4,239 research outputs found

    Building Confidential and Efficient Query Services in the Cloud with RASP Data Perturbation

    Full text link
    With the wide deployment of public cloud computing infrastructures, using clouds to host data query services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly reduce the in-house workload to fully realize the benefits of cloud computing. We propose the RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. The RASP data perturbation method combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, which allows existing indexing techniques to be applied to speedup range query processing. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN queries. We have carefully analyzed the attacks on data and queries under a precisely defined threat model and realistic security assumptions. Extensive experiments have been conducted to show the advantages of this approach on efficiency and security.Comment: 18 pages, to appear in IEEE TKDE, accepted in December 201

    Diamond Dicing

    Get PDF
    In OLAP, analysts often select an interesting sample of the data. For example, an analyst might focus on products bringing revenues of at least 100 000 dollars, or on shops having sales greater than 400 000 dollars. However, current systems do not allow the application of both of these thresholds simultaneously, selecting products and shops satisfying both thresholds. For such purposes, we introduce the diamond cube operator, filling a gap among existing data warehouse operations. Because of the interaction between dimensions the computation of diamond cubes is challenging. We compare and test various algorithms on large data sets of more than 100 million facts. We find that while it is possible to implement diamonds in SQL, it is inefficient. Indeed, our custom implementation can be a hundred times faster than popular database engines (including a row-store and a column-store).Comment: 29 page

    Scalable Model-Based Management of Correlated Dimensional Time Series in ModelarDB+

    Full text link
    To monitor critical infrastructure, high quality sensors sampled at a high frequency are increasingly used. However, as they produce huge amounts of data, only simple aggregates are stored. This removes outliers and fluctuations that could indicate problems. As a remedy, we present a model-based approach for managing time series with dimensions that exploits correlation in and among time series. Specifically, we propose compressing groups of correlated time series using an extensible set of model types within a user-defined error bound (possibly zero). We name this new category of model-based compression methods for time series Multi-Model Group Compression (MMGC). We present the first MMGC method GOLEMM and extend model types to compress time series groups. We propose primitives for users to effectively define groups for differently sized data sets, and based on these, an automated grouping method using only the time series dimensions. We propose algorithms for executing simple and multi-dimensional aggregate queries on models. Last, we implement our methods in the Time Series Management System (TSMS) ModelarDB (ModelarDB+). Our evaluation shows that compared to widely used formats, ModelarDB+ provides up to 13.7 times faster ingestion due to high compression, 113 times better compression due to the adaptivity of GOLEMM, 630 times faster aggregates by using models, and close to linear scalability. It is also extensible and supports online query processing.Comment: 12 Pages, 28 Figures, and 1 Tabl

    Collaborative OLAP with Tag Clouds: Web 2.0 OLAP Formalism and Experimental Evaluation

    Full text link
    Increasingly, business projects are ephemeral. New Business Intelligence tools must support ad-lib data sources and quick perusal. Meanwhile, tag clouds are a popular community-driven visualization technique. Hence, we investigate tag-cloud views with support for OLAP operations such as roll-ups, slices, dices, clustering, and drill-downs. As a case study, we implemented an application where users can upload data and immediately navigate through its ad hoc dimensions. To support social networking, views can be easily shared and embedded in other Web sites. Algorithmically, our tag-cloud views are approximate range top-k queries over spontaneous data cubes. We present experimental evidence that iceberg cuboids provide adequate online approximations. We benchmark several browser-oblivious tag-cloud layout optimizations.Comment: Software at https://github.com/lemire/OLAPTagClou

    Benchmarking Summarizability Processing in XML Warehouses with Complex Hierarchies

    Full text link
    Business Intelligence plays an important role in decision making. Based on data warehouses and Online Analytical Processing, a business intelligence tool can be used to analyze complex data. Still, summarizability issues in data warehouses cause ineffective analyses that may become critical problems to businesses. To settle this issue, many researchers have studied and proposed various solutions, both in relational and XML data warehouses. However, they find difficulty in evaluating the performance of their proposals since the available benchmarks lack complex hierarchies. In order to contribute to summarizability analysis, this paper proposes an extension to the XML warehouse benchmark (XWeB) with complex hierarchies. The benchmark enables us to generate XML data warehouses with scalable complex hierarchies as well as summarizability processing. We experimentally demonstrated that complex hierarchies can definitely be included into a benchmark dataset, and that our benchmark is able to compare two alternative approaches dealing with summarizability issues.Comment: 15th International Workshop on Data Warehousing and OLAP (DOLAP 2012), Maui : United States (2012
    • …
    corecore