3,319 research outputs found

    A Multi-Objective Optimization Approach for Multi-Head Beam-Type Placement Machines

    Get PDF
    This paper addresses a highly challenging scheduling problem in the field of printed circuit board (PCB) assembly systems using Surface Mounting Devices (SMD). After describing some challenging optimization sub-problems relating to the heads of multi-head surface mounting placement machines, we formulate an integrated multi-objective mathematical model considering of two main sub-problems simultaneously. The proposed model is a mixed integer nonlinear programming one which is very complex to be solved optimally. Therefore, it is first converted into a linearized model and then solved using an efficient multi-objective approach, i.e., the augmented epsilon constraint method. An illustrative example is also provided to show the usefulness and applicability of the proposed model and solution method.PCB assembly. Multi-head beam-type placement machine. Multi-objective mathematical programming. Augmented epsilon-constraint method

    A Multi-Objective Optimization Approach for Multi-Head Beam-Type Placement Machines

    Get PDF

    An MILP model and a hybrid evolutionary algorithm for integrated operation optimisation of multi-head surface mounting machines in PCB assembly

    Get PDF
    This paper focuses on an operation optimisation problem for a class of multi-head surface mounting machines in printed circuit board assembly lines. The problem involves five interrelated sub-problems: assigning nozzle types as well as components to heads, assigning feeders to slots and determining component pickup and placement sequences. According to the depth of making decisions, the sub-problems are first classified into two layers. Based on the classification, a two-stage mixed-integer linear programming (MILP) is developed to describe it and a two-stage problem-solving frame with a hybrid evolutionary algorithm (HEA) is proposed. In the first stage, a constructive heuristic is developed to determine the set of nozzle types assigned to each head and the total number of assembly cycles; in the second stage, constructive heuristics, an evolutionary algorithm with two evolutionary operators and a tabu search (TS) with multiple neighbourhoods are combined to solve all the sub-problems simultaneously, where the results obtained in the first stage are taken as constraints. Computational experiments show that the HEA can obtain good near-optimal solutions for small size instances when compared with an optimal solver, Cplex, and can provide better results when compared with a TS and an EA for actual instances

    Comparison of a bat and genetic algorithm generated sequence against lead through programming when assembling a PCB using a 6 axis robot with multiple motions and speeds

    Get PDF
    An optimal component feeder arrangement and robotic placement sequence are both important for improving assembly efficiency. Both problems are combinatorial in nature and known to be NP-hard. This paper presents a novel discrete hybrid bat-inspired algorithm for solving the feeder slot assignment and placement sequence problem encountered when planning robotic assembly of electronic components. In our method, we use the concepts of swap operators and swap sequence to redefine position, and velocity operators from the basic bat algorithm. Furthermore, we propose an improved local search method based on genetic operators of crossover and mutation enhanced by the 2-opt search procedure. The algorithm is formulated with the objective of minimizing the total traveling distance of the pick and place device. Through numerical experiments, using a real PCB assembly scenario, we demonstrate the considerable effectiveness of the proposed discrete Bat Algorithm (BA) to improve selection of feeder arrangement and placement sequence in PCB assembly operations and achieve high throughput production. The results also highlighted that the even though the algorithms out performed traditional lead through programming techniques, the programmer must consider the influence of different robot motions

    A Genetic Algorithm for Fixture Synthesis and Variation

    Get PDF
    Concepts in manufacturing such as CIMS (Computer Integrated Manufacturing Systems), JIT (Just In Time), Lean Production, Virtual Manufacturing, and Flexible Fixturing have been proposed to meet the fundamental requirements of manufacturing - decrease the cost and satisfy the needs of customers. Fast fixture generation and fixture reusability are essential in the current manufacturing environment. The dissertation focuses on the models, methods, and algorithms for fixture synthesis and variation that satisfy the functional requirements specified by on-site industrial engineers. With the reusability of a fixture base combined with variation of other fixture components, fixture configuration can be rapidly adapted and accommodated to the new workpiece. The dissertation presents methods and algorithms for fixture base synthesis, which directly result in fixture reusability. Optimization functions are derived based on engineering requirements due to the mass production nature of automotive parts. Specific optimization algorithms are developed and their complexities, compared to other alternatives, are comprehensively evaluated according to different optimization functions. The fixture variation and reusability provide an engineering tool to rapidly generate and validate fixtures in production planning stage. It applies scientific reasoning methodology in combination with best knowledge of fixture designs, which heavily relies on designers\u27 manufacturing knowledge and experience. It also provides means to bridge the gap between CAD and CAM integration and therefore reduces the new product and production development cycle time and cost while maintaining the quality of fixtures

    Setup Optimization in High-Mix Surface Mount PCB Assembly

    Get PDF
    Siirretty Doriast

    Optimal scope of supply chain network & operations design

    Get PDF
    The increasingly complex supply chain networks and operations call for the development of decision support systems and optimization techniques that take a holistic view of supply chain issues and provide support for integrated decision-making. The economic impacts of optimized supply chain are significant and that has attracted considerable research attention since the late 1990s. This doctoral thesis focuses on developing manageable and realistic optimization models for solving four contemporary and interrelated supply chain network and operations design problems. Each requires an integrated decision-making approach for advancing supply chain effectiveness and efficiency. The first model formulates the strategic robust downsizing of a global supply chain network, which requires an integrated decision-making on resource allocation and network reconfiguration, given certain financial constraints. The second model also looks at the strategic supply chain downsizing problem but extends the first model to include product portfolio selection as a downsizing decision. The third model concerns the redesign of a warranty distribution network, which requires an integrated decision-making on strategic network redesign and tactical recovery process redesign. The fourth model simultaneously determines the operational-level decisions on job assignment and process sequence in order to improve the total throughput of a production facility unit

    Optimization of robotic assembly of printed circuit board by using evolutionary algorithm

    Get PDF
    This research work describes the development and evaluation of a custom application exploring the use of Artificial Immune System algorithms (AIS) to solve a component placement sequencing problem for printed circuit board (PCB) assembly. In the assembly of PCB’s, the component placement process is often the bottleneck and the equipment to complete component placement is often the largest capital investment

    Feasibility analysis of using special purpose machines for drilling-related operations

    Get PDF
    This work focuses on special purpose machine tools (SPMs), providing a modular platform for performing drilling-related operations. One of the main challenges in using SPMs is selecting the most appropriate machine tool among many alternatives. This thesis introduces a feasibility analysis procedure developed to support decision-making through the assessment of the strengths and limitations of SPMs. To achieve this, technical and economic feasibility analyses, a sensitivity analysis, and an optimisation model were developed and a case study was provided for each analysis. The results indicated that although technical feasibility analysis leads decision-makers to select a feasible machine tool, complementary analyses are required for making an informed decision and improving profitability. Accordingly, a mathematical cost model was developed to perform economic and sensitivity analyses and investigate the profitability of any selected SPM configuration. In addition, an optimisation procedure was applied to the cost model in order to investigate the effect of process parameters and the SPM configuration on the decision-making. Finally, the developed analyses were then integrated into a model in a proper sequence that can evaluate whether the SPM is appropriate for producing the given part and achieving higher productivity. To validate this integrated model three different case studies were presented and results were discussed. The results showed that the developed model is a very useful tool in assisting manufacturers to evaluate the performance of SPMs in comparison with other alternatives considered from different perspectives

    A Multi-Exchange Neighborhood Search Heuristic for an Integrated Clustering and Machine Setup Model for PCB Manufacturing

    Get PDF
    In the manufacture of printed circuit boards, electronic components are attached to a blank board by one or more pick-and-place machines. Frequent machine setups, though time consuming, can reduce overall processing time. We consider the Integrated Clustering and Machine Setup (ICMS) model, which incorporates this tradeoff between processing time and setup time and seeks to minimize the sum of the two. Solving this model to optimality is intractable for very large-scale instances. We show that ICMS is NP-hard and consequently propose and test a heuristic based on multi-exchange neighborhood search structures. Initial numerical results are very encouraging. Keywords: Printed circuit board assembly, feeder slot assignment, product clustering, integer programming, computational complexity, heuristics
    corecore