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Abstract This paper addresses a highly challenging 
scheduling problem in the field of printed circuit board 
(PCB) assembly systems using Surface Mounting 
Devices (SMD). After describing some challenging 
optimization sub-problems relating to the heads of 
multi-head surface mounting placement machines, we 
formulate an integrated multi-objective mathematical 
model considering of two main sub-problems 
simultaneously. The proposed model is a mixed integer 
nonlinear programming one which is very complex to 
be solved optimally. Therefore, it is first converted into 
a linearized model and then solved using an efficient 
multi-objective approach, i.e., the augmented epsilon 
constraint method. An illustrative example is also 
provided to show the usefulness and applicability of the 
proposed model and solution method. 

Keywords PCB assembly . Multi-head beam-type 
placement machine . Multi-objective mathematical 
programming . Augmented epsilon-constraint method 
 

1 Introduction 

Over the last two decades, the assembly of PCBs has 
generated a huge amount of industrial activity. One of 
the major developments in PCB assembly is the 
introduction of surface mount technology (SMT) in 
1960s. SMT has displaced through-hole technology as 
the primary means of assembling PCBs. It has also 
made it easy to automate the PCB assembly process. 
The component placement machine is probably the 

most important piece of manufacturing equipment on a 
surface mount assembly line [1]. As SMT becomes 
popular, different types of placement machines have 
arisen. For a well-organized classification of placement 
machines based on their operational methods the reader 
is referred to Ayob and Kendall [2]. Among the 
component placement machines, multi-head of gantry-
type machines are becoming increasingly popular 
because they provide high mounting speed with 
relatively low cost. A gantry robot, which moves 
components between the components feeder racks and 
the PCB, usually involves multiple heads to reduce the 
number of pick-and-place cycles. The heads are 
sequentially arranged on a beam or a rotating wheel at 
the gantry robot. The former is called beam-type while 
the latter is called collect-and-place type [3]. Both types 
of these machines can have single or multiple arms. 
The proper assignment of component types to feeders 
in placement machines and the placement sequence of 
components on the PCB are the main factors greatly 
affecting the production cycle time of each machine 
and the whole SMT line [4].  These problems are 
highly interrelated and very difficult to solve 
simultaneously. Therefore, during the last decade, most 
research on minimizing the PCB assembly time has 
focused on solving these problems separately by 
decoupling one from the other [5]. Many research 
works have been devoted to these complex problems by 
developing various mathematical models and solution 
approaches. For example, Ball and Magazine [6] 
modeled the sequencing problem as a directed postman 
problem. They suggested that the balance and connect 
heuristic can be applied to this problem. Leipala and 
Nevalainen [7] dealt with the placement sequencing 
sub-problem as a three dimensional asymmetric 
travelling salesman problem whilst the feeder 
assignment sub-problem was modeled as a quadratic 
assignment problem. Or and Duman [8] used a convex 
hull algorithm and Or-opt tour improvement method for 
placement sequencing and feeder assignment sub-
problems. Khoo and Loh [9] modeled the problem of 
assembling a printed circuit board with a chip shooter 
as a multi-objective problem. They applied a genetic 
algorithm to generate the placement sequences and 
feeder assignment. Ho and Ji [10] developed a hybrid 
genetic algorithm to integrate placement sequencing, 
feeder assignment and component retrieval sub-
problems. Their purposed algorithm was found to 
perform better than conventional genetic algorithms. 
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Moon [11] developed two different methods using 
special features on printed circuit boards to 
simultaneously improve component’s rack assignment 
and component mounting sequencing problems in chip 
shooter machines like Panasert MSH-II, Fuji CP-II, and 
CP-IV. Based on results from field surveys, it is found 
that identical components are positioned closely with 
each other or identical single boards are repeatedly 
printed on one big board to enlarge up to a proper size 
to be assembled in the machine. These patterns are 
adapted on the design of assembly methods to increase 
productivity. Simulation models are also constructed 
for performance evaluation purposes of the developed 
heuristics.  

SMD machines with multiple heads are the most 
popular ones in SMT lines, but the complexity of their 
performance makes the respective optimization 
problems more difficult to be solved. However, the 
literature review regarding these machines is rather 
scarce. Van Laarhoven and Zijim [12] applied a 
hierarchical procedure for solving the optimization 
problems of a set of beam-type multi-head placement 
machines with three placement heads. All sub-problems 
in the hierarchy were solved sequentially by simulated 
annealing approach. They stated that their proposed 
method performs well in balancing the workload over 
the machines. Magyar et al. [13] dealt with the problem 
of sequencing of pick-and-place cycles; allocation of 
nozzles to heads; and feeder assignment using a 
hierarchical approach. They considered a general 
surface mounting (GSM) machine that is a beam-type 
multi-head placement machine. Initially, they solved 
the feeder assignment sub-problem by using a greedy 
local search. The output of first sub-problem is used as 
the input for nozzle optimization sub-problem and the 
output of nozzle optimization sub-problem considered 
as an input to component pick-and-place sub-problem 
that is also solved using a greedy local search approach. 
Their approach significantly decreased the cycle time. 
Lee et al. [5] applied a genetic algorithm for a joint-
solution of the optimization sub-problems in a multi-
head beam-type placement machine. They converted 
the optimization problem of a multi-head machine to a 
single-head case by grouping feeders and clustering of 
components. They utilized single-head methods to the 
multi-head case. They also selected the partial-link 
structure for the chromosomes. Hong et al. [14] 
implemented a biological immune algorithm for 
optimization problem of a multi-head beam-type 

placement machine. Jeevan et al. [15] applied a genetic 
algorithm to minimize the cycle time in a beam-type 
multi-head machine. They used the distance of a TSP 
tour as the fitness function of genetic algorithm. 
However, they did not discuss the mathematical 
modeling and chromosome definition in the paper. 
Grunow et al. [16] followed a hierarchical approach for 
optimization problem of a collect-and-place multi-head 
placement machine. They considered four sub-
problems in their proposed hierarchy, i.e., (i) feeder 
assignment; (ii) sub-tours composition; (iii) sequencing 
of placement of components within a sub-tour; (iv) 
sequencing the sub-tours. A three-stage approach is 
applied for solving the sub-problems. Sub-problem (i) 
is solved in stage one using a greedy algorithm. In the 
second stage sub-problems (ii), (iii) and (iv) are solved 
by modeling them as a vehicle-routing problem. Given 
the feeder assignment solution from stage one, the 
authors sequence the component pick-and-place 
operations using a heuristic approach. The final stage of 
solution approach improves the feeder assignment and 
the component pick-and-place sequence using a 
random descent 2-opt swapping procedure. Sun et al. 
[17] considered the optimization performance of a dual-
gantry collect-and-place multi-head placement 
machine. They proposed a hybrid genetic algorithm for 
solving the component allocation and feeder 
assignment sub-problems along with a greedy 
algorithm for placement heads workload balancing. 
Raduly-Baka and Knuutila [18] presented different 
approaches for determining the number of nozzles for 
populating a PCB type by a multi-head beam-type 
machine. They assumed that each component type can 
be handled using one nozzle type. Their nozzle 
selection problem optimally solved using a three-phase 
greedy algorithm. They also investigated the nozzle 
selection in the case of multiple PCB types. Kulak et al. 
[19] proposed three different genetic algorithms for 
scheduling operations of a collect-and-place placement 
machine. They considered the case of single and dual-
gantry placement machines. They integrated feeder 
assignment and placement sequencing using a genetic 
algorithm. The authors claimed that their proposed 
genetic algorithms are very efficient in terms of 
computational time, especially if adequate coding 
schemes are used. Recently, Sun and Lee [3] developed 
a branch-and-price procedure for a placement routing 
problem for a beam-type multi-head placement 
machine. They formulated the problem as an integer 
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programming model with a huge number of variables. 
They solved the linear relaxation of the model by a 
column generation method. Li et al. [20] considered the 
cycle time minimization of a SONY SE-1000 machine 
which belongs to collect-and-place multi-head 
placement machines. They assumed that the mounting 
sequence is given in advance and they solved feeder 
assignment sub-problem using a genetic algorithm. In 
their proposed genetic algorithm, a uniform order 
crossover and exchanging mutation is applied. 
   Literature review regarding the multi-head SMD 
placement machines reveals less attention to optimal 
utilization of the placement heads. In addition to this 
gap, the dependency of the moving speed of the robotic 
arm to the combination of nozzles and components 
currently loaded on the heads is also neglected. Our 
focus in this paper is on single arm beam-type multi-
head placement machines. In this regard, we develop a 
novel mathematical model to deal with the heads-
related decision problems in such placement machines 
by addressing the existing gaps in the literature. 
   The remainder of this paper is organized as follows. 
Section 2 contains a more detailed description of a 
single arm beam-type multi-head placement machine. 
Section 3 provides a precise statement of the problem 
and its sub-problems, and presents a new integrated 
model for the main sub-problems of heads, i.e., the 
workload balancing and nozzle selection 
simultaneously. The solution procedure is elaborated in 
Section 4. An illustrative example is provided in 
Section 5. Finally, concluding remarks are given in 
Section 6. 

 

2 Machine description  

Fig. 1 illustrates the schematic view of the considered 
multi-head beam-type placement machine in this paper. 
SMD machines such as Yamaha YV-64/88/100, 
Samsung CP-40/50 and Juki KE-750/760 belong to this 
type of placement machines. The machine has a fixed 
PCB table, a feeder bank, an arm that is equipped with 
a number of placement heads and an Automatic Nozzle 
Changer (ANC). The PCB remains fixed on the PCB 
table during the placement process. A fixed feeder bank 
is located on one side of the PCB table. The feeder 
bank consists of a number of slots for positioning the 
feeders. Electronic Components are supplied to the 
machine by feeders. Multiple heads are located on the 

arm and move together with it simultaneously in both X 
and Y directions. The assembly process starts by 
moving the arm toward the feeder bank and picking up 
at most H components either simultaneously or on one 
by one basis by moving along the feeder bank. Then it 
moves to the PCB to place the components just picked 
up on the specific locations on the PCB. When the head 
positions exactly on the placement location, it moves 
down in Z direction and mounts its component on the 
board. Each head can use various types of nozzles for 
picking and placing components. Not each nozzle is 
suitable for handling each component type. Large 
nozzles cannot pick small components and small 
nozzles cannot pick large components. Therefore, it 
will be necessary to exchange nozzles sometimes. The 
nozzles are stored in ANC (automatic nozzle changer). 
The exchange action starts by moving the arm to the 
ANC and inserting the unnecessary nozzle in an empty 
slot. Then, the arm moves towards the new nozzle and 
picks it. Notably, this nozzle exchange process is often 
time-consuming which should be avoided as many as 
possible. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
3 Problem definition and formulation 
 
3.1 Problem hierarchy 
 
   Given a PCB type to be mounted with N components 
divided into T types using a multi-head beam-type 
placement machine equipped with H placement heads, 

Fig. 1 The schematic view of a multi-head machine. 
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the main problem can be described through the 
following sub-problems: 
 

1) Assignment of feeders to feeder slots. 

2) Partitioning the N components into a number of 
clusters, each of which consisting of at most H 
components (pertaining to a pick-and-place tour). 

3) Sequencing of component clusters and within each 
cluster, placement sequencing of its components, so 
that the cycle time of the machine (i.e., the 
necessary time to mount all components on the 
PCB) is minimized. 

Obviously this problem is extremely complex. In 
order to reduce this complexity, a hierarchical 
decomposition approach is often applied (See for 
example Ayob and Kendall [21]). In hierarchical 
approach, the main problem is decomposed into a series 
of sub-problems in such a way the solution of each sub-
problem generates required input data for the next sub-
problem. The following sub-problems are a more 
detailed description of above-mentioned sub-problems: 
i. For each pair of component type t (t=1,...,T) and 

head h (h=1,...,H), determine the number of 
components of type t to be handled by head h. 

ii. For each pair of component type and head, 
determine the most appropriate nozzle type 
handling the component. 

iii. For each pair of component type and head, 
determine which components of type t are to be 
mounted by head h. 

iv. Determine the component clusters. 
v. Sequence the component clusters. 

vi. Sequence the components placing within each 
cluster. 

 
3.2 Problem statement and assumptions 
 
This problem was inspired by a real case in 
Assembléon during a consultative work done by one of 
the authors with the company. Assembléon which was 
formerly known as Philips Electronic Manufacturing 
Technology, develops, assembles, and distributes a 
diverse range of SMD machines (especially, single arm 
beam-type multi-head placement machines) and 
provides a broad range of related services. In this paper, 
the best way of distribution (assignment) of 
components over the heads of a single arm beam-type 

multi-head placement machine is considered as a 
separate objective in the proposed mathematical model 
to minimize the load of bottleneck head (i.e., the head 
with maximum load among others). Furthermore, in 
order to handle the components on the heads, vacuum 
nozzles are applied for pick and place operations. 
Throughout the literature of SMD machines, the 
compatibility degree of each pair of nozzle-component 
type has always been considered in a 0-1 manner i.e., it 
is assumed that a nozzle is capable of handling a 
component type or not. But in the real world the story 
is completely different, i.e., each component type can 
be handled by different nozzle types with different 
degrees of compatibility. Therefore, for the first time in 
the literature of SMD machines, we introduce the 
appropriateness factors to evaluate the compatibility of 
each pair of nozzle-component type. Practically, we 
should try to choose the most suitable nozzles for 
handling the components on the heads because the 
speed of the robotic arm depends on the combination of 
nozzles and components currently loaded on the heads. 
That is, large components picked with a small nozzle 
cannot be moved as fast as smaller components picked 
with the same nozzle. However, if the most suitable 
nozzles are applied for handling the components, the 
arm can move faster. Accordingly, maximizing the 
nozzles' appropriateness function as the summation of 
all corresponding appropriateness factors in handling 
the components is introduced as the second objective. 
Notably, these two objective functions are partially 
conflicting objectives, i.e., in the most cases (not 
always) adopting the best nozzles for handling the 
components on the heads may result in unwanted 
nozzle exchanges which directly affects the workload 
of the heads. Therefore, finding a trade-off between the 
workload of bottleneck head and the total 
appropriateness is of particular interest. It should be 
noted that since the number of nozzle exchanges affects 
the workload of the heads directly, it is important to 
recognize that the minimization of workload of 
bottleneck head does not necessarily imply the 
minimization of the diversity of nozzle types. 

Now we formulate the main sub-problems affecting 
the performance of utilizing the heads greatly, i.e., the 
sub-problems i and ii of aforementioned problem 
hierarchy together as an integrated model in such a way 
that: 
1. The number of nozzle exchanges is minimized. 
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2. Each component type is handled by the most 
appropriate nozzle. 

3. The machine heads are loaded with the 
approximately same workloads. In other words, the 
numbers of components which are assigned to each 
head; are approximately equated through 
minimizing the load of bottleneck head. 

 
The assumptions made in formulating the concerned 
sub-problems are as follows: 
� There is one feeder rack located in one side of the 

PCB table. 
� The number of heads is given in advance. 
� Each component type must be handled by exactly 

one nozzle on each head. 
� The order, in which the heads place the 

components at each pick and place tour is given, 
i.e., the first head places its component first, then 
the second head places its component, and so on. 

� There are multiple copies of each nozzle. Each 
nozzle is automatically changed at the automatic 
nozzle changer (ANC) when it cannot grip the 
required component. 

� The compatibility of each pair of component-
nozzle is evaluated by the appropriateness factors. 
We consider ��� as appropriateness factor (degree) 

when nozzle q handles a component of type t. 
These factors can be considered as fuzzy or crisp 
numbers. But sufficiently, here we assume that 
they are crisp numbers, i.e., 0, 1, 3, 5, 7, 9 where 
zero is considered for the case that a nozzle cannot 
manipulate a component type. Other factors, i.e., 1, 
3, 5, 7, 9, denote the very low, low, medium, good 
and very good appropriateness degrees, 
respectively. 

� We may confront with a case that some component 
types cannot be handled by available nozzles. In 
such a case, we ignore this component type and it 
is manipulated at the next stage manually. 

 
3.3 Problem formulation 

 
The following notations are used in the model 
formulation: 
 
Indices: 
Index of component types  � � 1, 2, … , 
, 
Index of nozzles   � � 1, 2, … , �, 

Index of heads    � 1, 2, … , �, 
Index of components  � � 1, 2, … , �. 
Parameters: 

�� Constant cost (time) of exchanging a nozzle on 
head h 

��� The appropriateness factor when nozzle q 

handles components of type t 

�� Total number of components of type 
t; �∑ �� � ����� � 

�� The average distance of components of type t 
on the PCB from the center of feeder rack 

�� Average velocity of the robotic arm motion 

�� The total time to pick a component of type t 
when the head is positioned above the feeder 
plus the  time to place the component when the 
head is exactly positioned above the PCB. 

Variables 

��� Total number of components of type t that are 
assigned to head h  

 ���        !1 ;  if component type � is handeled                                                 by nozzle � on head                                                                      0 ;   otherwise                                                                                          
7��          8 1   ;  if nozzle � is assigned to head                          0    ;  otherwise                                                                    : 
;�  Total number of nozzle exchanges on head h 

(which its maximum value is equal to the 
number of components assigned to head h 
minus 1) 

 Using the aforementioned notations, the 
mathematical formulation of the problem can be written 
as follows: 
 
 
 
 
 
 
 



6 

 

<�= !<>�� ?��;� @ A B2���� @ ��C .
�

���
���D E    

(1) 

<>� A A A ���
�

���
.  ���

F

���
     

G

���
 

  

(2) 

 

Subject to: 

;� H A 7��
F

���
I 1 

 

 

 

 � 1, … , � 

 

 

(3) 

A  ���
�

���
J 
. 7�� 

 

 � 1, … , �; � � 1, … , � 

 

(4) 

A  ��� H 7��
�

���
 

 

 � 1, … , �; � � 1, … , � 

 

(5) 

��� J �� . A  ���
F

���
 

 

 � 1, … , �; � � 1, … , 
 

 

(6) 

��� H A  ���
F

���
 

 

 � 1, … , �; � � 1, … , 
 

 

(7) 

A  ���
F

���
J 1 

 

 � 1, … , �; � � 1, … , 
 

 

(8) 

A ��� � ��
G

���
 

 

� � 1, … , 
 

 

(9) 

��� H 0 >=� K=�LMLN  � 1, … , �; � � 1, … , 
 (10) 

;� H 0 >=� K=�LMLN  � 1, … , � (11) 

 ��� O P0,1Q  � 1, … , �; � � 1, … , 
; � � 1, … , � (12) 

7��  O P0,1Q  � 1, … , �; � � 1, … , � (13) 
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 The objective function (1) indicates that the 

workload of bottleneck head is minimized. The 

workload of each head consists of two terms. The first 

term is the necessary time for nozzle exchanges and the 

second one is an estimation of the time that the head 

travels above the PCB and feeder rack. It is noteworthy 

that since the feeder assignment and placement 

sequencing sub-problems will be solved after the 

concerned ones here, the exact moving path of the 

robotic arm is not given at this time. Therefore, an 

estimation of the real traveling time is used for 

calculating the workload of a head by considering the 

average distance of the locations of a component type 

(for all component types) on the PCB from the center 

of feeder rack. The second objective tries to maximize 

the appropriateness function of using suitable nozzles 

for components. Constraints (3) express the relation 

between the number of nozzles and components that 

are assigned to head h and the number of nozzle 

exchanges. The following expressions explain why 

constraints (4) and (5) have been introduced: 

!
 �� ∑  ������� � 0  �L= 7�� � 0�� ∑  ������� R 0  �L= 7�� � 1:  

 

 S  T∑  ������� J U. 7��∑  ������� H 7��      :      for all q and h 

Notably, when all of assigned component types to a 

head can be handled using one nozzle type; the 

maximum value of M is equal to T; hence M has been 

replaced with T in constraint (4).  

Constraints (6) and (7) state that when a component 

type is assigned to a head; only one nozzle must be 

selected to handle it. The following expressions 

describe how they have been formulated: 

!�� ��� � 0 �L= ∑  ���F��� � 0
�� ��� R 0 �L= ∑  ���F��� � 1:  

S  !��� J U ́. ∑  ���F������ H ∑  ���F���          �WN >XX � >=� : 
If all components of type t are allocated to head h, 

the maximum value of M � can be replaced by ��. 
Equation (8) ensures that if a component type is 

assigned to a head, it must be handled by only one 

nozzle. Constraint (9) guarantees the dispersion of all 

component types among the heads. Constraints (10) 

and (11) show the integrality and non-negativity of 

variables ��� and ;�. Finally, constraints (12) and (13) 

show that  ��� and 7�� variables are binary. 

 

3.3 Linearization 

 The first objective could simply be linearized as 
follows: 

Let  <>�� Y��;� @ ∑ YZ[\]̂ @ ��_ .���� ���_ � ` 

Hence the objective (1) can be modified to: min `; 
with adding the following constraints to the model: 

` H ��;� @ A B2���� @ ��C .
�

���
���;    �WN  � 1, … , � 

Therefore, the linearized model can be written as 
model (3)-(16). 

 

4 Solution procedure 

4.1 An overview of Multi-Objective Programming 

A general multi-objective optimization problem 

consists of a number of objectives to be optimized 

simultaneously in the feasible region. The general 

formulation of multi-objective optimization problems 

can be written in the following form: 

U>�����a�, … , �b�a��     
     (17) cdefLg� �W:   a O 7 
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In this formulation: �i�a� denotes the ith objective 
function and S indicates the feasible space. The 
ultimate goal is simultaneous maximization of given 
objective functions. When, as in most cases, some of 

the objective functions conflict with each other, there is 
no exactly one solution but many alternative solutions. 
Such potential solutions which cannot improve all the 
objective functions simultaneously are called efficient 
(Pareto optimal) solutions. 

<�= ` (14) 

<>� A A A ���
�

���
.  ���

F

���
     

G

���
 

  

(15) 

Subject to: 

` H ��;� @ ∑ YZ[\]̂ @ ��_ .���� ���;   � 1, … , � 

  

(16) 

Constraints (3)-(13).   

 

A feasible solution x is called efficient if there does 

not exist another feasible solution say �j such that 

�i��j� H �i��� for all values of i with at least one strict 

inequality. In other words, a solution � is called Pareto 

optimal if there is no other �j k � that increases some 

objective functions without degrading at least one other 

objective function. Under this definition, we usually 

find several efficient solutions estimating the trade-off 

surface. In this sense, the search for an optimal solution 

has fundamentally changed from what we see in the 

case of single-objective problems. However, users 

practically need only one solution from the set of 

efficient solutions. According to Miettinen [22], the 

multi-objective solution approaches can be classified 

into the four categories based on the phase in which the 

decision maker involves in the decision making 

process: The first one does not use any preference 

information (called no-preference). These methods 

solve a problem and give a solution directly to the 

decision maker. The second one is to find all possible 

efficient solutions and then using the decision maker’s 

preferences to determine the most suitable one (called 

posteriori methods). The third approach is to 

incorporate the preference information before the 

optimization process often in terms of objectives' 

weights resulting in only one solution at the end (called 

priori methods). The fourth approach (called interactive 

methods) is to hybridize the second and third ones in 

which the decision maker's preferences is periodically 

used to refine the obtained efficient solutions leading to 

guide the search space more efficiently. In general, the 

second one, i.e., the posteriori approach is mostly 

preferred by the researchers and practitioners since it is 

less subjective than the others. By using posteriori 

methods, the decision maker is provided by a set of 

Pareto optimal solutions and the most suitable one is 

finally selected based on her/his preferences. Here, the 

two most popular posteriori methods, i.e., the weighted 

sum and ε-constraint methods are described briefly. 

In the weighted-sum method, all the objectives are 

aggregated into a single objective by using a weight 

vector. Although the weighted-sum method is simple 

and easy to use, there are two major problems. Firstly, 

there is the difficulty of selecting the weights in order 

to deal with scaling problems since the objectives 

usually have different magnitudes causing biases when 
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searching for trade-off solutions. Secondly, the 

performance of the method is heavily dependent on the 

shape of the Pareto optimal frontier so that it cannot 

find all the optimal solutions for problems that have a 

non-convex Pareto optimal frontier. To overcome these 

difficulties, the ε-constraint method has been 

introduced in which only one objective is optimized 

while the others are moved to constraints. The ε-

constraint method for solving model (17) can be shown 

as follows: 

<>� ���a� 

s.t. 

�Z�a� H LZ, 

�l�a� H Ll,    (18) 

… 

�b�a� H Lb, 

a O 7. 
By this method, via systematic variation in the RHS 

of the constrained objective functions (i.e., the Li 
values) and solving the respective single-objective 

models, the efficient solutions can be obtained 

effectively. Although the ε-constraint method does not 

suffer from the difficulties that the weighted-sum does, 

some ambiguities about this method are considerable. 

In order to resolve these ambiguities, recently, 

Mavrotas [23] proposes a novel version of the 

conventional ε-constraint method, i.e., the augmented 

ε-constraint method (hereafter it is called 

AUGMECON) which is discussed in more details at 

below. 

 
4.2 The proposed solution method 
 
To find the most preferred efficient solution of the 

proposed bi-objective model, we apply the augmented 

ε-constraint method. Although ε-constraint method has 

several advantages over the other posteriori methods, 

three points about the implementation of this method 

should be taken into account: 

a. The estimation of the range of objective functions 

over the efficient set 

b. The guarantee of efficiency of the obtained 

solutions 

c. The increased solution time for problems with 

more than two objectives. 

In order to tackle these issues, Mavrotas [23] 

presents a novel version of the conventional ε-

constraint method, i.e., the augmented ε-constraint 

(AUGMECON) method. Here we take a closer look at 

this method to see how it can be implemented in 

practice. The first step in applying the ε-constraint 

method is to determine the range of objective functions 

which are used as constraints. To do so, we should 

calculate the best (ideal) and worst (nadir) values of 

objective functions over the feasible space. The best 

value could be calculated as the optimal solution of 

individual optimization over the feasible space but the 

worst value is not easily attainable. Usually, the worst 

value is estimated from the payoff table (a table which 

is comprised of the results of individual optimization of 

objective functions). In this manner, the worst value of 

each objective function is approximated with selecting 

the minimum value of corresponding column. 

In the case of alternative optima, the solutions 

obtained from the individual optimization of objective 

functions may not be an efficient but weakly efficient 

one. In order to overcome this ambiguity, Mavrotas 

[23] proposes the use of lexicographic optimization for 

each objective function to construct the payoff table 

ensuring to yield just Pareto optimal solutions. The 

lexicographic optimization is applied as follows. We 

optimize the first objective function, obtaining max�� �
 �m. Then, we optimize the second objective function by 

adding the constraint �� H  �m in order to keep the 
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optimal solution of the first optimization. Assume that 

we obtain max�Z �  Zm. Subsequently, we optimize the 

third objective function by adding the constraints 

�� H  �m and �Z H  Zm  in order to keep the previous 

optimal solutions and so on, until we finish with the 

objective functions. 

The second point is that the optimal solution of the 

conventional ε-constraint is guaranteed to be an 

efficient solution only if all the (p-1) objective 

functions’ constraints are biding; otherwise, if there are 

alternative optima (that may improve at least one of the 

non-binding constraints that corresponds to an 

objective function), the obtained optimal solution of the 

problem is not in fact efficient, but is a weakly efficient 

solution [24]. In order to overcome this ambiguity 

Mavrotas [23] proposes the transformation of the 

objective function constraints to equalities by 

introducing slack or surplus variables. In the same time, 

these slack or surplus variables are used as a second 

term (with lower priority) in the objective function to 

force the model to produce only efficient solutions. In 

this way, the new problem (AUGMECON model) can 

be written as follows:  

 <>������� @ Lnc o �cZ@cl @ p @ cb�� 

s.t. �Z��� I cZ � LZ �l��� I cl � Ll                                                        

(19)           �b��� I cb � Lb 

� O 7 >=� ci O qr 

Where eps is a small number (usually between 10st 

and 10sl). Mavrotas [23] proves that AUGMECON 

produces only efficient solutions i.e., it avoids to 

generate weakly efficient solutions. In order to avoid 

any scaling problems Mavrotas [23] recommends to 

replace the ci in the second term of the objective 

function by ci Niu , where Ni is the range of ith objective 

function obtained from payoff table. Thus, the final 

version of augmented ε-constraint method is written as 

follow. 

<>������� @ Lnc o �cZ NZu @ cl Nlu @ p @ cb Nbu �� 

s.t. �Z��� I cZ � LZ �l��� I cl � Ll                                                      (20) p                                                                                                                             �b��� I cb � Lb 

� O 7 >=� ci O qr 

The third point in the conventional ε-constraint 

method is the additional computations when the 

problem becomes infeasible. Mavrotas [23] adds an 

innovative addition to the algorithm, i.e., the early exit 

from the nested loops when the problem becomes 

infeasible. He state that this issue can accelerate the 

algorithm speed significantly in the case of having 

several (more than two) objective functions. 

Practically, the AUGMECON method is 

implemented as follows: From the payoff table we 

obtain the range of each (p-1) objective functions that 

are going to be used as constraints. Then we divide the 

range of the i-th objective function into �i equal 

intervals using (�i-1) intermediate equidistant grid 

points. Thus, we obtain in total (�i+1) grid points that 

are used to vary parametrically the RHS of the i-th 

objective function �Li�. Therefore, the total number of 

single-objective models (runs) which certainly lead to 

the generation of efficient solutions becomes 

(�Z+1)×( �l+1)×p×( �b+1) ones. 

 

4 An illustrative example 

In this section to show the applicability and usefulness 

of the proposed model and solution method, we provide 

an illustrative example, for which we generate a set of 5 

efficient solutions using the augmented epsilon 

constraint method. The inputs of the sample problem 

are summarized through Tables 1-4.  
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Table 1  The parameters of sample problem  

Number of heads component 
types 

nozzles 

Value 3 10 4 
 

Table 2 The values of d(t), f(t) and N(t) 

t 1 2 3 4 5 6 7 8 9 10 
d(t) 7 6 4 7 5 4 4 7 3 2 
f(t) 0.1 0.2 0.1 0.5 0.2 0.3 0.3 0.9 0.9 0.8 

N(t) 3 4 6 2 2 2 3 4 9 7 

 

 

Head 1 2 3 vw 1 1 1 
 

Table 4 Values of x�y, z� 

 q 

  1 2 3 4 

 1 1 5 2 5 

 2 1 4 3 5 

 3 4 3 7 5 

 4 4 6 6 5 

t 5 2 5 4 4 

 6 3 7 1 5 

 7 1 6 4 2 

 8 4 4 3 2 

 9 3 2 5 1 

 10 5 5 6 2 

The first step in applying the AUGMECON is to 

construct the payoff table using the lexicographic 

optimization as follows:  

First we optimize the first objective function over 

the feasible region by which we obtain the optimal 

solution (37.57, 0) in the objectives space (i.e., point  
a{m  in the decision space). Then, the second objective is 

optimized with the additional constraint ` J 37.57 by 

which we obtain the optimal solution (37.57, 148) in 

the objectives space (i.e., the first row of payoff table) 

which is a non-dominated solution dominating the 

previous one. 

For constructing the second row of payoff table, we 

first optimize the second objective over the feasible 

region by which we obtain the optimal solution (40.94, 

180) in the objectives space. Then, the first objective is 

optimized with the additional constraint 

∑ ∑ ∑ ������� .  ���F���   G��� H 180 by which we obtain 

the same optimal solution which ensures that it is a 

non-dominated solution. 

Consequently, the payoff table is constructed as 

follows:  

Table 5 Payoff table 

 Z1 Z2 a{m  37.57 148.00 
a�m  40.94 180.00 

After the construction of payoff table, we divide the 

range of the second objective function to four equal 

intervals and we use the resulting five grid points as the 

values of  LZ. Hence, vector �� is written as �� = (148, 

156, 164, 172, 180). Now for each components of �� 

the following model is solved: 

<�= �` I Lnc BcZNZC� 

s.t. 

A A A ���
�

���
.  ���

F

���
   I cZ

G

���
� LZ 

                                                                            (23) 

Constraint (16) 

Constraints (3)-(13) 

cZ O qr 

Where NZ denotes the range of second objective 

function from the payoff table which is equal to 32. In 

this manner, for each given value of LZ, the optimal 

solution of above model will certainly generate an 

Table 3 The values of �� 
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efficient solution. Table 6 shows the resulting non-

dominated solutions. 

 Table 6 Non-dominated solutions found by AUGMECON 

Z1 (min) Z2 (max) 
37.57 148.00 
37.74 159.00 
38.27 168.00 
39.62 174.00 
40.94 180.00 

It is noteworthy that the early exit option does not 

require for our problem because our problem is a bi-

objective one and we vary only one RHS value, 

therefore, we do not have nested loops in this case. 

Furthermore, the augmented epsilon-constraint version 

of the proposed model was coded in GAMS and the 

CPLEX 7.5 solver was used for solving the 

corresponding single-objective models on a 2.0 GHz 

Dual Core CPU with 1GB of RAM. The above sample 

problem was solved within the 4.12 seconds of CPU 

time. 

 

6 Concluding remarks  

In this paper, a novel bi-objective mathematical model 

is proposed to make the best decisions relating to the 

heads of multi-head beam-type placement machines. 

Due to the importance of the heads from the machine 

performance point of view, optimizing their 

performance has a great effect on the whole production 

process. In the present study, a criterion, namely 

appropriateness function, is presented for the first time 

to evaluate the compatibility of each pair of component 

type-nozzle. The selection of an appropriate set of 

nozzles for handling the components on the heads 

enables the robotic arm to move faster. Hence, the 

machine cycle time can considerably be improved by 

adopting appropriate nozzles to the heads. In order to 

offer several efficient solutions to the decision maker 

before making his/her final decision, we apply an 

improved version of a well-known multi-objective 

solution method, i.e., the epsilon constraint method 

called augmented epsilon constraint method 

(AUGMECON). Although the efficient solutions of the 

proposed model could be found using the 

AUGMECON method by applying the commercial 

optimization solvers like CPLEX, it should be noted 

that the corresponding computational time grows 

exponentially with the problem size. Therefore, in order 

to solve the real-sized problem instances more 

efficiently, developing appropriate heuristic or meta-

heuristic solution methods is of great interest. 

Considering the synchronous nozzle exchanges on the 

heads can also be used to define the new problem 

scenarios. 
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