the control and slows down the robot and turns it to the

right. The danger of colliding at the left side of the door diminishes and Avoid Obstacle

behaviour's activation level decreases as the robot turns away. The interactions

between the two behaviours also causes some fluctuation in Keep Moving behaviour's

activation level. However, it is not enough for the behaviour to dominate. Cross Door

behaviour regains the control and the robot continues to cross the door. When the

robot moves near the position (e), a similar thing happens at the right side, which can

be seen in the plot between (e) and (f). After the robot turns back to the right course,

the entering room activities are near completion. From then, the robot continues

moving to the end of the door way and Cross Door behaviour weakens as the end

position draws near. At the position (g), the door entering activity is finished and Cross

Door behaviour is removed. The robot is temporarily controlled by Keep Moving

behaviour. From the trace, we can see the door entering activities are mainly controlled

by Cross Door behaviour, while Avoid Obstacle assists to keep the robot safe.

Through the energy redistribution between the behaviours, the robot is always

controlled by the most favourable behaviour and manages to safely and effectively go

through the door, even though an individual behaviour, Cross Door, in this case, may

not perform perfectly well and the position ofthe door was provided approximately.

This is the advantage of a behaviour-based architecture. From the

147

Activation

.....

0.8

0.6 ­
0 0.4< ,

02 .
0

1 ­
O.B

0.6 .
;~ 0.4

:.:
0.2

0

1
0.8 ,

06 .

04 .III
a:: 0.2 , Time

o __________________------~----~------------~-------------

Time

Time

-1--._,,__, -~-.-;..... --_.+-­ -

0.6 .O~--J.
0.4 •

Q 0.2 •
(.l o • --'-- --1

a a a 0 a
<0 0 N ."...,. ..,..... '" '" v

/1
~-

-- ---.---+- ---+-------1---­
0 0 0 a
<0 0 N V
v IJ) III'"

00000
to CC 0 C\I ""If
,...... """ ex> co CO

Time-+----+ ---t-- I

0 a a 0
<D <0 0 N
III III <0'"

(a)

~ f!
~~/ rd \ __

c:

(b)

Fig. 6-9 The Trace of Fuzzy Behaviours Activity for Crossing the Door
(a) Activation Graph;
(b) Robot Course.

position (g), the robot carries out the first goal of the task, going to the position (h)

before starting troweling the floor. There is no obstruction between (g) and (h) and the

robot moves straight towards the position, only controlled by Reach Position

behaviour. The most part of the trace for this period is skipped and the trace continues

when the robot moves close to the position as shown in Fig. 6-10. As the robot

approaches the comer position, Avoid Obstacle behaviour gradually builds up its

activation energy. Just before the arrival, the robot moves close to the convex comer

of the wall at the right. This causes further increase ofthe activation level of Avoid

Obstacle behaviour which then takes over the control from Reach Position behaviour.

The robot finally arrives at the position (h), safeguarded by Avoid Obstacle and

148

&

Activation

0.8

0 0.6
< 0.4

0.2

0 Time

0.8

0.6

0.4

0.2

0 . 1-.1 . I i Time
1

0.8
0.6 j

0.4

0.2 I

0
Time

Il.

"
1

Time

•
~ , 0­

I­

1
0.8
0.6
0.4
0.2 i

0 - . I ­ j-­ +-1 ---i ---1-­ 1-­ +­ --~ -I i ---t---+--+-'--r ---f-'" t'- +--+'---+--J- ·,,-t .-.­ ... -t--' -f---'-"~' Time
0 0 0 0 0 0 0 0000000000
V <0 co 0 N V <0 co 0 N v <0 <0 0 N V <0 <0 0 v <0 co 0 N V <0 0
M M co I'- I'- I'- I'- r-- co co <0 C> Sl C> Cl 0 0 0 ~ 0 ~

~ ~~ ~ ~ ~ ~ ~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ N N N N N '" '"~
$
I,
~ (a)
~ oI
Ii
\1

II!
I

/I,•
(b)••~,

• Fig. 6-10 The Trace ofFuzzy Behaviour~.•• Activity for Reaching the First Goal.
~ (a) activation graph; .. (b) robot course•,~
'j

~

I
~

.~
;~

l
.~

I
':I
i 149i

directed by Reach Position behaviour. The traces that follow show the behaviour

activities in finishing the first troweling path. The operation is performed by Track Path

behaviour and three reactive behaviours. Right after gaining the position (h), the robot

is in immediate danger of collision with the wall because its initial heading is towards

the wall and is being turned towards the troweling path by Track Path behaviour. The

danger is released by Avoid Obstacle behaviour. However, this sequence of actions

results in a very slow speed ofthe robot movement, causing the firing of Recover Stall

behaviour to pull the robot out of the unfavourable state. After two such triggering

actions, the robot is back to the course and starts troweling the path. The first path is

finished at the position (i), though there are still occasions when Avoid Obstacle

behaviour shows up to release the danger of collisions.

Tracking an open path is much easy than a blocked one. The trace skips over several

troweling operations in the open area and proceeds to show the behaviours' activities

in troweling a path with two pillars in the way. Fig. 6-11 presents the trace starting

from the position 0). After it leaves the position 0), the robot approaches the first

pillar, which is not shown in the provided feature map. Troweling action is immediately

replaced by collision avoidance actions, as shown in the traces of two behaviours'

activation levels. The collision avoidance action causes the robot to drift away from the

troweling path. Passing by the first pillar, the robot is again controlled by Track Path

behaviour, trying to steer back to the course. However, because there is no specific

positioning control involved, the resulting path is not as desired. The robot keeps

moving and approaches the second pillar. Its approaching angle causes the robot to

spend more time in avoiding collision with the pillar than the last one. It also brings up

Recover Stall behaviour several times to trigger the robot out of stalling states. In the

meantime, Track Path behaviour and Keep Moving behaviour are subdued. The

troweling actions are resumed after the robot escaped from the pillar in the

approximate position (k).

The final trace shows how Follow Edge behaviour and the three reactive behaviours

co-operate to finish the first pillar area, starting from the position (1). Follow Edge

behaviour takes over the robot control after the robot is anchored to the position (1).

150

Activation

0 «

0.8

J0.6

0.4

0.2

0

'j

Time

::!i
x:

<f)

0::

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2 Time

0

Time

0.8

0.6
Q.
I- 0.4 •

0.2
Time

o ; ~ ~ ~--t"--';·-.f---t---l'--+'--·f-"----+---~----t-- +---+---+--+ +---+---+-,,-f---I-i-"--t-++-+--+-----l--·,,-t---L.-+- 1--- 0 --4"-'!

000

~~~~~~~~~~~~~g~~~~~~~~~~~~~~g~~~~8~~~~~~~~~~~
~~~~~~~~~~~~m~w~~~~~~~~~~~~m~~~~~~m~~~ID~W~~WID 

(a)

(b)

Fig. 6-11 The Trace ofBehaviour Activity for
Troweling a Path with Two Pillars
(a) activation graph;
(b) robot course.

151

,

Activation

1

0.8

0.6
0
< 0.4

0.2 Time
0

1

08 ,
,0.6

::E
~ 0.4

0.2 Time
0 	 I I I I ~ i _. -I j- - I . to, !, . r - ,"­

1

0.8

0.6
rJl
n:: 0.4

0.2 	 Time

0 i I 1 1 1 i

1.
0.8 :

0.6
w
U­ 0.4

0.2 	 Time

0

:

,
! f --I 1-· j - +.+- i-I 1 ·-1.. -1 f-+ t-!-· I· - +..+--1- .

... _--- .. '------- ­

(a)

,
Q

(b)

o
Fig. 6-12 The Trace of Behaviour Activity
in Finishing the First Pillar
(a) activation graph;
(b) robot course.

The behaviour is required to control the robot operation for 1000 time steps in

finishing the pillar area as close as possible. In doing so, it requires Avoid Obstacle

behaviour's support for safety when the robot gets too close. Keep Moving behaviour

also comes up from time to time to increase the speed when the robot moves slowly,

but not too slow to trigger Recover Stall behaviour. From Fig. 6-12, we can see that

152

....

the robot trowels around the pillar about twice and finishes the work reasonably well

under the behaviours' control. This special type of operation is also used in finishing

the second pillar and all of the inside edge of the room. These traces of the behaviour's

activity are skipped because they are similar to the previous one. So were the traces of

the robot leaving the room.

6.2.5 Two Complete Robot Courses

The last sections have presented insight into the activities of a MARCO control system

in completing a simulated concrete slab finishing task. The low level control layer of

the system is developed based on the manually designed fuzzy behaviours. The parts of

the robot course have been displayed in the discussion. The complete snapshot of the

robot's movement course is presented in Fig. 6-13. With the same sequencing layer

and other components, another control system was developed, using a learned low

level control layer consisting learned fuzzy behaviours and behaviour selection

network The navigation and the task execution plan are the same as the last one. The

task execution is sequenced in the exactly the same way as the previous one.

o

Fig. 6-13 Snapshot of Complete Robot Course in Concrete Slab Finishing
Task with Manually Designed Low Level Control System.

153

There are some differences in the low level controlling activities because of the use of

learned behaviours and the selection network. Fig. 6-14 provides the complete picture

of the robot course in finishing the task in order to show the effects of the learned low

level control layer.

o

o

o

Fig. 6-14 Snapshot of Complete Robot Course in Concrete Slab Finishing Task
with Learned Low Level Control System.

6.2.6 Discussion of the Detailed Courses

From Fig. 6-13, we can see that, despite the success in sequencing and controlling, the

system presents some problems. The main troweling course is swinging, indicating that

the Track Path behaviour cannot stabilise the robot movement and produce a straight

troweling path. At the end of a troweling path, the robot is often unable to position

itself perfectly at the start position of the next path before further troweling starts,

causing a deviation of the troweling actions at the beginning. When approaching an

obstacle and escaping afterwards, the robot cannot immediately come back to the path,

making the troweling inefficient. In finishing the wall edge, a similar swing to that

exhibited by Track Path behaviour also exists, which also prolongs the whole operation

of the robot. These problems may be solved in the following ways. First, the

154

.....

undesirable actions caused by the behaviours can be corrected through learning. Fig. 6­

14 clearly shows the effects ofusing a learned low level control layer. The main

troweling path becomes straight in the open area with the robot only controlled by

Track Path behaviour. Troweling the edge of the wall also goes more stable by Follow

Edge behaviour. Swinging has been eliminated from the operations. The whole

operation is completed in 21869 time steps, 2981 steps less than the previous one.

These facts indicate an significant improvement in the performance by the learned low

level control system. The reason is because both fuzzy behaviours and the behaviour

selection network used in the low level control layer are obtained through systematic

learning processes in much more complex and versatile environments. The learned low

level control system is more capable of coping relatively simple and structured

environments. The result clearly demonstrates the effectiveness of the simple-to­

complex multistage learning methodology.

Second, more detailed planning can be introduced to cope with obstacles during the

operation. In Fig. 6-14, we can see that the robot still drifts from the pillar, instead of

moving around it. This can be solved by introducing Follow Edge behaviour after the

robot detects the pillar. The behaviour can guide the robot to the other side of the

pillar and then start the Track Path behaviour again. Another possible way is to plan

more subgoal positions and initiate goal reaching behaviours. Finally, more behaviours

can be developed to perform versatile tasks. For instance, using the learned system, the

control system is still unable to position the robot to the starting position perfectly and

some deviation still occurs. However, it is possible to develop a docking behaviour

which performs a precise positioning task.

6.3 A Building Security Patrolling Task

In the second experiment, SIMAR is used to patrol the corridors of the first floor of

the Spire Research Centre. Instead of tracing the sequencing and behaviours' activity,

the actions of the MARCO control system will be traced in the term ofphysical

movement of the robot during the whole operation. The same control system, carrying

155

3
I ,
I
I

out the task displayed in Fig. 6-14, will be employed for the patrolling task. The system i
I consists of the same sequencing layer and the learned low level control layer. Unlike

this first experiment, noise will be introduced in the robot's movement in this task in I, order to examine how the perceptual subsystem works to correct and localise the robot , position. The following sketch plan is supposed to have been provided by a planning

system.

1. go to position A;

2. go to position B;

3. patrol corridor #1 back to position A;

4. go to position C;

5. patrol corridor #2 to the end;

6. go to position D;

7. patrol corridor #3 to the end;

8. follow wall until near the door ofFl5;

9. enter the room F15.

Information about three corridors is approximate, provided in the feature based map

which is shown below, together with precise position data:

CORRIDOR(l) -3000, -500, -90, 12000,1600 # -2754, -486, -90, 12312, 1620

CORRIDOR(2) -3000, 350, 0, 12500,2000 # -2916,364,0, 12555,2187

CORRIDOR(3) 7000, -1250, 0, 7500, 1000 # 6723, -1256,0, 7533, 1053

The robot movement is traced through comments, based on the course shown in Fig.

6-15 and other figures.

156

The trace starts. The robot moves from its initial position and pursues the first goal of

the task, going to the position (a). Because its initial heading is opposite to the goal,

the robot turns right, controlled by the Reach Position behaviour and the three reactive

behaviours, Avoid Obstacle, Keep Moving and Recover Stall. Soon afterward, the

robot moves close to the wall at the left, which partly obstructs its direct path towards

the goal position. However, Avoid Obstacle and Reach Position behaviour co-operate

with each other and the robot clears out the wall and arrives at the position A.

Although it is only a short distance, the robot position error has already accumulated.

The dead reckoning error and the approximate map result in the disparity between

stored and sensed corridor as shown in Fig. 6-16(a). The robot, however, proceeds

with the erroneous map maintained in long term model. The robot's perceptual

subsystem continues to interpret sensor data. After moving along the corridor for a

while, the real corridor is discerned and the perceptual subsystem

0
0

Kitchen... >
r: j

3 ~ 1

t
FlOFl2 I'll -""

~
F15 I

I
1 ,

o

o
3.
§­..,
'3'11

0

Fig. 6-15 Snapshot of the Robot Course in Corridor Patrolling

157

(a) (b)

Fig. 6-16 Corridor Perception at the Entry of Corridor #1 :
(a) before the corridor is perceived:
(b) after the corridor is perceived.

...... sensed location;

- : location in map.

performs the following steps:

1. match the found corridor to an existing one;

2. correct MARCO's sensor model;

3. localise the robot position.

The result of the localisation process is shown in Fig. 6-16(b). The robot moves on and

the localisation process is repeated. After it arrives in the position (b), the robot should

immediately follow back along the same corridor according to the plan. In doing so,

the robot gets too close to the upper side wall of the corridor, and slips into the room

F19, the kitchen of the 1 st floor under the control ofFollow Corridor and Avoid

Obstacle behaviour. Generally, it will be more desirable that a failure recovery task

template be designed and its task be invoked to cope with the situation. Unfortunately,

it has not been available for this experiment. The robot still carries on the corridor

following task and is gradually dragged back towards the corridor. Interestingly, the

robot is able to leave the room and go through the door, under the combined effort of

Follow Corridor and Avoid Obstacle behaviour, having not even invoked Cross Door

behaviour. After leaving the room, the robot encounters another problem; facing the

pillar right in front of the room. It manoeuvres around and finally leaves the obstacle

158

and returns to the correct course. The robot, during this period, especially, exhibits

robust goal-directed reactive navigation abilities. It strayed away into a wrong place,

survived in the complex environment, came back to the right course and continued

with its task. This sequences of activities can be very difficult to sustain ifusing a

traditional control approach.

The trace continues as the robot returns back to follow the corridor #1. The error

accumulated when the robot got lost causes the robot to follow an inaccurate corridor

as shown in Fig. 6-17(a). However, the robot is able to cope with the inaccuracy

under the fuzzy behaviours control and return to correct course when the perceptual

subsystem matched the corridor and thus performed localisation. This is indicated in

Fig. 6-17(b). The robot then smoothly follows back corridor #1 and travels through the

corridor #2. Following corridor #3 is more difficult than the previous ones as it is

more narrow. The robot is first guided to the approximate position (d), and starts to be

controlled by Follow Corridor Behaviour again when the sequencing layer terminates

Reach Position and initiate corridor following activities. Fig. 6-18 shows

• • • I.

.: .
!~ ~

(a) (b)

Fig. 6-17 Corridor Perception at the End ofCorridor # 1 :
(a) before the corridor is perceived;
(b) after the corridor is perceived .
..... : sensed location;
- : location in map.

=~= :assumed following lane

159

the local view of the robot about the stored and sensed corridor location at the

beginning of the following activities. From Fig. 6-18(a), we can see the big disparity of

the actual corridor and its map which is used by Follow Corridor behaviour. The robot

manages to follow the corridor using the wrong map while avoiding collision with the

wall which is mainly caused by the wrong map. After a short distance, the real corridor

(a)

Fig. 6-18 Corridor Perception at the Entry ofCorridor #3:
(a) before the corridor is perceived;
(b) after the corridor is perceived .

...•. : sensed location;

- : location in map.

=-~ :assumed following lane

is perceived and its map is corrected. This is shown in Fig. 6-18(b). The robot is able

to follow the corridor from then until it comes across the pillar half embedded in the

middle of the left wall. This part of the corridor makes straight line following

impossible. The robot negotiates with the pillar at the left and the wall at the right, and

squeezes through the narrow path. This pillar is not indicated in the provided simply

approximate map. However, with the support of reactive behaviours, the robot is able

to cope with such incomplete information and still carries out the task.

The robot successfully finishes all the corridor following tasks at the end of the

corridor #3, where Reach Position behaviour is started in order to anchor the robot to

the wall edge. There is another pillar right in the front of the robot, which is also

(b)

160

unknown in the robot sensor model. The robot has to avoid the obstacle before

anchored to the wall edge. From the anchoring position (e), the robot starts to follow

the edge of the wall, controlled by Follow Edge behaviour and other reactive

behaviours. The robot follows the edge of the wall, turns at the concave comer and

continues to follow the adjacent edge, then turns at the convex corner and keeps

following. When the perceptual subsystem detects the door of room FlS, the robot is

relocated. The sequencing layer stops Follow Edge and starts Cross Door behaviour.

Finally, the robot enters the room and the patrolling task is terminated.

6.4 Summary of Experiments

This chapter offers evidence that MARCO control architecture is an effective approach

to implement execution systems that can control the robot navigation in a complex

environment with uncertain and approximate information. The evidence consists of

three types of information gathered using actual implementation of two control systems

to perform two simulated real world tasks. The first type of evidence presented

consists of trace of the sequencing activities, following the execution of a concrete

floor slab finishing task. The trace shows the way the sequencing layer tailored the

system to the need of the task execution. The second trace shows how the fuzzy

behaviours in the low level control layer interact with each other to provide the system

with survival and purposeful control abilities. The third type of trace presented consists

of the robot movement trail to demonstrate the system's behaviour in coping with

unexpected control results and incomplete and noisy information, in performing a

building security patrolling task.

The traces show that the MARCO control system can organise efficiently the

sequences of the robot activities and carry out robust low level control. The

sequencing layer is able to initiate, terminate and monitor the controlling activities to

adapt the systems to the requirement of current task execution, while the low level

control layer, tailored by the sequencing layer, performs robust goal-directed reactive

161

navigation in the face of imperfect actions, uncertainty, incomplete and noisy

infonnation.

The experiments are far from perfection as they do not cover every situations in the

concrete slab finishing and building security patrolling domains. Many issues, especially

failure recovery and dynamic situations have not been presented in the experiments.

Nevertheless, they present the evidence for the validity ofMARCO approach, a

framework which can be further improved.

162

-

Chapter 7 Conclusions and Future Work

This chapter begins with the summary ofMARCO control architecture. It will then

discuss the major lessons to be learned from the work presented in the thesis and

suggest some directions for future research.

7.1 Summary

7.1.1 The Argument

This thesis addressed the problem of how to control an autonomous mobile robot

navigation in the real world, mainly indoor environments. There are several major

problems which need to be dealt with by a navigation control system: sensor noise,

imprecise information, uncertainty and limited response time.

The equivalent analogous example which was used to identify the needs of a robot

system facing these problems was driving a car to an unfamiliar destination. To

accomplish such a task, a driver must be able to react quickly to the situations on the

road, and must mediate these reactions for the purpose ofarriving at the destination

according to a sketch plan produced by a slow deliberative considering process such as

reading a map. The driver must do this in the limited time available resulting from the

time constraints ofdriving. The driver must be able to perform the task despite the fact

that many ofthe situations encountered along the way are not presented in the map and

cannot be predicted in advance. AIl these problems will also be encountered by an

autonomous mobile robot, whether in indoor or across country navigation.

U sing driving a car as an analogy to controlling a mobile robot, the thesis argued in

Chapter 1 that local sensor data and a world model are both needed to provide the

irrunediate local feedback and the necessary global information. Sensor noise should be

dealt with in both the robot local movement and in its long term world model. An

effective robot control system should also be organised to effectively accommodate

imprecise information by incorporating heuristic control which is often exercised in

163

human control behaviours, such as driving a car. The thesis further argued that a robot

should not follow a prescribed step-by-step plan trying to postulate all the aspects of a

navigation task due to the uncertainties in the real world. Environment contingencies

can arise suddenly. They are unpredictable but need to be dealt with quickly. Many

aspects of a navigation problem cannot be exactly planned. While a plan is necessary to

guide a robot, it has to be sketchy, leaving low level details to be filled when they are

encountered. To accommodate such a plan, an effective control system should be best

organised into levels, with the high levels providing guidance and the low level

realising plan execution and taking care of detailed interactions in real time. The thesis

also argued that a behaviour-based control approach should be used in organising the

low level control because of the fast response and the simple design of a control

system. The thesis further stated that learning should be introduced to help the design

and improvement of a control system.

The argument presented in the earlier Chapters provides the intuitions for the

development of a two layer control architecture, a task template based sequencing

layer and a fuzzy behaviour based low level control layer, as well as a learning

methodology. They are summarised in the following sections.

7.1.2 MARCO control architecture

The central topic of this thesis is that a successful mechanism for controlling mobile

robots must be organised into a hierarchy. There are two types of activities involved in

controlling mobile robots. High level activities contain decision making computational

processes which initiate or terminate low level activities. They are used to organise the

correct sequences of controlling activities for the purpose of achieving task goals,

monitoring and intervening in the task execution. Low level activities are responsible

for realising the detailed execution of the task. They contain two types of

computational processes: reactive and task-oriented. The reactive controlling activities

take care ofall interactions with environment contingencies, provide basic functions

and guarantee the safety ofthe robot. The task-oriented controlling activities are to

164

cany out the task currently assigned by the high level activities. MARCO is a two layer

architecture to support such high and low level robot control activities. It consists of

two layers: a sequencing layer and a low level control layer. The sequencing layer

works at the pace of the high level of abstraction, interpreting a task plan, providing

high level goals and commands, initiating, mediating and monitoring the controlling

activities, while the low level control layer performs fast computation at the pace of

changes in the real world and controls direct physical actions to finish a task given by

the high level.

7.1.3 Fuzzy Behaviour-based Low Level Control Layer

The organising of MARCO control architecture was approached bottom-up, beginning

with the low level control layer. Low level controlling activities contain simple

decision-making computation and are required to have a fast response time. A

computational mechanism for controlling such activities should also be able to work

properly in the face of sensor noise, uncertainty and imprecision and take advantage of

heuristic knowledge of such a control process. In order to support the development of

such control structure, the notions of a behaviour and fuzzy logic control approach are

employed to implement the basic control entities of the low level control layer, fuzzy

behaviours. MARCO's fuzzy behaviours have the following features that make them

suitable for controlling the low level activities:

• Behaviours are organised based on the sphere of influence ofenvironment

features, which lend themselves to directly interact with environments;

• A fuzzy logic controller allows the accommodation of sensor noise, approximate

and imprecise information, as well as the easy introduction of heuristic control

knowledge into the robot control;

• A fuzzy singleton representation of output allows fast computation for the output I
of a fuzzy behaviour;

• A soft channel structure allows the direct communications of a behaviour with the
I higher level systems;

• A behaviour link: structure allows the energy redistribution between behaviours for

165

the effective control of the robot.

Fuzzy behaviours must be fused or selected to produce a single set of outputs for the

robot control. A dynamic behaviour selection network was developed, inspired by

Maes's approach[Maes90]. Fuzzy behaviours are connected through the network

based on promotion and inhibition links. The selection network provides the dynamic

support for the motivations of the control system under the current environment states

and task execution conditions. The most suitable behaviour is always selected through

activation energy redistribution among the behaviours by the network to control the

robot. The behaviour selection network has the following features which makes it

different from other methods and suitable for the MARCO low level control:

• Fuzzy predicates-based behaviour activation level allows the smooth flow of

activation energy between behaviours and results in smooth transition of

behaviour control;

• Promotion and inhibition links are set-up according to the motivations ofthe

control system;

• Open structure of the selection network allows the easy introduction of error

recovery behaviours and also direct control of the robot.

An experimental low level control layer, consisting of several fuzzy behaviours and a

behaviour selection network, was implemented for indoor navigation tasks [Qiu96a]

[Qiu96b].

7.1.4 Task Template-based Sequencing Layer

Fuzzy behaviours are simple computation structures and are not suitable for controlling

sequencing activities since these activities involve the dealing of temporal and other

constraints which are usually not fuzzy. To control the higher level activities, a

different control structure, called a sequencing layer was developed. The main tasks of

the sequencing layer are the initiation, monitoring and termination ofcontrolling

activities realised in the low level control layer. The sequencing layer is mainly based

166

on Firby's Reactive Action Package[Firby89] system, and is modified to support

simultaneous execution of tasks. The basic block ofthe sequencing layer is the control

structure called task template, an extended RAP. The following points make task

template more suitable to control MARCO's higher level activities:

• A task template contains only one method and eliminates method selection during

task execution;

• The task net in a method consists of both task templates and ordinary functions to

reduce amount of tasks in the task queue;

It Tasks are executed equally by a task scheduler to eliminate task selection

overhead and support concurrent execution offuzzy behaviours at the low level;

• Each task is assigned a state which can represent a step or pre-defined states for

effective scheduling and processing.

These modifications result from the different applications ofRAP and MARCO. RAP

systems are mainly intended to control discrete actions involving many objects

manipulation. MARCO is mainly used to control mobile robot navigation from place to

place.

7.1.5 Learning of Low Level Control Layer

Although a fuzzy behaviour-based control system is easier to develop and more robust

than a traditional sense-model-plan-act system, it can be difficult to configure such a

system to obtain optimal control behaviours. The problem has two aspects: to obtain

optimal individual fuzzy behaviours and to configure the behaviour selection network.

The performance of individual fuzzy behaviours relies on an optimal set ofmembership

functions for their fuzzy control variables. Manual tuning of fuzzy membership

functions is time-consuming and cannot guarantee optimal solutions. Adjusting one

fuzzy rule may interfere with other rules. Parameters tuned to work well in one

environment may have adverse effects in other environment. The manual trial and error

methods are only suited to very simple behaviours and do not lend themselves well to

compose more complicate behaviours. On the other hand, individual fuzzy behaviours

167

must be fused or combined to produce single set of control output. How to always

choose the best actions under various circumstances is unlikely to be solved well using

a manual tuning approach.

A learning methodology was developed to address the problem of learning an optimal

low level control layer of MARCO architecture. This methodology contains the

following principles which guide the automatic learning process to produce general and

real useful results:

• A learning process is started from scratch;

• Learning emphasises the functionality of individual components, either

behaviours or subnets ofbehaviour selection network;

• Learning environments are generalised;

• A simple-to-complex multistage learning course is followed.

Learning algorithms were developed for the automatic learning ofindividual fuzzy

behaviours and the behaviour selection network of the MARCO low level control

layer, using the learning principles. Genetic algorithms were used as population search

methods and were designed to enable an efficient exploration and exploitation of the

search population for optimal solutions. The learning algorithms were used to learn

several fuzzy behaviours and the behaviour selection network in the experimental

implementation of MARCO's low level control layer. The results demonstrated the

effectiveness of the learning methodology[Qiu97a][Qiu97b].

7.1.6 Experiments

MARCO was used to control SIMAR, a simulated indoor robot, performing two tasks.

One is a simulated concrete floor slab finishing task and the other is a building security

patrolling task. Three types oftraces were recorded to demonstrate the effectiveness of

the MARCO architecture. The first type oftrace showed the task execution of the

sequencing layer. The detailed trace demonstrated that the task template-based

sequencing layer can be used to effectively organise the control activities in the low

168

level control layer, performing a fairly complex concrete slab finishing task in a

simulated real world. It further demonstrated a layered control architecture where the

higher layer provided guidance to low layer which operated at different paces of

computation. The second type of trace presented the controlling activities of the fuzzy

behaviour-based low level control layer. The trace showed how the fuzzy behaviours

competed and co-operated to complete the task assigned by the higher layer while the

robot survived in the environment. The effectiveness ofthe low level control layer was

demonstrated by the robust individual fuzzy behaviours and their selection network. It

also demonstrated that a learned low level control layer performed significantly better

than a manually designed one in the concrete slab finishing operation. An example of

the fuzzy behaviour's ability to deal with approximate information was also

demonstrated. The third type of trace, SIMAR's movement trail, was used to

demonstrate the overall abilities ofa MARCO control system in performing another

task in a complex environment. It showed that the robot was able to work robustly

under sensor noise, incomplete information and uncertainty. On one occasion, the

robot got lost from the desired course to an unfamiliar area, survived and came back to

carry on its task. The trace also demonstrated a rudimentary example ofMARCO's

perceptual subsystem performing sensing, matching and localisation.

7.2 Evaluation

7.2.1 Robust Goal-directed Behaviours

A robust control architecture must enable the robot to complete a given task in the real

world, under sensor noise, uncertainty and imprecision. The robot must be involved in

the two types ofactivities: take decisions and execute actions. These two types of

controlling activities need to be performed at different time scales to adequately cope

with the robot operation in the real world. The solution to the dual need for taking

decisions and executing actions is to adopt a two level model, MARCO: the higher

level decides the correct sequences of task goals to be achieved, based on the available

knowledge; the lower level achieves these goals while dealing with the environmental

169

contingencies. The robot operation is goal-directed by the higher level toward the

accomplishment of a task. Robust control behaviours are realised by the lower level,

implemented by fuzzy behaviours exploiting the flexibility of fuzzy logic for dealing

with the imprecision and errors in the prior knowledge, in the sensed information, and

in the robot's movement. Purposeful task-oriented behaviours and innate reactive

behaviours are combined by the behaviour selection network into goal-directed

actions.

These abilities have been exhibited by SIMAR, a simulated robot with a MARCO

control system in two experiments. In the concrete slab finishing task described in

Chapter 6, SIMAR strayed away several times from the starting position of a new

troweling path when moving close to the edge of the wall. However, it always came

back to perform the troweling actions. One of the most difficulty parts in the operation

was to trowel a path with two pillars in it. The system's world model did not include

the pillar features. However, SIMAR was able to avoid the two pillars and still move

along the presumed track under the control of a task-oriented behaviour and three

reactive behaviours. The most interesting example was in the second task shown in

Fig. 6-14 when SIMAR patrolled the corridor and got into the kitchen of the first floor

unplarmed. It is a difficult task to get out without a reactive planning or recovery

process. SIMAR exhibited robust goal-directed control behaviours during escaping. In

the low level control layer, the three reactive behaviours, Avoid Obstacle, Keep

Moving and Recover Stall took care of the robust survival control, while Follow

Corridor behaviour, initiated by the sequencing layer, directed the robot out ofthe

room and back to the right track in the face of sensor noise, uncertainty and incomplete

information. Although MARCO was only tested in two tasks, the realistic and rich

types of the environment conditions illustrated the clear validity of this performance.

7.2.2 Fast Response Time

The computation power ofa mobile robot is always limited. Yet, a mobile robot is still

required to respond quickly in the real world. MARCO deals with this issue by

170

separating time critical controlling activities, such as avoiding collision, from non

critical ones. The low level control layer, which is the most important for the

functioning of the robot, is developed using fuzzy behaviours. These fuzzy behaviours

produce fast computation through fuzzy reasoning process based on singleton

representation. The sequencing layer is also structured in a way which makes it

efficient to execute tasks. By constructing steps of task net using both task templates

and functions, the amount of tasks in a task queue is significantly reduced.

The testing of this perfonnance is best carried out in real experiments. Unfortunately

this has not been available due to the amount of the work and the lack of the time.

However, the fast response perfonnance has been observed from the simulated

experiments. SII'vlAR's control system can finish all the tasks in the task queue in less

than lOOms. The robot was able to quickly move away from obstacles to avoid

collision, which is the most important of the fast response behaviours. In a real

implementation, the number of the tasks in a MARCO control system will be expected

to be reduced and some time-consuming tasks, such as perception tasks can be carried

out through parallel processing.

7.2.3 Uncertainty, Sensor Noise and Imprecision

Uncertainty arises in many different ways. Some aspects of the environments cannot be

predicted because the information required is not available. Even though many can be

predicted, predictions are mostly mingled with uncertainty. Prior knowledge can be

incomplete and approximate. Sensed information is not always accurate. Errors

accumulate in the robot movement. These are the realities a mobile robot control

system must deal with. In MARCO, these problems are approached from several

aspects. The prediction or task plans made by a planning system or human do not

control the robot directly, but function as input to the sequencing and control layer

which actually control the robot. This is adopted from plan guided reaction theory,

advocated by [Payton90]. In this case, a plan consists of a sequences of task goals,

such as, a position to reach or environment features to interact with. These goals are

171

I

dispatched by the sequencing layer through the invocation of low level control

activities, not pursued directly by the high level of systems. MARCO also employs a

sensor model consisting ofa local sensor model and a long term model, which is shared

by the whole system. The sensor model does not abstract all the details of the

environment, but holds both little interpreted data and environment features provided

by a map and a perceptual subsystem. This perceptual information can be approximate

and gradually corrected by the perceptual processing. The sensor model allows more

perceptual processing power to be integrated in order to facilitate accurate modelling

of the world and reduce the uncertainty and imprecision. In the low level control layer,

fuzzy behaviours constitute noise-tolerable computation modules, using the elasticity

of fuzzy control rules to reduce the adverse effects caused by sensor noise and

approximate information. The open structure of the behaviour selection network also

allows the introduction oferror recovery behaviours and other direct control of the

robot when things go wrong. Finally, MARCO's sequencing layer has the abilities to

allow and recover task execution failure by introducing more error monitoring and

recovery task templates.

These abilities have also been demonstrated in SIMAR's experiments, especially in the

second task. SIMAR's motion system was inaccurate and accumulated position errors

over time. The feature map provided was approximate. Several pillars in the corridor

were not indicated. Yet, the robot was able to successfully deal with these problems

and finish the task. Its perceptual subsystem demonstrated the abilities to find and

extract environment features which were, in tum, used to correct the approximate map

and localise the robot. The robot, under all this erroneous information, was still able to

robustly follow the corridors and avoid the collisions with unexpected obstacles. Its

ability to cope with uncertainty was especially shown in escaping from the kitchen after

becoming accidentally trapped.

7.2.4 Limitations

172

There are four major limitations in the MARCO architecture which need to be

addressed in the future research. First, the structure between the perceptual subsystem

and MARCO has not been clearly defined. In this thesis, the perceptual subsystem is

independent ofMARCO's two layers. This is because the subsystem performs only

routine perception tasks. Such routine processing will be inadequate if planning is

introduced. How to organise the structure ofthe perceptual subsystem will affect the

performance of a MARCO system substantially, especially in the real time response of

the control system.

Second, an error recovery mechanism has not been completely provided. One of the

important characteristics of a robot control system is the ability to recover from errors.

MARCO has currently presented an incomplete solution through the introduction of

error recovery behaviour at the low level control, such as Recover Stall behaviour.

Some simple execution failures can also be partly solved by the sequencing layer using

error recovery task templates, such as for escaping from the kitchen. However, these

are inadequate to cope with execution failures in more complicate circumstances.

Planning has to be involved to deal with these situations, together with direct control at

the low level control layer. The interruption mechanism needs to be set-up to allow

such emergent tasks to be processed first.

Third, a deliberative layer has not been provided. MARCO's sequencing layer is

currently only responsible for organising the correct order of a task execution at a

higher level. A deliberative layer needs to be introduced to provide and modify a

navigation plan during a task execution. The relationship between the deliberative and

the sequencing layer should be clearly defined. Some possible solutions will be

presented later in this Chapter.

Finally, MARCO architecture has not considered manipulation tasks. It is inevitable

that manipulation will also be involved even in a corridor navigation task. In the first

floor of the Spire research centre, the doors in the corridors are closed most oftime.

Marco will need arms to open them and get through. Although this type of

manipulation will be very different from those ofFirby' s, it will increase the complexity

173

of a task execution dramatically . .MARCO has provided basic control structures for

dealing with such operations. However, the impact of such tasks on the architecture

has not been investigated thoroughly. One thing is certain: a MARCO control system

must include object recognition to perform such tasks, which will inevitably require

vision system and parallel processing mechanisms.

7.3 Discussion

The main contributions of this thesis are as follows:

• a two layer control architecture, MARCO, with a task template-based sequencing

layer and a fuzzy behaviour-based low level control layer;

• a promotion/inhibition network-based behaviour selection approach;

• a simple-to-complex multistage learning approach for learning the low level

control layer.

It also contributes to the methods implemented to organise fuzzy behaviours, based on

the sphere ofthe influence of environment features and to design a task template.

There are many famous robot control architectures developed and reported in the

literature. Three layer architecture, deliberative I sequence I reactive control, seems to

be the current state ofart. MARCO resides as the two lower layers. Combining a

RAP-like sequencing layer and fuzzy behaviour-based low level control layer has not

been reported in the literature. Comparisons with some common control architectures

are necessary to shed some light on MARCO's unique points.

MARCO is an extension ofexisting methodologies and technologies. The subsumption

architecture ofBrooks and his students[Brooks89][Conne1l89] provide the

methodology to develop a behaviour-based control system. In part this has been

borrowed in developing MARCO, especially the subsumption idea ofdecomposing

complex task into simple behaviours. In part MARCO is in conflict with the essence of

the methodology, in preferring also to incorporate a model-based representation of the

world as part of the control system, together with simple direct sensor data. Without

174

•

such a representation, it is difficult to co-ordinate reactive and purposeful behaviours in

a general way to complete complex tasks. The feature-based representation plays an

important role to bridge our fuzzy behaviours to direct interactions with environments.

MARCO's sequencing layer is essentially a RAP system and its sensor model is also

heavily influenced by the RAP memory model. However, there are some important

differences. MARCO's task template is an extended RAP in the sense that it helps

reduce the amount of tasks in the task queue substantially, eliminate the need for

method selection and task selection. A task template is used to control the concurrent

execution offuzzy behaviours, while the RAP is used to control discrete actions. These

differences have resulted from the different purpose ofapplications. RAPs are

developed for dealing with applications involving many object manipulations. MARCO

is mainly intended for mobile robot indoor navigation.

MARCO also bears some resemblance to the low layers of ATLANTIS[Gat92] , a

three layer architecture, in using a RAP as sequencing layer. However, its sequencing

layer is strictly a RAP system, which controls the subsumption-like "circuit"

behaviours in the low level layer.

MARCO's sequencing layer is also similar to TCA[Simmons90], in that TCA allows

steps in a task net to include ordinary computation and also physical tasks. The

principle difference is that TCA follows the traditional sense-model-plan-act approach

and then uses tasks to add concurrence. TCA is mainly a sequencing layer and does not

specify the structure ofa low level control mechanism. TCA has complete facilities to

distribute processes through message passing.

The main difference between MARCO and AuRA[Arkin90] is in the way the low level

control is implemented. MARCO uses fuzzy behaviours and AuRA uses potential field

based motor schema. AuRA uses a planner to control the motor schema while

MARCO employs the sequencing layer to arrange the low level activities. AuRA does

not possess a typical layer structure in three layer architecture's terms. MARCO is less

committed to a complete, accurate world model than AuRA does.

175

Like RAP, TCA and ATLANTIS, MARCO's sequencing layer is also similar to PRS

[Georgeff87]. PRS can be flexibly specified for different tasks in different domains

using meta-KAs and is therefore less committed to the robot control than a RAP-like

sequencing layer[Firby89]. It does not specify the low level control structure.

MARCO's low level control layer is similar to the FLAKEY architecture[Saffiotti et al

93a]. Like FLAKEY, MARCO uses fuzzy logic control to implement fuzzy

behaviours. The main difference is that FLAKEY uses a blended-behaviour approach

to fuse behaviour and MARCO employs a behaviour selection network and synthesises

behaviours through activation energy redistribution. This approach allows more

effective transition of the robot control and error recovery and also unifies the method

for introducing direct control to deal with failures in the low level layer. Moreover,

FLAKEY is a single low level control layer and MARCO has a higher sequencing

layer.

Different from all these architectures, MARCO was developed along with a learning

methodology for systematically learning a low level control layer.

The above discussions highlight the main differences and also the similarities between

MARCO and several main robot control architectures. Many ideas have been inspired

by these works. MARCO is also influenced by other fuzzy behaviour-based control

methods[Goodridge94] [Garcia-Alegre93] [Reignier94] and control architectures

[Nilsson94] [Schoppers87][Kaelbling88]. MARCO is intended to contribute as an

extension or implementation, especially conjoining a RAP-like sequencing layer and a

fuzzy behaviour-based low level control layer.

11ARCO has been implemented in a simulated robot, SIMAR, which has demonstrated

the navigation and control abilities in performing two tasks. SIMAR's counterpart,

Marco, a real robot, was originally intended to be a concrete slab finishing robot,

which should autonomously finish not only a rectangular floor but also the edge of

walls, pillars and corners. These abilities have been realised in SIMAR through the

176

introduction of Track Path, Reach Position and Follow Edge fuzzy behaviours.

Compared to other similar robots[Arai89][Thau97], STh1AR showed improved

navigation and control abilities in that those robots are teleoperated in operating at wall

edges, corners and pillars. Although the simulation has not incorporated any physical

aspects of the slab finishing domain, the principles of this control approach can be

generally applied to other physical tasks as argued in Chapter 1, which, ofcourse, has

to be further assessed in real applications.

1.4 Future Work

This thesis still leaves many interesting research issues. In addition to the section 7.2.4,

some more discussions are presented below.

7.4.1 Extension

The most immediate need for more research is to test MARCO on real mobile robots.

To do this, the structure ofthe architecture should be more clearly defined. More task

templates need to be developed, especially ones to deal with monitoring and failure

recovery. In the low level control layer, more fuzzy behaviours need to be developed

and incorporated into the system. Urgently needed are those for perception purposes,

such as recognition, which can be used as task-oriented behaviours. A better

perceptual subsystem, incorporating vision and a sonar ring should be developed. The

current 2D world model used in the simulated control system is inadequate in the real

environments. A better localisation scheme, such as those employing extended Kalman

filter[BrusseI93] or other methods[Borenstein94], also needs to be developed.

7.4.2 Deliberative Layer

To develop an autonomous mobile robot control system, planning must be used to

produce a task execution plan which can be used by the sequencing layer. This is the

171

responsibility of the highest deliberative layer. The task plan must be sketchy, similar to

the ones used in experiments or in other forms. This thesis has not touched any of

these planning issues. A possible way of planning in MARCO is the use of a task

template as a planning operator, similar to that introduced by Firby[Firby89]. Some of

the promising planners can be goal-regression planner GAPPS[Kaelbling90],

IxTeT[GhaUab94] and SIPE/SIPE2[Wilkins94,95]. The relationship between the

sequencing layer and the deliberative layer should also be more clearly defined if

planning is to be incorporated. Generally, the sequencing layer should not only arrange

the right sequences ofcontrolling activities in the low level control layer, but also

monitor the activities and initiate the request for planning to the deliberative layer if the

current plan is no longer appropriate to the task execution.

7.4.3 Learning

MARCO provides interesting results for learning the low level control layer. However,

the learning of individual fuzzy behaviours is only carried out in the fuzzy membership

functions of behaviours. A more interesting question is how to automatically learn the

fuzzy control rules of a behaviour. Some results have been reported in how to learn a

complete fuzzy logic controller[Cooper93][Cupal94] [Bonarini93]. These can also be

the possible ways for learning a fuzzy behaviour. Another possible direction is to learn

different sets of control parameters of behaviours for different situations. A behaviour

can then be configured by the sequencing layer in face of these different conditions in

order to carry out the control more robustly. Similar research has been reported in

[pearce92][Ram92][Ram93].

7.5 Conclusions

Autonomous mobile robot navigation involves a continuous combination oflocal and

global controlling activities. Interactions with environments and sensing happens

locally, in the here and now ofthe robot, but task goals the robot pursues may lie far

178

-

away in time and space. By organising the right sequences, the robot tries to connect

its current actions to its task goals. But the results of this organisation has to become

physical activity. The work described in this thesis focused on the relation between

task-oriented organisation and physical controlling actions that resides in a robot

control system. My approach, presented as a two layer control architecture, MARCO

has focused on the separation and co-operation between sequencing and executing.

The results of organising the control actions at the higher level are grounded in the low

level action. MARCO was started from the definition ofbasic types oflow level

control structure, fuzzy behaviours, using fuzzy logic as computing method. Then, it

was developed with the method that fuzzy behaviours can be combined to form a

complete low level control layer. Here, two types of behaviours were used: reactive

and task-oriented. The basic control structure, task template, was further defined in

the higher level. Finally, the low level layer was linked to the higher level layer through

task templates and the behaviours' soft channel. The result is a two layer, task

template/fuzzy behaviour based architecture.

The way to improve low level control layer was further explored. Here, several key

concepts were employed in the learning processes: general, functionality focused and a

simple-to-complex multistage learning course. It has been shown how the learning

processes improved the performance ofthe low level control systems.

Some of the good properties ofMARCO are robust goal-directed control behaviours,

fast response time and the abilities to work in the face of sensor noise, uncertainty and

I imprecision. These abilities have been tested in SIMAR, performing two complex tasks
I

in complex environments.

The work presented in this thesis is not a radical departure from many other control

methods now prevalent in the literature. Rather, it is more an extension of two

significant methodologies: RAP-like sequencing and fuzzy behaviour-based

approaches.

179

Although the results obtained up to now are promising, this study has left a number of

issues that need a deeper investigation. Among the most urgent ones is the test in real

mobile robots. I anticipate that studying these aspects will result in a robust, complete

three layer control architecture with better representation of the environment.

180

Reference

[Anderson90] Tracy Anderson and Max: Donath, "Animal Behavior as a Paradigm for
Developing Robot Autonomy", Robotics and Intelligent Systems, vol. 6, pp. 145-168,
1990.

[Arai89] K. Arai, "Construction Robots that Aid in Advanced Construction",
Technical Report, Kajirna Corporation, 1989.

[Arbib85] M. Arbib and D.House, "Depth and detours: an essay on visually guided
behavior". Technical Report 85-20, COINS, University of Massachusetts, J985.

[Arkin87] R.C. Arkin, "Motor Schema Based Navigation for a Mobile Robot",
Proceedings of the 1987lEEE International Conference on Robotics and Automation,
pp. 264-271.

[Arkin90] Ronald C. Arkin, "Integrating Behavioral, Perceptual and World Knowledge
in Reactive Navigation", Robotics and Autonomous Systems, Vo1.6, pp. 105-122,
1990.

[Barto et al. 82] A. Barto, C. Anderson, and R. Sutton, "Synthesis ofNonlinear
Control Surfaces by a Layered Associative Search Network", Biological Cybernetics,
Vol. 43,1982, pp. 175-185.

[Bernard88] 1. A. Bernard, "Use of a rule-based system for process control", IEEE
Control Systems Magazine, pp. 3-13, 1988.

[Bonarini93] A. Bonarini, "ELF: Learning Incomplete Fuzzy Rule Sets for an
Autonomous Robot", Proceedings ofEUFIT'93 - First European Congress on Fuzzy
and Intelligent Technologies, Aachen, Germany, Sept. 7-10, 1993.

[Bonasso91] RP.Bonasso, "Integrating Reaction Plans and Layered Competences
Through Synchronous Control", Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, Sydney, Australia, August 24-30, 1991, pp.
1225-1231.

[Bonasso94] R.P.Bonasso, D.Kortenkamp, "An Intelligent Agent Architecture in
Which to Pursue Robot Learning", Working Notes: MCL-COLT'94 Robot Learning
Workshop, July, 1994.

[Bonasso95] R.P. Bonasso, D. Kortenkamp, "Characterizing an Architecture for
Intelligent, Reactive Agents", Working Notes: 1995 AAAI Spring Symposium on
Lessons Learned from Implemented Software Architecture for Physical Agents,
March, 1995.

[Borenstein94] L.Feng, J.Borenstein, H.R. Everett, Ed. 1. Borenstein, "Where am I":
Sensors and Methods for Mobile Robot Positioning, Technical Report, The University
ofMicbigan, 1994.

[Brooks86] RA.Brooks, "A Robust Layered Control System for a Mobile Robot",

IEEE Journal on Robotics and Automation, Vol. RA-2, No.1, March 1986.

[Brooks89] R.A.Brooks, "A Robot that walks: Emergent Behaviours from a Carefully
Evolved Network", Neural Computation, Vol. 1, pp. 253-262, 1989.

[Broverman87] Carol Broverman and W. Bruce Croft, "Reasoning About Exceptions
During Plan Execution", Proceedings of the National Conference on Artificial
Intelligence(AAAI), 1987.

[Brusse193] H.v. Brussel, 1. Vandorpe, G.1. Huang, "An Integrated Control System
for Enhanced Autonomous Navigation ofMobile Robots", Proceedings of the Second
International Conference on Mechatronics and Robotics, Sept. 27-29, 1993, Duisburg,
Germany, pp. 297-318.

[Chatila92] R. Chatila, R. Alami, B.Degallaix, H. LarueHe, "Integrated Planning and
Execution Control ofAutonomous Robot Actions", Proceedings of the 1992 IEEE
International Conference on Robotics and Automation, May 12-14, 1992, Nice,
France, pp. 2689-2696.

[Cheng97] Gordon Cheng and Alexander Zelinsky, "Supervised Autonomy: A
Paradigm for T eleoperating Mobile Robots", Proceedings of the 1997 IEEEIRSJ
International Conference on Intelligent Robots and Systems, Sept. 7-11, 1997,
Grenoble, France, pp. 1169-1176.

[Conne1l89] J.Connell, "A Colony Architecture for an Artificial Creature", Technical
Report 1151, Massachusetts Institute ofTechnology Artificial Intelligence Laboratory,
1989.

[Conne1190] Jonathan Connell and Paul Viola, "Cooperative Control ofa Semi­
Autonomous Mobile Robot", Proceedings of the IEEE International Conference on
Robotics and Automation, 1990.

[Conne1l92] Jonathan Connell, "SSS: A Hybrid Architecture Applied to Robot
Navigation", Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, May 12-14, 1992, Nice, France, pp. 2719-2724.

[Cooper93] Mark G. Cooper and Jacques J. Vidal, "Genetic Design ofFuzzy
Controllers", Proceedings of the Second International Conference on Fuzzy Theory
and Technology, Durham, NC, October, 1993.

[Cox90] I.J.Cox, G.T.Wilfong, Autonomous Robot Vehicles, Springer-Verlag, USA,
1990.

[Cox94] Earl Cox, Ed., The Fuzzy Systems Handbook: A Practitioner's Guide to
Building, Using, and Maintaining Fuzzy Systems. Academic Press, Inc., 1994.

[Crowley87] J.L.Crowley, "Coordination ofAction and Perception in a Surveillance
Robot", IEEE Expert, pp. 32-43, Winter 1987.

[Cupa194] 1.1. Cupal, B.M. Wilamowski, "Selection of Fuzzy Rules Using a Genetic
Algorithms", Proceedings of the World Congress on Neural Networks, June 5-9,1994,
San Diego, CA.

[Davis91] L. Davis, Ed., Handbook of Genetic Algorithms, Van Nostrand Reinhold,
New York, 1991.

[Dorigo91] M. Dorigo and U. Schnepf, "Organization of Robot Behavior Through
Genetic Learning Processes", Proceedings of the 5th International Conference on
Advanced Robotics, 1991, Vol. 2, pp. 1456-1460.

[Musliner93] David 1. Musliner, Edmund H. Durfee, and Kang G. Shin. "CIRCA: A
Cooperative Intelligent Real-Time Control Architecture." IEEE Transactions on
Systems, Man, and Cybernetics (Special Issue on Planning, Scheduling,
and Control) SMC-23(6): 1561-1574, 1993.

[Fikes et al 72] R. Fikes, P. Hart, and Nils Nilsson, "Learning and Executing
Generalized Robot Plans", Artificial Intelligence, Vol. 3, 1972, pp. 251-288.

[Firby89] R1. Firby, "Adaptive Execution in Complex Dynamic Worlds", Technical
Report Y ALEU/CSDIRR#672, Yale University, 1989.

[Firby95] R.J. Firby, "An Architecture for a Synthetic Vacuum Cleaner", Proceedings
of the 1995 AAAI Spring Symposium: Lessons Learned from Implemented Software
Architectures for Physical Agents, Stanford University, March 27-29, 1995.

[Flynn89] A. Flynn, R. Brooks, "Building Robots: Expectations and Experiences",
Proceedings of the 1989 IEEEIRSJ International Workshop on Intelligent Robots and
Systems(IROS89), Sept. 4-6, Tsukuba, Japan.

[Garcia-Alegre93] M.C. Garcia-Alegre, et al., "Optimazation ofFuzzy Behaviour­
Based Robots Navigation in Particially Known Industrial Environments", Proceedings
of the Third International Conference on Industrial Fuzzy Control and Intelligent
Systems, December 1-3, 1993, Houston, USA, pp. 50-54.

[Gat90] Erann Gat, et al., "Path Planning and Execution Monitoring for a Planetary
Rover", Proceedings of the IEEE International Conference on Robotics and
Automation, 1990.

[Gat91a] Erann Gat, "ALFA: A Language for Programming Reactive Robotic Control
Systems", Proceedings of the IEEE Conference on Robotics and Automation, 1991.

[Gat91b] Erann Gat, "Robust, low-computation, sensor driven control for task­
directed navigation", Proceedings of the 1991 IEEE Conference on Robotics and
Automation, 1991.

[Gat92] Erann Gat, "Integration Reaction and Planning in a Heterogeneous
Asynchronous Architecture for Controlling Real World Mobile Robots", Proceedings

of the Tenth National Conference on Artificial Intelligence(AAAI), Menlo Park:AAAI
Press, 1992.

[Gat93] Erann Gat, "On the Role of Stored Internal State in the Control of
Autonomous Mobile Robot", AI Magazine, Spring 1993.

[Gat94] Erann Gat, et aI., "Behavior Control for Robotic Exploration ofPlanetary
Surfaces", IEEE Transactions on Robotics and Automation, August 1994.

[Georgeff87] Michael Georgeff and Amy Lanskey, "Reactive Reasoning and
Planning", Proceedings of the National Conference on Artificial Intelligence(AAAI),
1987.

[Ghallab94] M. Ghallab, H. Laruelle, "Representation and Control in IxTeT, a
Temporal Planner", Proceedings of the 2nd International Conference on Artificial
Intelligence Planning Systems(AIPS'94), June 13-15, 1994, Chicago, Illinois.

[Giralt90] G.Giralt, R.Chatila, M.Vaiset, "An Integrated Navigation and Motion
Control System for Autonomous Multisensory Mobile Robot", Autonomous Robot
Vehicles, I.J.Cox and G.T.Wilfong, Ed., Springer-Verlag, pp. 420-443, 1990.

[Goldberg89] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, MA, 1989.

[Goodridge94] S. Goodridge, R. Luo, "Fuzzy Behavior Fusion for Reactive Control of
an Autonomous Mobile Robot: MARGE", Procs. of the 1994 IEEE International
Conference on Robotics and Automation, San Diego, CA, May, 1994.

[Grefenstette et al. 90] llGrefenstette, C.L.Ramsey, and A.C.Schultz, "Learning
Sequential Decision Rules using Simulation Models and Competition", Machine
Learning, Vol. 5, No.4, pp. 355-381, 1990.

[Hammond90] Kristian Hammond, et al., "Towards a Theory of Agency", Proceedings
of the DARPA Workshop on Innovative Approaches to Planning, Scheduling and
Control, 1990.

[Hasemann95] Jorg-Michael Hasemann, "Robot Control Architectures: application
requirement, approaches, and technologies", Technical Report, Technical Research
Center of Finland, 1995.

[Hexmoor93] H. Hexmoor, J. Lammens, S.C. Shapiro, "Embodiment in GLAIR: A
Grounded Layered Architecture with Integrated Reasoning for Autonomous Agents",
Technical Report, TR-93-10, Computer Science Department, SUNY at Buffalo, USA.

[Hexmoor95] H. Hexmoor, "Smart are in the Architecture", Proceedings of the 1995
AAA1 Spring Symposium: Lessons Learned from Implemented Software Architectures
for Physical Agents, Stanford University, March 27-29, 1995.

[Hinke188]. R. Hinkel, et aI, "A Rotating Laser Range Finder and Attached Data
In~erpretatlon fo~ Use in an Autonomous Mobile Robot", Microprocessing and
Microprogrammmg, 24, pp. 411-418,1988.

[Hinke18~] R. Hinkel, T.Knieriemen, "Environment Perception with a Laser Radar in a
Fast Movmg Robot", Robot Control 1 988(SYROC088) selected papers from the 2nd
IFAC Symposium, Pergamon, Oxford, UK, 1989.

[Holland75] 1.H. Holland, ed., Adaptation in Natural and Artificial Systems MIT
Press, Cambridge, MA, 1975. '

[Hoppen89] P. Hoppen, T. Knieriemen, E. von Puttkamer, "Sensor Data Processing
and Navigation in a Laser-Radar based Autonomous Robot", Proceedings of the
Second International Conference on Intelligent Autonomous Systems, Dec. 11-14,
1989, Amsterdam.

[Hu94] H. Hu, M. Brandy, "Sensor-based Control Architecture", in Advanced Guided
Vehicles, World Scientific Press, 1994.

[Ingrand90] Francois Felix Ingrand and Michael Georgeff, "Managing Deliberating and
Reasoning in Real Time AI systems", Proceedings ofthe DARPA Workshop on
Innovative Approaches to Planning, Scheduling, and Control, 1990.

[Ingrand95] F.F. Ingrand, R. Chatila, R. Alami, F. Robert, "Embeded Control of
Autonomous Robots using Procedural Reasoning", Proceedings of the 1995
International Conference on Robotics and Autornation(ICRA'95), Nagoya, Japan.

[Janikow9l] C. Janikow and Z. Michalewicz, "An Experimental Comparison ofBinary
and Floating Representations in Genetic Algorithms", Proceedings of the 4th
International Conference on Genetic Algorithms, 1991, pp. 31-36.

[Kaelbling88] Leslie Kaelbling, "Goals as parallel program specifications", In
Proceedings of the AAAl Conference, .tvfinneapolis-St.Paul, MN, 1988.

[Kaelbling90] Leslie Kaelbling and Stanley Rosenschein, "Action and Planning in
Embedded Agents", Robotics and Autonomous Systems, vo1.6, pp. 35-48, 1990.

[Kajima89] Kajima Corporation, New Technology Leaflet No. 070: Concrete Slab
Finishing Robot, 1989.

[Khatib86] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile
robots" The International Journal ofRobotics Research, 5(1):90-98, 1986.,

[King77] P. 1. King, E. H. Mamdami, "The application of fuzzy control systems to
industrial processes", Automatica, Vol. 13, pp. 235-242, 1977.

[Konolige92] Kurt Konolige, et al., "FLAKEY, an Autonomous Mobile Robot",

Technical Report, Stanford Research Institute International, July 20, 1992.

[Kruse94] R.Kruse, lGebhardt, F. Klawonn, ed. "Foundations ofFuzzy Systems",
1994, Published by John Wiley & Sons Ltd., UK.

[Laird91] John Laird, et ai., "Robo-Soar: An Integration ofExternal Interaction,
Planning and Learning using Soar", Robotics and Autonomous System, 1991.

[Latombe91] 1. C. Latombe,Ed., Robot Motion Planning, Kluver Academic Publishers,
Boston, MA, 1991.

[Lee90] Chuen Chien Lee, "Fuzzy Logic in Control Systems: Fuzzy Logic Controller ­
Part I, Part II", IEEE Transactions on Systems, Man, and Cybernetics, vol. 20, No.2
MarchiApril1990.

[Lembeck93] Michael F. Lembeck, "Fuzzy Logic Control ofthe Commercial
RefrigerationlIncubation Module(CRIM}", AIAA Space Programs and Technology
Conferences, 1993.

[Leonard89] John 1. Leonard and Hugh F. Durrant-Whyte, "Active Sensor Control for
Mobile Robotics", Technical Report, No. OUEL 1756/89. University ofOxford, UK.

[Luo97] Ren C. Luo, "Remote Supervisory Control ofA Sensor Based Mobile Robot
Via Internet", Proceedings of the IEEEIRSJ International Conference on Intelligent
Robots and Systems, September 7-11, 1997, Grenoble, France, Vol. 2, pp. 1163-1168.

[Maes90) Pattie Maes, "A Bottom-Up Mechanism for Behavior Selection in an
Artificial Creature", From Animals to Animats, J.-A. Meyer and S.W. Wilson,
Eds.(MIT Press, Cambridge, MA, 1990), pp. 238-246.

[Manldani75] E. H. Mamdani, S. Assilian, "An experiment in linguistic synthesis with a
fuzzy logic controller", International Journal ofMan-Machine Studies, 7, pp. 1-13,
1975.

[Marks94] Robert 1. Marks II, "Fuzzy Logic Technology and Applications", IEEE
Technology Update Series, Ed. , 1994.

[Martinez93] A. Martinez, et aI., "Fuzzy Logic Based Collision Avoidance for a
Mobile Robot", Proceedings of the Third International Conference on Industrial Fuzzy
Control and Systems, December 1-3, 1993, Houston, USA, pp. 66-69.

[Mataric90] M. Mataric, "A Distributed Model for Mobile Robot Environment
Learning and Navigation", Technical Report 1228, MlT Artificial Intelligence
Laboratory, 1990.

[Michalewicz92] Z. Michalewicz, C.Z. Janikow and lB. Krawczyk, "A Modified
Genetic Algorithm for Optimal Control Problems", Computers and Mathematics with
Applications, Vol. 23, No. 12, pp. 83-94, 1992.

-
pi

[Miller8?] David P. Miller, "Execution MOnitoring for a Mobile Robot S stem"

;~~~eepdpm~~~:3t~hi~IPIEdlChi~nfepr~ncNeon Intelligent Control and AdaPtiv/Syste~s, vol.
,. , a epa, n.., overber 1989.

[Moravec83] H.P.Moravec, "The Stanford Cart and the CMU Rover" Proc IEEE 71
pp. 872-884, July 1983. ,. ,

[Mora~ec88] H.P.Moravec, "Sensor Fusion in Certainty Grids for Mobile Robots", AI
Magazme, Vol. 9, No.2, pp.61-74, Summer, 1988.

[Nils~on69,~ N.J. Nils~on, "A mob~le automation: an application of artificial intelligence
techniques, Proceedmgs of the FIrst IJCAI, Washington D.C., May 1969.

[Nilsson94] N.J. Nilsson, "Teleo-Reactive Programs for Agent Control" Journal of
Artificial Intelligence Research, voU, pp. 139-158, 1994. '

[Noreils90] Fabrice Noreils, "Integrating Error Recovery in a Mobile Robot Control
System", Proceedings ofthe IEEE International Conference on Robotics and
Automation, 1990.

[payton86] D. W. Payton, "An Architecture for Reflexive Autonomous Vehicle
Control", Proceedings ofthe 1986 IEEE International Conference on Robotics and
Automation, April 7-10, 1986, San Francisco, California, pp. 1838-1845.

[payton90] D. W. Payton, J. K. Rosenblatt, D.M. Keirsey, "Plan Guided Reaction",
IEEE Transactions on Systems, Man and Cybernetics, Vol. 20, No.6, Nov.lDee.
1990.

[Pearce92] Michael Pearce, Ronald Arkin, Ashwin Ram, "The Learning ofReactive
Control Parameters Through Genetic Algorithm", Proceedings of the 1992 IEEEIRSJ
International Conference on Intelligent Robots and Systems, 1992.

[pin92] F.G. Pin, et al., "Using Custom-Designed VLSI Fuzzy Inferencing Chips for
the Autonomous Navigation ofa Mobile Robot", Proceedings ofIROS 92, the 1992
IEEEIRSJ International Conference on Intelligent Robots and Systems, July 7-10,
1992, Raleigh, North Carolina.

[Qiu96a] Jiancheng Qiu, Michael Walters, "Fuzzy Behaviour Organisation and Fusion
for Mobile Robot Reactive Navigation", Proceedings of the Nmth International
Conference on Industrial and Engineering Applications ofArtificial Intelligence and
Expert Systems, Fukuoka, Japan, June 4-7, 1996, pp.719-724.

[Qiu96b] Jiancheng Qiu and Michael Walters, "Mobile Robot Reactive Navigation
based on Fuzzy Behaviour Organisation and Fusion", Proceedings ofthe 29th
International Symposium on Automative Technology and Automation, Florence, Italy,
June 3-6, 1996.

[Qiu97a] liancheng Qiu and Michael Walter.s, "A GA-based Learning :,'lgorithm.for
the Learning ofFuzzy Behaviour ofa ReactIve Robot Control System , Proceedmgs of

I

Hi

the Second IEEIIEEE International Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, 2-4 September, 1997, Glasgow, UK.

[Qiu97b] Jiancheng Qiu and Michael Walters, "Learning of Membership Functions of
Fuzzy Behaviours for a Mobile Robot Control System", Proceedings of the Tenth
IEEEIRSJ International Conference on Intelligent Robots and Systems: Innovative
Robotics for Real-World Applications, September 7-11, 1997, Grenoble, France, pp.
772-777.

[Ramn] A.Ram, et aI, "Case-based reactive navigation: A case-based method for on­
line selection and adaptation of reactive control parameters in autonomous robotic
systems", Technical Report, GIT-CC-92/57, College of Computing, Georgia Institute
of Technology, Atlanta, Georgia, 1992.

[Ram93] A.Ram and Juan Carlos Santamaria, "Mu\tistrategy Learning in Reactive
Control Systems for Autonomous Robotic Navigation", Informatica 17, 1993, pp.347­
369.

[Reignier94] Patrick Reignier, "Fuzzy Logic Techniques for Mobile Robot Obstacle
Avoidance", Robotics and Autonomous Systems, vol. 12, 1994, pp. 143-153.

[Saffiotti93] Alessandro Saffiotti, "Some Notes on the Integration ofPlanning and
Reactivity in Autonomous Mobile Robots", Proceedings ofthe AAAI Spring
Symposium on Foundations of Autonomous Planning, Standford, CA, 122-126.

[Saffiotti et al93a] A. Saffiotti, E. Ruspini, and K. Konolige, IIA fuzzy controller for
tlakey, an autonomous mobile robot," Technical Note 529, AI Center, SRI
International, 333 Ravenswood Ave., Menlo Park, CA 94025, April 1993.

[Saffiotti et al 93b] A. Saffiotti, E. Ruspini, and KKonolige, "Integrating Reactivity
and Goal-Directedness in a Fuzzy Controller", Proes. of the 2nd Fuzzy-IEEE
Conference. San Francisco, CA ,1993, pp. 134-139.

[Saffiotti95] A. Saffiotti, K Konolige, E. H. Ruspini, "A Multivalued Logic Approach
to Integrating Planning and Control", Artificial Intelligence, 76(1-2), 1995, pp. 481­
526.

[Schoppers87] M.J. Schoppers, "Universal Plans for Reactive Robots in Unpredictable
Environments", Proceedings of the Tenth International Joint Conference on Artificial
Intelligence(IJCAI' 87), Milan, Italy, August 23-28, 1987, pp. 1039-1046.

[Shafer89] Steve Shafer and William Whittaker, "Development of an Integrated
Mobile Robot System at Carnegie Mellon University: June 1988 Annual Report",
Tehnical Report CMU-RI-TR-89-22, The Robotics Institute, Carnegie Mellon
University.

[Simmons90] Reid Simmons, "An Architecture for Coordinating Planning, Sensing and
Action", Proceedings of the DARPA Workshop on Innovative Approahes to Planning,
Scheduling, and Control, 1990.

I
•
I

I

I
I
I

[Simmons94] Reid Simmons, "Structured Control for Autonomous Robots", IEEE
Transactions on Robotics and Automation, vol. 10, No.1, Feburary 1994, pp. 34-43.

[Skubic94] M. Skubic, "Design of a Two-Level Fuzzy Controller for a Reactive
Miniature Mobile Robot", Proceedings of the Third International Conference on
Industrial Fuzzy Control and Intelligent Systems, December 1-3, 1993, Houston, 1993,
pp.224-227.

[Slack90] Marc G. Slack, "Situationally Driven Local Navigation for Mobile Robots",
JPL Publication 90-17, California Institute of Technology Jet Propulsion Laboratory,
April, 1990.

[Slack93] Marc G. Slack, "Navigation Templates: Mediating Qualitative Guidance and
Quantitative Control in Mobile Robots", IEEE Transactions on System, Man, and
Cybernetics, Vol. 23, No.2, March/April, 1993.

[Smith89] D.B. Smith and J.R. Matijevic, "A System Architecture for a Planetary
Rover", Proceedings of the NASA Conference on Space Telerobotics, Vol. 1, JPL
Publications 89-7, 1989.

[Sold090] Monnett Soldo, "Reactive and Preplanned Control in a Mobile Robot",
Proceedings of the IEEE International Conference on Robotics and Automation, 1990.

[Song92] K.Y. Song, J.e. Tai, "Fuzzy navigation ofa mobile robot", Procs. of the
1 992 IEEEIRSJ International Conference on Intelligent Robots and Systems, Raleigh,
North Carolina, July, 1992.

[Sugen085] M. Sugeno, M. Nishida, "Fuzzy control of a model car", Fuzzy sets and
Systems, 16, pp. 103-113, 1985.

[Sugen089] M. Sugeno, et.al, "Fuzzy algorithmic control of a model car by oral
instructions", Fuzzy sets and Systems, 31, pp.207-219, 1989.

[Summers95] Della Summers, et al., Ed., Longman Dictionary of Contemporary
English, Third Edition, 1995, Longman Group Ltd.

[Tanenbaum92] Andrew S. Tanenbaum, Ed., Modern Operating Systems, Prentice­
Hall International, 1992.

[Thau97] R. S. Thau, profile: R.A. Brooks, http://www.ai.mit.eduJpeople/brook.

[Thorpe90] C.E.Thorpe, "Vision and Navigation -- The Carnegie Mellon Navigation
Laboratory", Kluwer Academic Publishers, USA, 1990.

[Tilford97] C. F. Neves and J. O. Gray, "Architecture for Advanced Robotic

Operation", http://www.salford.ac.ukltelfordiCyberneticS/Cybemetics_Home.html

http://www.salford.ac.ukltelfordiCyberneticS/Cybemetics_Home.html
http://www.ai.mit.eduJpeople/brook

[Tong80] R.M. Tong, "Fuzzy Control of Activated Sludge Wastewater Treatment
Process", Automatica, Vol. 16, 659-701.

[Vandorpe94] J. Vandorpe, "A Reflexive Navigation Algorithm for an Autonomous
Mobile Robot", Proceedings of the 1994 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems, October 2-5, 1994, Las
Vegas, USA, pp. 251-258.

[Wei~94] Gerhard Wei~, et a1., "Keeping Track ofPosition and Orientation of
Moving Indoor Systems by Correlation ofRange-Finder Scans", Proceedings of the
1994 IEEEIRSJ International Conference on Intelligent Robots and Systems, Sept. 12­
14, 1994, Munich, Gennany, pp. 595-601.

[Weisbin89] C.R.Weisbin, et aI, "Autonomous Mobile Robot Navigation and
Learning", Computer, pp. 29-35, June 1989.

[Whitley89] D. Whitley, "The GENITOR Algorithm and Selection Pressure: Why
Rank-Based Allocation ofReproductive Trials is Best", Proceedings of the Third
International Conference on Genetic Algorithms, pp. 116-121, 1989.

[Wilkins94] D.E. Wilkins, et al, "Planning and Reacting in Uncertain and Dynamic
Environment", Journal ofExperimental and Theoretical AI, Vo1.6, 1994, pp. 197-227.

[Wilkins95] D.E. Wilkins, K.L. Myers, "A Common Knowledge Representation for
Plan Generation and Reactive Execution", Journal ofLogic and Computation, 1995.

[Wing89] R.D.Wing, "Robotics in Construction - a State ofthe Art Review", Proc.
Instn Civ. Engrs., Part I, 1989,86, Oct., pp. 953-961.

[Yasunodu85] S. Yasunodu, S. Myamoto, "Automatic train operation by predictive
fuzzy control", Industrial applications of fuzzy control, M. Sugeno, ed., Amsterdam,
North Holland, 1985.

[Zadeh65] L.A. Zadeh, "Fuzzy Sets", Information and Control, 8, pp.338-353, 1965.

Appendix A: Review ofFuzzy Logic Control

Introduction

During the past several years, fuzzy logic control has emerged as one of the most

successful methods to solve control problem, including mobile robotics. The

pioneering research ofMamdani and Assilian on fuzzy control[Mamdani75] was

motivated by Zadeh's research on the linguistic approach and system analysis based on

theory of fuzzy sets[Zadeh65]. Applications of fuzzy logic control has considerably

increased recently[King77][Yasunodu85][Bemard88][Lembeck93] [Tong80]

[Mark94]. These applications have proved effective utilisation of fuzzy control in the

context of complex, ill-defined processes that can be controlled by a skilled human

operator without the knowledge oftheir underlying dynamics. In mobile robotics, the

lack of a precise model of a mobile robot's environment, noise sensor and uncertainty

provides considerable incentive to the use offuzzy control. Fuzzy control has been

explored for mobile robot guidance by many researchers[Song92] [Goodridge94]

[Sugen085] [Reignier94][Garcia-Alegre93] [Martinez93]. Successful hardware

implementations have been realised by Sugeno[Sugen089], Pin[pin92], Konolige

[Konolige92] and Goodridge[Goodridge94][Luo97], etc. One ofthe most successful

robot, Konolige's FLAKEY, uses fuzzy logic to define control behaviours for a variety

of tasks. These behaviours are combined through context dependent blending

behaviour approach to create single set of control output. In the following sections,

fuzzy set and fuzzy logic control are briefly introduced.

1. Fuzzy Sets and Operations

Let X be a domain of objects, called the universe ofdiscourse, whose generic elements

are denoted by x. Thus, X ={x} and X could be discrete or continuous.

Definition 1.1: Fuzzy Sets

1

--

jjW

•

A fuzzy set A in an universe of discourse X is characterised by a membership function,

!-lA(X), which maps the domain X to a real number in the interval [0,1], namely, J..lA:

X---+[O,l]. The membership function J.!A(X) is the degree of membership ofx in A. A

fuzzy set can be considered as a generalisation of the concept of a classical set whose

membership function J.!A is from X to {O, I}, with J.!A(X) == 1 or °according as x does

or does not belong to A. Thus, a fuzzy set A in X can be represented as a set of

ordered pairs ofx and f-lA(X), such as the fuzzy set A == {(x, J.!A(x))IV x EX}.

Let A and B be two fuzzy sets in X with membership function J..lA and J.!B, respectively.

The traditional set theory operations of union, intersection and complement of classical

subsets of X can be extended for fuzzy sets via their membership functions as proposed

by Zadeh[Zadeh65].

Definition 1.2: Union, Intersection, and Complement

The union C = A u B or A OR B with the membership function J.1c(x) is defined by

C = {(x, J.!c(X)IJlc(x) = max(J.!A(x), J.!B(X), V x E X};

The intersection D = An B or A AND B with the membership function JlD(X) is

defined by

D == {(x, JlD(X)I!.1D(X) = min(J.!A(x), IlB(X), V x EX};

The complement E = r:t. A or NOT A with the membership function JlE is defined by

E = {(x, JlE(X)I !.1E(X) = 1- J.!A(X), V X EX}.

For example, suppose that the universe of discourse X = {age}= {1O, 20, 30, 40, 50,

60, 70, 80, 90, 100}, A = {old-age} = {(40, 0.1), (50, 0.3), (60,0.5), (70, 0.8), (80,

1.0), (90, 1.0), (100, LO)}, B = { middle-aged} = {(20, 0.2), (30, 0.5), (40, 1.0), (50,

1.0), (60,0.7), (70, OA)}.

2

From the definitions of union, intersection, and complement, the union C = Au B ==

{(20, 0.2), (30, 0.5), (40, l.0), (50, l.0), (60, 0.7), (70, 0.8), (80, l.0), (90,1.0), (100,

l.0)}, the intersection D = A n B = {(40, 0.1), (50, 0.3), (60, 0.5), (70, 0.4)} and the

complement E = <t: A = {(10, l.0), (20, 1.0), (30, 1.0), (40,0.9), (50, 0.7), (60, 0.5),

(70,0.2)}.

The above defined are Zadeh's conventional operators, called T-operators. Other types

ofT-operators are also used to define the connections AND(u), ORen), and NOT(ct)

for fuzzy reasoning applications. The commonly used are listed in Table 2~1.

The choice of anTable 1 Definitions of Some T -operators

z xAND Y xORy NOT x operator depends on the

= min(x, y) max(x, y) 1-x applications and
= xy x+y-xy 1-x

computation reasons.
= max(x+y-1,0) min(x+y,1) 1-x

However, for the design

offuzzy logic controllers(FLC), Zadeh's conventional T -operators provides simple and

fast computation and are already widely used. They have proved to work well in many

applications.

2. Fuzzy Logic and Fuzzy If-Then Rules

In classical two-valued logic, a proposition P is either true or false. In fuzzy logic, a

proposition P is assigned a degree of truth or false with fuzzy sets involved. In a fuzzy

logic controller, a proposition P is a control rule, expressed as "IfX is A Then Y is B".

The portion on the left side of Then is called the antecedent part of the rule, while the

portion on the right is the action or consequent part. Because control rules are

expressed using linguistic terms, it is easy to express human experiences and

knowledge ofthe control process. In most FLC applications, X is usually represented

in multiple input variables and Y is a single output variable. A fuzzy rule can be written

as "IfXl is Al and(or) X2 is A2 and(or) Xn is An Then Y is B". The composite

3

multiple input fuzzy sets are computed through T -operators in the antecedent portion

and is contributed to output fuzzy set through fuzzy implication.

Suppose R represents the antecedent part of a rule and S represents the consequent

part, then the rule is expressed as "IfR Then S" or "R ~ S", where ~ denotes a

fuzzy implication, a function which associates the input fuzzy set to output fuzzy set.

There are seven families offuzzy implication functions described in [Lee90]. Two

commonly used implication functions are:

(1) min-operation rule of a fuzzy implication

R ~ S = R x S = 	 JJh(u) 1\ f1s(V), where u E U, V E V;

uxy (u, v)

(2) product-operation rule of a fuzzy implication

R ~ S =R x S = 	JJh(u)* J.Is(v) , where U E U, V E V;
uxy (u, v)

3. Fuzzy Logic control

Input 	 Output
Fuzzification Fuzzy Inference Engine Defuzzification

t 	 t
Data Types *
Fuzzy Set and Fuzzy

fuzzyRule Database -- crisp

Fig.l Fuzzy Logic Controller Diagram

•

4

o 	 a o a o a

Triangular Trapezoidal Bell-shaped

Fig. 2 Membership Function Types

A fuzzy logic controller, such as shown inFig.l, involves receiving the input values

and converting the signals to fuzzy variables. The fuzzy control rules relate input fuzzy

variables to an output fuzzy variables using the compositional rules of inference. The

output control action is determined by defuzzification process to obtain crisp values.

The main processes of fuzzy logic control are fuzzification, fuzzy rule inference and

defuzzifcaiton.

3.1 Fuzzification

Before setting the fuzzy levels such as BIG, MEDIDM, and CLOSE, one must

evaluate the range of input variables_ There are three types of membership functions

used in the design ofFLC, a bell-shaped function, a triangular-shaped function and a

trapezoid-shaped function as shown in Fig. 2. How to select the membership function

is based on applications. Basically, a triangular type of the membership function

supports a simple representation and fast computation and therefore is widely used.

Through a membership function, the fuzzification process transforms the range of

values of input variables into corresponding universe of discourse and the values of

fuzzy variables can be determined.

3.2 Fuzzy Inference Process

The inference engine is the heart ofan FLC. The inference process is based on fuzzy

rules and deduces fuzzy control actions by using the fuzzy implication and the

compositional rules of inference in fuzzy logic. In FLC applications, sup-min and sup­

product compositional operators are commonly used.

5

3.3 Defuzzification

Because a nonfuzzy control action from a controller is required, it is necessary to map

from fuzzy control actions into nonfuzzy control actions, called defuzzification. The

purpose of defuzzification is to produce a crisp control action that best represents the

possibility distribution of an inferred fuzzy control action. There are many

defuzzification methods found in the literature. Here, the most commonly used

centroid method is described.

Suppose that a fuzzy control action with a discrete membership function !lc has been

produced. The centroid method calculates the center gravity of the distribution for the

control action. In the case of a discrete universe, this method yields

q / q
control action = ~ Jic(Zi)· Zi ~ Jic(Zi) (1)

where q is the number of quantification levels of the output space, Zi is the amount of

control action at the quantification level I, and !lc(Zi) is the degree ofmembership ofzi

in C.

4. Fuzzy Singleton Representation of Ontput

I

I

I
,

I
,

I 6

SLOW MEDWM FAST

100 200 300 100 200 300
(a) (b)

Fig. 3 Fuzzy Output Representation
(a) Standard Representation;
(b) Singleton Representation

In order to reduce the computation expense, we consider a simplified centroid method.

This method is based on the fuzzy singleton representation of output. This

representation allows us to use a special from offuzzy set with only one pair having a

value and full degree of truth and zero for the rest of pairs in a fuzzy set. This

representation is illustrated in Fig. 3. Fuzzy reasoning methods for the two types of

representation are the same but have different effects as shown in Fig. 4.

SLOW MEDIUM FASTISAAA
~.--- ..

o 30 3:& 50 70 0 50 100 150 200 250 300 350 400

I ~ ~_ 6._......1 ..] ~I)
~~L ____~t____~____~______
o 30 38 50 70 o 50 100 150 200 250 300 350 400

(c) (d)

Fig. 4 Fuzzy Inference Results for Singleton Representation
(a) (c) Membership Functions ofInput Fuzzy Set;
(b) Output Fuzzy Space;
(d) Output Fuzzy Singleton Values.
Fuzzy rules for (a)-(b):

ifdist is SMALL than speed is SLOW

if dist is MEDIUM than speed is :MEDIUM

ifdist is BIG than speed is FAST

Fuzzy rules for (c)-(d):

if dist is SMALL than speed is 100

ifdist is MEDIUM than speed is 200

if dist is BIG than speed is 300

7

Given a speed value 38, for the standard form, the resulted output fuzzy set is

truncated as the shaded area after inference process, while for the singleton form, it is

two clipped single values.

The advantage of the representation is obvious. It can greatly reduce computation time

to produce the output fuzzy set, especially when quantification level of output is big.

Furthermore, defuzzification is simplified with the formula (1) transformed to formula

(2) because ~c(Zi) is l.0 at singleton points and 0 otherwise:

m 1m
C=ttWi.Zi ~Wi (2),

where m becomes the number of rules, Wi is the weight of the antecedent ofthe ith rule

and Zj is the singleton value for the ith rule output.

We can compare the computation process for output values in Fig. 4. For the standard

form, we know that each output fuzzy set has 5 members and output quantification

level is 9. Therefore, 3*5 = 15 fuzzy set operations are needed to create output fuzzy

space as the shaded area in reasoning stage. In the defuzzifiation stage, the output

value is calculated with the formula (l) as:

(0*0 + 0.5*50 + 0.6*100 + 0.5*150 + 0.3*200 + 0.3*250 + 0*300 + 0*350 +

0*400)1(0 + 0.5 + 0.6 + 0.5 + 0.3 + 0.3 + 0 + 0 + 0) = 134.09.

For the singleton from, the output value is simply calculated with the formula (2) as:

(0.6*100 + 0.3*200 + 0*300)/(0.6 + 0.3 + 0) = 133.33.

The reduction of computation time can be significant with singleton representation

when the number offuzzy rule and quantification level increases. The drawback of the

singleton representation is that fuzziness is lost at the output evaluation and transfer

function becomes linear.

8

http:C=ttWi.Zi

Appendix B:

Initial population of Avoid Obstacle for both multistage and non-multistage learning

Oth sideJow side high fronUow front_high turn speed
577.311401 753.700301 431.071324 622.401424 0.907611 -33.163138
734.762928 1127.761728 372.913446 1092.665046 1.387465 -69.310339
149.48342 180.30482 566.080659 1333.906359 2.909277 -62.136789

471.218704 1200.481504 852.450154 946.734454 1.837355 21.58374
161.714494 1010.087794 648.365833 1012.052833 2.351816 -92.30295
96.397641 600.333441 808.111097 1629.894797 1.906284 51.136032
444.964334 1178.755634 658.117948 1518.892348 2.281362 -67.719098
401052593 683.231693 897.768581 986.465381 2.158327 -67.403244

664.571383 1516.585183 932.60376 1252.53846 1.790922 -26053337
243.319343 957.766943 700.263506 1476.134906 1.55521 -1.980579
153.843004 661.848004 725.590876 1375.078876 1.036345 -61.783059
791.006344 1518.296644 756.458348 1208.291348 1.997005 99.467332

927.714106 1524.685006 644.650635 1433.244735 2.213875 29.399357
68.993969 222.869969 976.387835 1585.606835 1.192182 54.318558

607.559571 949.609371 576.80755 921.10465 2.346262 -51.591235

490.09427 684.33857 617.491846 668.049946 2.931422 26.108663

375.078059 470.058959 866.789942 1668.369542 0.145056 3.966197

267.054311 344.751611 829.93544 1467.23204 0.277383 -35.75767

342.429063 1170.556563 775.244756 1634.362556 0.599365 7.075061

387.762919 1233.200119 920.353096 1216.315096 0.771294 20.266342

425.47658 1089.38258 945.686355 1389.357855 0.833381 -55.863422

613.334997 925.233297 829.724895 1072.597995 0.844965 -36.681899
UJ....
Q) 954.206144 1739.489444 782.189597 929.127197 0.315619 11.560489
.0
E 146.96979 17 4.21429 604.958321 648.135221 1.116843 -97.842641
Q)

E 368.805402 685.615302 581.660724 879.933024 0.180574 -3.751172

0 940.797877 1726.980877 793.802126 900.592226 2.926632 85034558
10

911.992821 1502.096121 996.97932 1522.29192 0.544851 64.807966

697.044826 1193.384326 345.526171 988.433071 0.107152 81.810677

705.704146 1267.296646 321.393297 929.395197 2.57162 71.544936

403.024858 953.168458 381.567531 1021 .850931 0.65778 15.752215

882.66445 1439.11975 843.455381 1460.219681 2.350348 -67.137448

9.319878 416.188578 224.322457 654.321457 2.108141 82.471358

427.926242 516.535142 768.972994 1411.063594 1.418311 -12.320966

716.776163 1235.369363 241.169369 1109.160869 1.817913 31.352487

730.7 45253 1455.372153 750.075263 801.737963 1.079661 98.839842

815.41671.4 849.083014 584.046511 1447.865311 2.418536 43.676045

310.015437 661.394937 599.912908 868.232608 2.785255 55.503354

884.735878 1706.922478 15.237739 483.393439 0.7777 65.812069

267.901646 454.812446 176.451272 874.058372 0.674187 11.577303

863.372418 1317.387918 147.84375 258.90945 0.473481 40.382182

129.214855 1018.797055 313.667268 1045.525068 2.39921 16.656939

25.621054 765.892354 105.142191 223.411791 0.388935 -94.659118

618.095841 1393.468341 967.276897 1166.446897 2.17384 -39.75118

725.980293 1344.003393 982.701085 1386.816085 1.258283 1.263239

705.806913 1307.680113 557.93695 775.59805 0.117115 -83.454556

201062616 619.004316 596.912877 1327.750077 1.254567 -65.450607

794.828693 1072.234193 138.914572 847.592872 0.151766 -46.663858

739.272865 1563.563965 838.91798 1559.57558 1.442871 -49.821468

211.504984 881.035084 317.64487 807.67867 0.315876 -92.2987

325.148754 897.531354­ 778.839393 1618.638093 0.274414 -37.290193

Average
Deviation 49% 35% 35% 27% 56% 940%

Appendix C: A Complete Sequencing Trace Log

&& Starting pulse, top level
&& Starting motor, top level
&& Starting clamp, top level
&& Starting laser, top level
&& Starting wake, top level
&& Starting side segs, top level
&& Starting test wall, top level
&& Starting test wall break, top level
&& Starting check behavior links, top level
&& Starting test where, top level
&& Starting test control, top level
&& Starting test matching, top level
&& Starting draw, top level

&& Starting sequence it, top level

-Step: 10, state: #[Marco state X: 20.41m, Y: 1.46m, TH: 180.0)

&& Starting following, dad sequence it
- Current behaviour cluster:
..... Avoid Obstacle
..... Follow Corridor
..... Keep Moving

-- Step: 20, state: #[Marco state X: 20.40m, Y: 1.46m, TH: 180.0)
- Found a corridor

&& Starting follow it, dad following

&& Starting behavior Follow Corridor

- Current behaviour cluster:

..... Avoid Obstacle

..... Follow Corridor

..... Keep Moving

..... Recover Stall

- Step: 15, state: #[Marco state X: 16.91 m, Y: 1.43m, TH: 195.8]
- Found a door

&& Deleting follow it

&& Deleting behavior Follow Corridor

- CLirrent behaviour cluster:

.... .Avoid Obstacle

..... Keep Moving

..... Recover Stall

&& Starting enter it, dad sequence it

&& Starting behavior Cross Door

- Current behaviour cluster:

..... Avoid Obstacle

..... Cross Door

..... Keep Moving

..... Recover Stall

- Step: 20, state: #[Marco state X: 14.94m, Y: 2.56m, TH: 90.6]

&& Deleting enter it

&& Deleting behavior Cross Door

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 14.94m, Y: 2.56m, TH: 90.6)
-- Had a position goal

&& Starting go to pos, dad sequence it
&& Starting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

-- Step: 85, state: #[Marco state X: 21.77m, Y: 4.78m, TH: 17.0]

&& Deleting go to pos
&& Deleting behavior Reach Position
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: 21.77m, Y: 4.78m, TH: 17.0]
- Had a track goal

&& Starting track it, dad sequence it
&& Starting behavior Track Path
- Current behaviour cluster:
..... Avoid Obstacle
..... Track Path
..... Keep Moving
..... Recover Stall

-- Step: 50, state: #[Marco state X: 21.67m, Y: 12.01 m, TH: 108.7]

&& Deleting track it
&& Deleting behavior Track Path
- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: 21.66m, Y: 12.04m, TH: 109.0]
-- Had a pOSition goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

-- Step: 85, state: #[Marco state X: 21.36m, Y: 13.45m, TH: 94.3J

&& Deleting go to pos

&& Deleting behavior Reach Position

-- Current behaviour cluster:

.... .Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 21.36m, Y: 13.45m, TH: 94.3]
-- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

- Step: 50, state: #[Marco state X: 21.38m, Y: 4.34m, TH: 267.3]

&& Deleting track it
&& Deleting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

-- Step: 40, state: #[Marco state X: 21.38m, Y: 4.33m, TH: 263.4J
-- Had a position goal

&& Starting go to pos, dad sequence it
&& Starting behavior Reach Position
-- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

- Step: 85, state: #[Marco state X: 20.79m, Y: 3.58m, TH: 238.0J

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 20.79m, Y: 3.58m, TH: 238.0]

- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

- Step: 50, state: #(Marco state X: 20.61m, Y: 13.49m, TH: 100.41

&& Deleting track it

&& Deleting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 20.61m, Y: 13.51m, TH: 98.7]
-- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

- Step: 85, state: #[Marco state X: 20.30m, Y: 13.69m, TH: 202.7]

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster.

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 20.30m, Y: i3.69m, TH: 202.7]
-- Had a track goal

&& Starting track it, dad sequence it
&& Starting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Track Path
.... .Keep Moving
..... Recover Stall

-- Step: 50, state: #[Marco state X: i9.88m, Y: 3.52m, TH: 285.2]

&& Deleting track it
&& Deleting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: i9.89m, Y: 3.49m, TH: 287.0]
-- Had a position goal

&& Starting go to pos, dad sequence it
&& Starting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

-- Step: 85, state: #[Marco state X: 19.70m, Y: 3.31 m, TH: 159.2]

&& Deleting go to pos
&& Deleting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: i9.70m, Y: 3.31m, TH: 159.2]
- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

- Step: 50, state: #[Marco state X: i9.58m, Y: 13.48m, TH: 75.9}

&& Deleting track it

&& Deleting behavior Track Path

-- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 19.59m, Y: 13.S1m, TH: 75.3}
-- Had a position goal

&& Starting go to pas, dad sequence it

&& Starting behavior Reach Position
-- Current behaviour cluster:
...... Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

- Step: 85, state: #[Marco state X: 19.10m, Y: 13.67m, TH: 195.8]

&& Deleting go to pos
&& Deleting behavior Reach Position
-- Current behaviour cluster:
.... Avoid Obstacle
..... Keep Moving
..... Recover Stall

-- Step: 40, state: #[Marco state X: 19.10m, Y: 13.67m, TH: 195.8]
- Had a track goal

&& Starting track it, dad sequence it
&& Starting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Track Path
..... Keep Moving
.... .Recover Stall

- Step: 50, state: #[Marco state X: 1B.93m, Y: 352m, TH: 270.3]

&& Deleting track it

&& Deleting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #{Marco state X: 18.93m, Y: 3.S2m, TH: 270.3]
- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

-- Step: 85, state: #[Marco state X: 1B.48m, Y: 2.91m, TH: 20B.7]

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 18.48m, Y: 2.91 m, TH: 208.7]
- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

-- Step: 50, state: #[Marco state X: 18.08m, Y: 13.4Bm, TH: 105.5]

&& Deleting track it
&& Deleting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: lB.OBm, Y: 13.48m, TH: 105.5J
-- Had a pOSition goal

&& Starting go to pos, dad sequence it
&& Starting behavior Reach Position
-- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
.... .Keep Moving
..... Recover Stall

- Step: 85, state: #[Marco state X: 17.B9m, Y: 13.73m, TH: 197.4]

&& Deleting go to pos
&& Deleting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: 17.B9m, Y: 13.73m, TH: 197.4]
-- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

- Step: 50, state: #[Marco state X: 17.4Bm, Y: 2.96m, TH: 281.7]

&& Deleting track it

&& Deleting behavior Track Path

- Current behaviour cluster:

....Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 17.49m, Y: 2.93m, TH: 284.1J
- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

-- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

-- Step: 85, state: #[Marco state X: 17.29m, Y: 2.74m, TH: 154.8J

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

t

..... Recover Stall

-- Step: 40, state: #[Marco state X: 17.29m, Y: 2.74m, TH: 154.8]
-- Had a track goal

&& Starting track it, dad sequence it
&& Starting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Track Path
..... Keep Moving
..... Recover Stall

-- Step: 50, state: #[Marco state X: 17.44m, Y: 13.48m, TH: 92.7]

&& Deleting track it
&& Deleting behavior Track Path
- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: 17.44m, Y: 13.51 m, TH: 95.71
- Had a position goal

&& Starting go to pas, dad sequence it
&& Starting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

- Step: 85, state: #[Marco state X: 16.73m, Y: 13.64m, TH: 184.1)

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 16.71 m, Y: 13.64m, TH: 184.1)
-- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

- Step: 50, state: #[Marco state X: 16.60m, Y: 2.98m, TH: 253.11

&& Deleting track it

&& Deleting behavior Track Path

-- Current behaviour cluster:

.... .Avoid Obstacle

..... Keep Moving

..... Recover Stall

-- Step: 40, state: #[Marco state X: 16.59m, Y: 2.96m, TH: 252.2}
- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

-

-- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
..... Keep Moving
..... Recover Stall

-- Step: 85, state: #[Marco state X: 16.10m, Y: 2.75m, TH: 164.2]

&& Deleting go to pos
&& Deleting behavior Reach Position
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

-- Step: 40, state: #[Marco state X: 16.09m, Y: 2.76m, TH: 164.2]
- Had a track goal

&& Starting track it, dad sequence it
&& Starting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Track Path
.... .Keep Moving
..... Recover Stall

- Step: 50, state: #[Marco state X: 15.69m, Y: 13A9m, TH: 96.8]

&& Deleting track it

&& Deleting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

.... .Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 15.69m, Y: 13.52m, TH: 93.8]
-- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

- Step: 85, state: #[Marco state X: 15.48m, Y: 13.73m, TH: 206.5]

&& Deleting go to pos

&& Deleting behavior Reach Position

-- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

-- Step: 40, state: #[Marco state X: 15A8m, Y: 13.73m, TH: 206.5J
- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

- Step: 50, state: #[Marco stale X: 15.34m, Y: 2.99m, TH: 243.7}

&& Deleting track it
&& Deleting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

-- Step: 40, state: #[Marco state X: 15.33m, Y: 2.96m, TH: 243.7)
-- Had a position goal

&& Starting go to pos, dad sequence it
&& Starting behavior Reach Position
-- Current behaviour cluster:
..... Avoid Obstacle
..... Reach Position
..... Keep Moving
.... ,Recover Stall

-- Step: 85, state: #[Marco state X: 14.89m, Y: 2.77m, TH: 155.2)

&& Deleting go to pos
&& Deleting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

- Step: 40, state: #[Marco state X: 14.89m, Y: 2.17m, TH: 155.2]

- Had a track goal

&& Starting track it, dad sequence it

&& Starting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Track Path

..... Keep Moving

..... Recover Stall

-- Step: 50, state: #[Marco state X: 14.71m, Y: 12.20m, TH: 104.6J

&& Deleting track it

&& Deleting behavior Track Path

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 14.70m, Y: 12.22m, TH: 105.1]
- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

-- Step: 85, state: #{Marco state X: 14.27m, Y: 12.40m. TH: 202.0]

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 14,26m, Y: 12.39m, TH: 202.0]
- Had a track goal

&& Starting track it, dad sequence it
&& Starting behavior Track Path
-- Current behaviour cluster:
..... Avoid Obstacle
..... Track Path
..... Keep Moving
..... Recover Stall

- Slep: 50, state: #[Marco state X: 14.22m, Y: 3.58m, TH: 271.9]

&& Deleting track it
&& Deleting behavior Track Path
- Current behaviour cluster:
'" ..Avoid Obstacle
.... .Keep Moving
.... .Recover Stall

- Step: 40, state: #[Marco state X: i4.22m, Y: 355m, TH: 274.9]
- Had a anchor goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

-- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

- Step: 70, state: #[Marco state X: 18.85m, Y: i2.03m, TH: 71.4]

- Anchored to a wall edge

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

&& Starting hug it, dad sequence it

&& Starting behaviour Follow Edge

- Current behaviour cluster:

..... Avoid Obstacle

..... Follow Edge

..... Keep Moving

..... Recover Stall

- Step: 80, state: #[Marco state X: is.14m, Y: i3.84m, TH: 173.8]

&& Deleting hug it

&& Deleting behavior Follow Edge

-- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: i6.14m, Y: i3.84m, TH: 173.8]
- Had a anchor goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

-- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

- Step: 70, state: #[Marco state X: 18.80m, Y: 8.41 m, TH: 301.3]

&& Deleting go to pos
&& Deleting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

-- Step: 70, state: #[Marco state X: 18.80m, Y: 8.41 m, TH: 301.3]
-- Anchored to a wall edge

&& Starting hug it, dad sequence it
&& Starting behaviour Follow Edge
-- Current behaviour cluster:
..... Avoid Obstacle
..... Follow Edge
..... Keep Moving
..... Recover Stall

-- Step: 80, state: #[Marco state X: 18.48m, Y: 7.26m, TH: 118.1]

&& Deleting hug it

&& Deleting behavior Follow Edge

-- Current behaviour cluster:

.... .Avoid Obstacle

..... Keep Moving

..... Recover Stall

-- Step: 40, state: #[Marco state X: 18.48m, Y: 7.26m, TH: 118.1]
- Had a position goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

..... Keep Moving

..... Recover Stall

- Step: 85, state: #[Marco state X: 15.45m, Y: 2.76m, TH: 240.0]

&& Deleting go to pos

&& Deleting behavior Reach Position

- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 40, state: #[Marco state X: 15.45m, Y: 2.76m, TH: 240.0]
-- Had a from goal

&& Starting go to pos, dad sequence it

&& Starting behavior Reach Position

-- Current behaviour cluster:

..... Avoid Obstacle

..... Reach Position

.... .Keep Moving

..... Recover Stall

- Step: 90, state: #[Marco state X: 16.12m, Y: 2.66m, TH: 7.0)
-- Anchored to a wall edge

&& Deleting go to pos

•

&& Deleting behavior Reach Position
- Current behaviour cluster:
..... Avoid Obstacle
.... Keep Moving
..... Recover Stall

&& Starting hug it, dad sequence it
&& Starting behaviour Follow Edge
-- Current behaviour cluster:
..... Avoid Obstacle
..... Follow Edge
..... Keep Moving
..... Recover Stall

-- Step: 100, state: #[Marco state X: 14.10m, Y: 3.47m, TH: 259.61

&& Deleting hug it
&& Deleting behavior Follow Edge
-- Current behaviour cluster:
..... Avoid Obstacle
..... Keep Moving
..... Recover Stall

-- Step: 150, state: #[Marco state X: 14.10m, Y: 3.47m, TH: 259.6]
- Found a door

&& Starting go out, dad sequence it
&& Starting behavior Cross Door
-- Current behaviour cluster:
.... .Avoid Obstacle
.....Cross Door
.....Keep Moving
..... Recover Stall

- Step: 180, state: #[Marco state X: 14.80m. Y: 1.83m, TH: 254.5]

&& Deleting go out

&& Deleting behavior Cross Door

-- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

- Step: 200. state: #[Marco state X: 14.80m, Y: 1.81 m, TH: 256.0]

&& Task succeeded, Sequence it!

&& Deleting sequence it

-- Current behaviour cluster:

..... Avoid Obstacle

..... Keep Moving

..... Recover Stall

