238 research outputs found

    Isogeny-based post-quantum key exchange protocols

    Get PDF
    The goal of this project is to understand and analyze the supersingular isogeny Diffie Hellman (SIDH), a post-quantum key exchange protocol which security lies on the isogeny-finding problem between supersingular elliptic curves. In order to do so, we first introduce the reader to cryptography focusing on key agreement protocols and motivate the rise of post-quantum cryptography as a necessity with the existence of the model of quantum computation. We review some of the known attacks on the SIDH and finally study some algorithmic aspects to understand how the protocol can be implemented

    Post-Quantum Elliptic Curve Cryptography

    Get PDF
    We propose and develop new schemes for post-quantum cryptography based on isogenies over elliptic curves. First we show that ordinary elliptic curves are have less than exponential security against quantum computers. These results were used as the motivation for De Feo, Jao and Pl\^ut's construction of public key cryptosystems using supersingular elliptic curve isogenies. We extend their construction and show that isogenies between supersingular elliptic curves can be used as the underlying hard mathematical problem for other quantum-resistant schemes. For our second contribution, we propose is an undeniable signature scheme based on elliptic curve isogenies. We prove its security under certain reasonable number-theoretic computational assumptions for which no efficient quantum algorithms are known. This proposal represents only the second known quantum-resistant undeniable signature scheme, and the first such scheme secure under a number-theoretic complexity assumption. Finally, we also propose a security model for evaluating the security of authenticated encryption schemes in the post-quantum setting. Our model is based on a combination of the classical Bellare-Namprempre security model for authenticated encryption together with modifications from Boneh and Zhandry to handle message authentication against quantum adversaries. We give a generic construction based on Bellare-Namprempre for producing an authenticated encryption protocol from any quantum-resistant symmetric-key encryption scheme together with any digital signature scheme or MAC admitting any classical security reduction to a quantum-computationally hard problem. We apply the results and show how we can explicitly construct authenticated encryption schemes based on isogenies

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    Towards Green Computing Oriented Security: A Lightweight Postquantum Signature for IoE

    Full text link
    [EN] Postquantum cryptography for elevating security against attacks by quantum computers in the Internet of Everything (IoE) is still in its infancy. Most postquantum based cryptosystems have longer keys and signature sizes and require more computations that span several orders of magnitude in energy consumption and computation time, hence the sizes of the keys and signature are considered as another aspect of security by green design. To address these issues, the security solutions should migrate to the advanced and potent methods for protection against quantum attacks and offer energy efficient and faster cryptocomputations. In this context, a novel security framework Lightweight Postquantum ID-based Signature (LPQS) for secure communication in the IoE environment is presented. The proposed LPQS framework incorporates a supersingular isogeny curve to present a digital signature with small key sizes which is quantum-resistant. To reduce the size of the keys, compressed curves are used and the validation of the signature depends on the commutative property of the curves. The unforgeability of LPQS under an adaptively chosen message attack is proved. Security analysis and the experimental validation of LPQS are performed under a realistic software simulation environment to assess its lightweight performance considering embedded nodes. It is evident that the size of keys and the signature of LPQS is smaller than that of existing signature-based postquantum security techniques for IoE. It is robust in the postquantum environment and efficient in terms of energy and computations.This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University. Jeddah. under grant No. (DF-457-156-1441).Rani, R.; Kumar, S.; Kaiwartya, O.; Khasawneh, AM.; Lloret, J.; Al-Khasawneh, MA.; Mahmoud, M.... (2021). Towards Green Computing Oriented Security: A Lightweight Postquantum Signature for IoE. Sensors. 21(5):1-20. https://doi.org/10.3390/s2105188312021

    Multiparty Non-Interactive Key Exchange and More From Isogenies on Elliptic Curves

    Get PDF
    We describe a framework for constructing an efficient non-interactive key exchange (NIKE) protocol for n parties for any n ≥ 2. Our approach is based on the problem of computing isogenies between isogenous elliptic curves, which is believed to be difficult. We do not obtain a working protocol because of a missing step that is currently an open mathematical problem. What we need to complete our protocol is an efficient algorithm that takes as input an abelian variety presented as a product of isogenous elliptic curves, and outputs an isomorphism invariant of the abelian variety. Our framework builds a cryptographic invariant map, which is a new primitive closely related to a cryptographic multilinear map, but whose range does not necessarily have a group structure. Nevertheless, we show that a cryptographic invariant map can be used to build several cryptographic primitives, including NIKE, that were previously constructed from multilinear maps and indistinguishability obfuscation

    Multiparty Non-Interactive Key Exchange and More From Isogenies on Elliptic Curves

    Get PDF
    We describe a framework for constructing an efficient non-interactive key exchange (NIKE) protocol for n parties for any n >= 2. Our approach is based on the problem of computing isogenies between isogenous elliptic curves, which is believed to be difficult. We do not obtain a working protocol because of a missing step that is currently an open mathematical problem. What we need to complete our protocol is an efficient algorithm that takes as input an abelian variety presented as a product of isogenous elliptic curves, and outputs an isomorphism invariant of the abelian variety. Our framework builds a cryptographic invariant map, which is a new primitive closely related to a cryptographic multilinear map, but whose range does not necessarily have a group structure. Nevertheless, we show that a cryptographic invariant map can be used to build several cryptographic primitives, including NIKE, that were previously constructed from multilinear maps and indistinguishability obfuscation
    • …
    corecore