61 research outputs found

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    Análise do HEVC escalável : desempenho e controlo de débito

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesEsta dissertação apresenta um estudo da norma de codificação de vídeo de alta eficiência (HEVC) e a sua extensão para vídeo escalável, SHVC. A norma de vídeo SHVC proporciona um melhor desempenho quando codifica várias camadas em simultâneo do que quando se usa o codificador HEVC numa configuração simulcast. Ambos os codificadores de referência, tanto para a camada base como para a camada superior usam o mesmo modelo de controlo de débito, modelo R-λ, que foi otimizado para o HEVC. Nenhuma otimização de alocação de débito entre camadas foi até ao momento proposto para o modelo de testes (SHM 8) para a escalabilidade do HEVC (SHVC). Derivamos um novo modelo R-λ apropriado para a camada superior e para o caso de escalabilidade espacial, que conduziu a um ganho de BD-débito de 1,81% e de BD-PSNR de 0,025 em relação ao modelo de débito-distorção existente no SHM do SHVC. Todavia, mostrou-se também nesta dissertação que o proposto modelo de R-λ não deve ser usado na camada inferior (camada base) no SHVC e por conseguinte no HEVC.This dissertation provides a study of the High Efficiency Video Coding standard (HEVC) and its scalable extension, SHVC. The SHVC provides a better performance when encoding several layers simultaneously than using an HEVC encoder in a simulcast configuration. Both reference encoders, in the base layer and in the enhancement layer use the same rate control model, R-λ model, which was optimized for HEVC. No optimal bitrate partitioning amongst layers is proposed in scalable HEVC (SHVC) test model (SHM 8). We derived a new R-λ model for the enhancement layer and for the spatial case which led to a DB-rate gain of 1.81% and DB-PSNR gain of 0.025 in relation to the rate-distortion model of SHM-SHVC. Nevertheless, we also show in this dissertation that the proposed model of R-λ should not be used neither in the base layer nor in HEVC

    Advanced methods and deep learning for video and satellite data compression

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    IBVC: Interpolation-driven B-frame Video Compression

    Full text link
    Learned B-frame video compression aims to adopt bi-directional motion estimation and motion compensation (MEMC) coding for middle frame reconstruction. However, previous learned approaches often directly extend neural P-frame codecs to B-frame relying on bi-directional optical-flow estimation or video frame interpolation. They suffer from inaccurate quantized motions and inefficient motion compensation. To address these issues, we propose a simple yet effective structure called Interpolation-driven B-frame Video Compression (IBVC). Our approach only involves two major operations: video frame interpolation and artifact reduction compression. IBVC introduces a bit-rate free MEMC based on interpolation, which avoids optical-flow quantization and additional compression distortions. Later, to reduce duplicate bit-rate consumption and focus on unaligned artifacts, a residual guided masking encoder is deployed to adaptively select the meaningful contexts with interpolated multi-scale dependencies. In addition, a conditional spatio-temporal decoder is proposed to eliminate location errors and artifacts instead of using MEMC coding in other methods. The experimental results on B-frame coding demonstrate that IBVC has significant improvements compared to the relevant state-of-the-art methods. Meanwhile, our approach can save bit rates compared with the random access (RA) configuration of H.266 (VTM). The code will be available at https://github.com/ruhig6/IBVC.Comment: Submitted to IEEE TCSV

    Low complexity in-loop perceptual video coding

    Get PDF
    The tradition of broadcast video is today complemented with user generated content, as portable devices support video coding. Similarly, computing is becoming ubiquitous, where Internet of Things (IoT) incorporate heterogeneous networks to communicate with personal and/or infrastructure devices. Irrespective, the emphasises is on bandwidth and processor efficiencies, meaning increasing the signalling options in video encoding. Consequently, assessment for pixel differences applies uniform cost to be processor efficient, in contrast the Human Visual System (HVS) has non-uniform sensitivity based upon lighting, edges and textures. Existing perceptual assessments, are natively incompatible and processor demanding, making perceptual video coding (PVC) unsuitable for these environments. This research allows existing perceptual assessment at the native level using low complexity techniques, before producing new pixel-base image quality assessments (IQAs). To manage these IQAs a framework was developed and implemented in the high efficiency video coding (HEVC) encoder. This resulted in bit-redistribution, where greater bits and smaller partitioning were allocated to perceptually significant regions. Using a HEVC optimised processor the timing increase was < +4% and < +6% for video streaming and recording applications respectively, 1/3 of an existing low complexity PVC solution. Future work should be directed towards perceptual quantisation which offers the potential for perceptual coding gain

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    Deep Hierarchical Video Compression

    Full text link
    Recently, probabilistic predictive coding that directly models the conditional distribution of latent features across successive frames for temporal redundancy removal has yielded promising results. Existing methods using a single-scale Variational AutoEncoder (VAE) must devise complex networks for conditional probability estimation in latent space, neglecting multiscale characteristics of video frames. Instead, this work proposes hierarchical probabilistic predictive coding, for which hierarchal VAEs are carefully designed to characterize multiscale latent features as a family of flexible priors and posteriors to predict the probabilities of future frames. Under such a hierarchical structure, lightweight networks are sufficient for prediction. The proposed method outperforms representative learned video compression models on common testing videos and demonstrates computational friendliness with much less memory footprint and faster encoding/decoding. Extensive experiments on adaptation to temporal patterns also indicate the better generalization of our hierarchical predictive mechanism. Furthermore, our solution is the first to enable progressive decoding that is favored in networked video applications with packet loss
    corecore