

No. 2010-128

A MULTI-OBJECTIVE OPTIMIZATION APPROACH FOR
MULTI-HEAD BEAM-TYPE PLACEMENT MACHINES

By S.A. Torabi, M. Hamedi, J. Ashayeri

December 2010

ISSN 0924-7815

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6886614?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

A Multi-Objective Optimization Approach
for Multi-Head Beam-Type Placement
Machines

S.A. Torabi a, M. Hamedi a and J. Ashayeri b
a Department of Industrial Engineering, College of

Engineering, University of Tehran, Tehran, Iran

satorabi@ut.ac.ir, mhamedy@ut.ac.ir
b Department of Econometrics & Operations Research,

Tilburg University, P.O. Box 90153, LE Tilburg, The

Netherlands

j.ashayeri@uvt.nl

JEL Code: C6, M110

Abstract This paper addresses a highly challenging
scheduling problem in the field of printed circuit board
(PCB) assembly systems using Surface Mounting
Devices (SMD). After describing some challenging
optimization sub-problems relating to the heads of
multi-head surface mounting placement machines, we
formulate an integrated multi-objective mathematical
model considering of two main sub-problems
simultaneously. The proposed model is a mixed integer
nonlinear programming one which is very complex to
be solved optimally. Therefore, it is first converted into
a linearized model and then solved using an efficient
multi-objective approach, i.e., the augmented epsilon
constraint method. An illustrative example is also
provided to show the usefulness and applicability of the
proposed model and solution method.

Keywords PCB assembly . Multi-head beam-type
placement machine . Multi-objective mathematical
programming . Augmented epsilon-constraint method

1 Introduction

Over the last two decades, the assembly of PCBs has
generated a huge amount of industrial activity. One of
the major developments in PCB assembly is the
introduction of surface mount technology (SMT) in
1960s. SMT has displaced through-hole technology as
the primary means of assembling PCBs. It has also
made it easy to automate the PCB assembly process.
The component placement machine is probably the

most important piece of manufacturing equipment on a
surface mount assembly line [1]. As SMT becomes
popular, different types of placement machines have
arisen. For a well-organized classification of placement
machines based on their operational methods the reader
is referred to Ayob and Kendall [2]. Among the
component placement machines, multi-head of gantry-
type machines are becoming increasingly popular
because they provide high mounting speed with
relatively low cost. A gantry robot, which moves
components between the components feeder racks and
the PCB, usually involves multiple heads to reduce the
number of pick-and-place cycles. The heads are
sequentially arranged on a beam or a rotating wheel at
the gantry robot. The former is called beam-type while
the latter is called collect-and-place type [3]. Both types
of these machines can have single or multiple arms.
The proper assignment of component types to feeders
in placement machines and the placement sequence of
components on the PCB are the main factors greatly
affecting the production cycle time of each machine
and the whole SMT line [4]. These problems are
highly interrelated and very difficult to solve
simultaneously. Therefore, during the last decade, most
research on minimizing the PCB assembly time has
focused on solving these problems separately by
decoupling one from the other [5]. Many research
works have been devoted to these complex problems by
developing various mathematical models and solution
approaches. For example, Ball and Magazine [6]
modeled the sequencing problem as a directed postman
problem. They suggested that the balance and connect
heuristic can be applied to this problem. Leipala and
Nevalainen [7] dealt with the placement sequencing
sub-problem as a three dimensional asymmetric
travelling salesman problem whilst the feeder
assignment sub-problem was modeled as a quadratic
assignment problem. Or and Duman [8] used a convex
hull algorithm and Or-opt tour improvement method for
placement sequencing and feeder assignment sub-
problems. Khoo and Loh [9] modeled the problem of
assembling a printed circuit board with a chip shooter
as a multi-objective problem. They applied a genetic
algorithm to generate the placement sequences and
feeder assignment. Ho and Ji [10] developed a hybrid
genetic algorithm to integrate placement sequencing,
feeder assignment and component retrieval sub-
problems. Their purposed algorithm was found to
perform better than conventional genetic algorithms.

2

Moon [11] developed two different methods using
special features on printed circuit boards to
simultaneously improve component’s rack assignment
and component mounting sequencing problems in chip
shooter machines like Panasert MSH-II, Fuji CP-II, and
CP-IV. Based on results from field surveys, it is found
that identical components are positioned closely with
each other or identical single boards are repeatedly
printed on one big board to enlarge up to a proper size
to be assembled in the machine. These patterns are
adapted on the design of assembly methods to increase
productivity. Simulation models are also constructed
for performance evaluation purposes of the developed
heuristics.

SMD machines with multiple heads are the most
popular ones in SMT lines, but the complexity of their
performance makes the respective optimization
problems more difficult to be solved. However, the
literature review regarding these machines is rather
scarce. Van Laarhoven and Zijim [12] applied a
hierarchical procedure for solving the optimization
problems of a set of beam-type multi-head placement
machines with three placement heads. All sub-problems
in the hierarchy were solved sequentially by simulated
annealing approach. They stated that their proposed
method performs well in balancing the workload over
the machines. Magyar et al. [13] dealt with the problem
of sequencing of pick-and-place cycles; allocation of
nozzles to heads; and feeder assignment using a
hierarchical approach. They considered a general
surface mounting (GSM) machine that is a beam-type
multi-head placement machine. Initially, they solved
the feeder assignment sub-problem by using a greedy
local search. The output of first sub-problem is used as
the input for nozzle optimization sub-problem and the
output of nozzle optimization sub-problem considered
as an input to component pick-and-place sub-problem
that is also solved using a greedy local search approach.
Their approach significantly decreased the cycle time.
Lee et al. [5] applied a genetic algorithm for a joint-
solution of the optimization sub-problems in a multi-
head beam-type placement machine. They converted
the optimization problem of a multi-head machine to a
single-head case by grouping feeders and clustering of
components. They utilized single-head methods to the
multi-head case. They also selected the partial-link
structure for the chromosomes. Hong et al. [14]
implemented a biological immune algorithm for
optimization problem of a multi-head beam-type

placement machine. Jeevan et al. [15] applied a genetic
algorithm to minimize the cycle time in a beam-type
multi-head machine. They used the distance of a TSP
tour as the fitness function of genetic algorithm.
However, they did not discuss the mathematical
modeling and chromosome definition in the paper.
Grunow et al. [16] followed a hierarchical approach for
optimization problem of a collect-and-place multi-head
placement machine. They considered four sub-
problems in their proposed hierarchy, i.e., (i) feeder
assignment; (ii) sub-tours composition; (iii) sequencing
of placement of components within a sub-tour; (iv)
sequencing the sub-tours. A three-stage approach is
applied for solving the sub-problems. Sub-problem (i)
is solved in stage one using a greedy algorithm. In the
second stage sub-problems (ii), (iii) and (iv) are solved
by modeling them as a vehicle-routing problem. Given
the feeder assignment solution from stage one, the
authors sequence the component pick-and-place
operations using a heuristic approach. The final stage of
solution approach improves the feeder assignment and
the component pick-and-place sequence using a
random descent 2-opt swapping procedure. Sun et al.
[17] considered the optimization performance of a dual-
gantry collect-and-place multi-head placement
machine. They proposed a hybrid genetic algorithm for
solving the component allocation and feeder
assignment sub-problems along with a greedy
algorithm for placement heads workload balancing.
Raduly-Baka and Knuutila [18] presented different
approaches for determining the number of nozzles for
populating a PCB type by a multi-head beam-type
machine. They assumed that each component type can
be handled using one nozzle type. Their nozzle
selection problem optimally solved using a three-phase
greedy algorithm. They also investigated the nozzle
selection in the case of multiple PCB types. Kulak et al.
[19] proposed three different genetic algorithms for
scheduling operations of a collect-and-place placement
machine. They considered the case of single and dual-
gantry placement machines. They integrated feeder
assignment and placement sequencing using a genetic
algorithm. The authors claimed that their proposed
genetic algorithms are very efficient in terms of
computational time, especially if adequate coding
schemes are used. Recently, Sun and Lee [3] developed
a branch-and-price procedure for a placement routing
problem for a beam-type multi-head placement
machine. They formulated the problem as an integer

3

programming model with a huge number of variables.
They solved the linear relaxation of the model by a
column generation method. Li et al. [20] considered the
cycle time minimization of a SONY SE-1000 machine
which belongs to collect-and-place multi-head
placement machines. They assumed that the mounting
sequence is given in advance and they solved feeder
assignment sub-problem using a genetic algorithm. In
their proposed genetic algorithm, a uniform order
crossover and exchanging mutation is applied.
 Literature review regarding the multi-head SMD
placement machines reveals less attention to optimal
utilization of the placement heads. In addition to this
gap, the dependency of the moving speed of the robotic
arm to the combination of nozzles and components
currently loaded on the heads is also neglected. Our
focus in this paper is on single arm beam-type multi-
head placement machines. In this regard, we develop a
novel mathematical model to deal with the heads-
related decision problems in such placement machines
by addressing the existing gaps in the literature.
 The remainder of this paper is organized as follows.
Section 2 contains a more detailed description of a
single arm beam-type multi-head placement machine.
Section 3 provides a precise statement of the problem
and its sub-problems, and presents a new integrated
model for the main sub-problems of heads, i.e., the
workload balancing and nozzle selection
simultaneously. The solution procedure is elaborated in
Section 4. An illustrative example is provided in
Section 5. Finally, concluding remarks are given in
Section 6.

2 Machine description

Fig. 1 illustrates the schematic view of the considered
multi-head beam-type placement machine in this paper.
SMD machines such as Yamaha YV-64/88/100,
Samsung CP-40/50 and Juki KE-750/760 belong to this
type of placement machines. The machine has a fixed
PCB table, a feeder bank, an arm that is equipped with
a number of placement heads and an Automatic Nozzle
Changer (ANC). The PCB remains fixed on the PCB
table during the placement process. A fixed feeder bank
is located on one side of the PCB table. The feeder
bank consists of a number of slots for positioning the
feeders. Electronic Components are supplied to the
machine by feeders. Multiple heads are located on the

arm and move together with it simultaneously in both X
and Y directions. The assembly process starts by
moving the arm toward the feeder bank and picking up
at most H components either simultaneously or on one
by one basis by moving along the feeder bank. Then it
moves to the PCB to place the components just picked
up on the specific locations on the PCB. When the head
positions exactly on the placement location, it moves
down in Z direction and mounts its component on the
board. Each head can use various types of nozzles for
picking and placing components. Not each nozzle is
suitable for handling each component type. Large
nozzles cannot pick small components and small
nozzles cannot pick large components. Therefore, it
will be necessary to exchange nozzles sometimes. The
nozzles are stored in ANC (automatic nozzle changer).
The exchange action starts by moving the arm to the
ANC and inserting the unnecessary nozzle in an empty
slot. Then, the arm moves towards the new nozzle and
picks it. Notably, this nozzle exchange process is often
time-consuming which should be avoided as many as
possible.

3 Problem definition and formulation

3.1 Problem hierarchy

 Given a PCB type to be mounted with N components
divided into T types using a multi-head beam-type
placement machine equipped with H placement heads,

Fig. 1 The schematic view of a multi-head machine.

4

the main problem can be described through the
following sub-problems:

1) Assignment of feeders to feeder slots.

2) Partitioning the N components into a number of
clusters, each of which consisting of at most H
components (pertaining to a pick-and-place tour).

3) Sequencing of component clusters and within each
cluster, placement sequencing of its components, so
that the cycle time of the machine (i.e., the
necessary time to mount all components on the
PCB) is minimized.

Obviously this problem is extremely complex. In
order to reduce this complexity, a hierarchical
decomposition approach is often applied (See for
example Ayob and Kendall [21]). In hierarchical
approach, the main problem is decomposed into a series
of sub-problems in such a way the solution of each sub-
problem generates required input data for the next sub-
problem. The following sub-problems are a more
detailed description of above-mentioned sub-problems:
i. For each pair of component type t (t=1,...,T) and

head h (h=1,...,H), determine the number of
components of type t to be handled by head h.

ii. For each pair of component type and head,
determine the most appropriate nozzle type
handling the component.

iii. For each pair of component type and head,
determine which components of type t are to be
mounted by head h.

iv. Determine the component clusters.
v. Sequence the component clusters.

vi. Sequence the components placing within each
cluster.

3.2 Problem statement and assumptions

This problem was inspired by a real case in
Assembléon during a consultative work done by one of
the authors with the company. Assembléon which was
formerly known as Philips Electronic Manufacturing
Technology, develops, assembles, and distributes a
diverse range of SMD machines (especially, single arm
beam-type multi-head placement machines) and
provides a broad range of related services. In this paper,
the best way of distribution (assignment) of
components over the heads of a single arm beam-type

multi-head placement machine is considered as a
separate objective in the proposed mathematical model
to minimize the load of bottleneck head (i.e., the head
with maximum load among others). Furthermore, in
order to handle the components on the heads, vacuum
nozzles are applied for pick and place operations.
Throughout the literature of SMD machines, the
compatibility degree of each pair of nozzle-component
type has always been considered in a 0-1 manner i.e., it
is assumed that a nozzle is capable of handling a
component type or not. But in the real world the story
is completely different, i.e., each component type can
be handled by different nozzle types with different
degrees of compatibility. Therefore, for the first time in
the literature of SMD machines, we introduce the
appropriateness factors to evaluate the compatibility of
each pair of nozzle-component type. Practically, we
should try to choose the most suitable nozzles for
handling the components on the heads because the
speed of the robotic arm depends on the combination of
nozzles and components currently loaded on the heads.
That is, large components picked with a small nozzle
cannot be moved as fast as smaller components picked
with the same nozzle. However, if the most suitable
nozzles are applied for handling the components, the
arm can move faster. Accordingly, maximizing the
nozzles' appropriateness function as the summation of
all corresponding appropriateness factors in handling
the components is introduced as the second objective.
Notably, these two objective functions are partially
conflicting objectives, i.e., in the most cases (not
always) adopting the best nozzles for handling the
components on the heads may result in unwanted
nozzle exchanges which directly affects the workload
of the heads. Therefore, finding a trade-off between the
workload of bottleneck head and the total
appropriateness is of particular interest. It should be
noted that since the number of nozzle exchanges affects
the workload of the heads directly, it is important to
recognize that the minimization of workload of
bottleneck head does not necessarily imply the
minimization of the diversity of nozzle types.

Now we formulate the main sub-problems affecting
the performance of utilizing the heads greatly, i.e., the
sub-problems i and ii of aforementioned problem
hierarchy together as an integrated model in such a way
that:
1. The number of nozzle exchanges is minimized.

5

2. Each component type is handled by the most
appropriate nozzle.

3. The machine heads are loaded with the
approximately same workloads. In other words, the
numbers of components which are assigned to each
head; are approximately equated through
minimizing the load of bottleneck head.

The assumptions made in formulating the concerned
sub-problems are as follows:
� There is one feeder rack located in one side of the

PCB table.
� The number of heads is given in advance.
� Each component type must be handled by exactly

one nozzle on each head.
� The order, in which the heads place the

components at each pick and place tour is given,
i.e., the first head places its component first, then
the second head places its component, and so on.

� There are multiple copies of each nozzle. Each
nozzle is automatically changed at the automatic
nozzle changer (ANC) when it cannot grip the
required component.

� The compatibility of each pair of component-
nozzle is evaluated by the appropriateness factors.
We consider ��� as appropriateness factor (degree)

when nozzle q handles a component of type t.
These factors can be considered as fuzzy or crisp
numbers. But sufficiently, here we assume that
they are crisp numbers, i.e., 0, 1, 3, 5, 7, 9 where
zero is considered for the case that a nozzle cannot
manipulate a component type. Other factors, i.e., 1,
3, 5, 7, 9, denote the very low, low, medium, good
and very good appropriateness degrees,
respectively.

� We may confront with a case that some component
types cannot be handled by available nozzles. In
such a case, we ignore this component type and it
is manipulated at the next stage manually.

3.3 Problem formulation

The following notations are used in the model
formulation:

Indices:
Index of component types � � 1, 2, … ,
,
Index of nozzles � � 1, 2, … , �,

Index of heads � 1, 2, … , �,
Index of components � � 1, 2, … , �.
Parameters:

�� Constant cost (time) of exchanging a nozzle on
head h

��� The appropriateness factor when nozzle q

handles components of type t

�� Total number of components of type
t; �∑ �� � ����� �

�� The average distance of components of type t
on the PCB from the center of feeder rack

�� Average velocity of the robotic arm motion

�� The total time to pick a component of type t
when the head is positioned above the feeder
plus the time to place the component when the
head is exactly positioned above the PCB.

Variables

��� Total number of components of type t that are
assigned to head h

 ��� !1 ; if component type � is handeled by nozzle � on head 0 ; otherwise
7�� 8 1 ; if nozzle � is assigned to head 0 ; otherwise :
;� Total number of nozzle exchanges on head h

(which its maximum value is equal to the
number of components assigned to head h
minus 1)

 Using the aforementioned notations, the
mathematical formulation of the problem can be written
as follows:

6

<�= !<>�� ?��;� @ A B2���� @ ��C .
�

���
���D E

(1)

<>� A A A ���
�

���
. ���

F

���

G

���

(2)

Subject to:

;� H A 7��
F

���
I 1

 � 1, … , �

(3)

A ���
�

���
J
. 7��

 � 1, … , �; � � 1, … , �

(4)

A ��� H 7��
�

���

 � 1, … , �; � � 1, … , �

(5)

��� J �� . A ���
F

���

 � 1, … , �; � � 1, … ,

(6)

��� H A ���
F

���

 � 1, … , �; � � 1, … ,

(7)

A ���
F

���
J 1

 � 1, … , �; � � 1, … ,

(8)

A ��� � ��
G

���

� � 1, … ,

(9)

��� H 0 >=� K=�LMLN � 1, … , �; � � 1, … ,
 (10)

;� H 0 >=� K=�LMLN � 1, … , � (11)

 ��� O P0,1Q � 1, … , �; � � 1, … ,
; � � 1, … , � (12)

7�� O P0,1Q � 1, … , �; � � 1, … , � (13)

7

 The objective function (1) indicates that the

workload of bottleneck head is minimized. The

workload of each head consists of two terms. The first

term is the necessary time for nozzle exchanges and the

second one is an estimation of the time that the head

travels above the PCB and feeder rack. It is noteworthy

that since the feeder assignment and placement

sequencing sub-problems will be solved after the

concerned ones here, the exact moving path of the

robotic arm is not given at this time. Therefore, an

estimation of the real traveling time is used for

calculating the workload of a head by considering the

average distance of the locations of a component type

(for all component types) on the PCB from the center

of feeder rack. The second objective tries to maximize

the appropriateness function of using suitable nozzles

for components. Constraints (3) express the relation

between the number of nozzles and components that

are assigned to head h and the number of nozzle

exchanges. The following expressions explain why

constraints (4) and (5) have been introduced:

!
 �� ∑ ������� � 0 �L= 7�� � 0�� ∑ ������� R 0 �L= 7�� � 1:

 S T∑ ������� J U. 7��∑ ������� H 7�� : for all q and h

Notably, when all of assigned component types to a

head can be handled using one nozzle type; the

maximum value of M is equal to T; hence M has been

replaced with T in constraint (4).

Constraints (6) and (7) state that when a component

type is assigned to a head; only one nozzle must be

selected to handle it. The following expressions

describe how they have been formulated:

!�� ��� � 0 �L= ∑ ���F��� � 0
�� ��� R 0 �L= ∑ ���F��� � 1:

S !��� J U ́. ∑ ���F������ H ∑ ���F��� �WN >XX � >=� :
If all components of type t are allocated to head h,

the maximum value of M � can be replaced by ��.
Equation (8) ensures that if a component type is

assigned to a head, it must be handled by only one

nozzle. Constraint (9) guarantees the dispersion of all

component types among the heads. Constraints (10)

and (11) show the integrality and non-negativity of

variables ��� and ;�. Finally, constraints (12) and (13)

show that ��� and 7�� variables are binary.

3.3 Linearization

 The first objective could simply be linearized as
follows:

Let <>�� Y��;� @ ∑ YZ[\]̂ @ ��_ .���� ���_ � `

Hence the objective (1) can be modified to: min `;
with adding the following constraints to the model:

` H ��;� @ A B2���� @ ��C .
�

���
���; �WN � 1, … , �

Therefore, the linearized model can be written as
model (3)-(16).

4 Solution procedure

4.1 An overview of Multi-Objective Programming

A general multi-objective optimization problem

consists of a number of objectives to be optimized

simultaneously in the feasible region. The general

formulation of multi-objective optimization problems

can be written in the following form:

U>�����a�, … , �b�a��
 (17) cdefLg� �W: a O 7

8

In this formulation: �i�a� denotes the ith objective
function and S indicates the feasible space. The
ultimate goal is simultaneous maximization of given
objective functions. When, as in most cases, some of

the objective functions conflict with each other, there is
no exactly one solution but many alternative solutions.
Such potential solutions which cannot improve all the
objective functions simultaneously are called efficient
(Pareto optimal) solutions.

<�= ` (14)

<>� A A A ���
�

���
. ���

F

���

G

���

(15)

Subject to:

` H ��;� @ ∑ YZ[\]̂ @ ��_ .���� ���; � 1, … , �

(16)

Constraints (3)-(13).

A feasible solution x is called efficient if there does

not exist another feasible solution say �j such that

�i��j� H �i��� for all values of i with at least one strict

inequality. In other words, a solution � is called Pareto

optimal if there is no other �j k � that increases some

objective functions without degrading at least one other

objective function. Under this definition, we usually

find several efficient solutions estimating the trade-off

surface. In this sense, the search for an optimal solution

has fundamentally changed from what we see in the

case of single-objective problems. However, users

practically need only one solution from the set of

efficient solutions. According to Miettinen [22], the

multi-objective solution approaches can be classified

into the four categories based on the phase in which the

decision maker involves in the decision making

process: The first one does not use any preference

information (called no-preference). These methods

solve a problem and give a solution directly to the

decision maker. The second one is to find all possible

efficient solutions and then using the decision maker’s

preferences to determine the most suitable one (called

posteriori methods). The third approach is to

incorporate the preference information before the

optimization process often in terms of objectives'

weights resulting in only one solution at the end (called

priori methods). The fourth approach (called interactive

methods) is to hybridize the second and third ones in

which the decision maker's preferences is periodically

used to refine the obtained efficient solutions leading to

guide the search space more efficiently. In general, the

second one, i.e., the posteriori approach is mostly

preferred by the researchers and practitioners since it is

less subjective than the others. By using posteriori

methods, the decision maker is provided by a set of

Pareto optimal solutions and the most suitable one is

finally selected based on her/his preferences. Here, the

two most popular posteriori methods, i.e., the weighted

sum and ε-constraint methods are described briefly.

In the weighted-sum method, all the objectives are

aggregated into a single objective by using a weight

vector. Although the weighted-sum method is simple

and easy to use, there are two major problems. Firstly,

there is the difficulty of selecting the weights in order

to deal with scaling problems since the objectives

usually have different magnitudes causing biases when

9

searching for trade-off solutions. Secondly, the

performance of the method is heavily dependent on the

shape of the Pareto optimal frontier so that it cannot

find all the optimal solutions for problems that have a

non-convex Pareto optimal frontier. To overcome these

difficulties, the ε-constraint method has been

introduced in which only one objective is optimized

while the others are moved to constraints. The ε-

constraint method for solving model (17) can be shown

as follows:

<>� ���a�

s.t.

�Z�a� H LZ,

�l�a� H Ll, (18)

…

�b�a� H Lb,

a O 7.
By this method, via systematic variation in the RHS

of the constrained objective functions (i.e., the Li
values) and solving the respective single-objective

models, the efficient solutions can be obtained

effectively. Although the ε-constraint method does not

suffer from the difficulties that the weighted-sum does,

some ambiguities about this method are considerable.

In order to resolve these ambiguities, recently,

Mavrotas [23] proposes a novel version of the

conventional ε-constraint method, i.e., the augmented

ε-constraint method (hereafter it is called

AUGMECON) which is discussed in more details at

below.

4.2 The proposed solution method

To find the most preferred efficient solution of the

proposed bi-objective model, we apply the augmented

ε-constraint method. Although ε-constraint method has

several advantages over the other posteriori methods,

three points about the implementation of this method

should be taken into account:

a. The estimation of the range of objective functions

over the efficient set

b. The guarantee of efficiency of the obtained

solutions

c. The increased solution time for problems with

more than two objectives.

In order to tackle these issues, Mavrotas [23]

presents a novel version of the conventional ε-

constraint method, i.e., the augmented ε-constraint

(AUGMECON) method. Here we take a closer look at

this method to see how it can be implemented in

practice. The first step in applying the ε-constraint

method is to determine the range of objective functions

which are used as constraints. To do so, we should

calculate the best (ideal) and worst (nadir) values of

objective functions over the feasible space. The best

value could be calculated as the optimal solution of

individual optimization over the feasible space but the

worst value is not easily attainable. Usually, the worst

value is estimated from the payoff table (a table which

is comprised of the results of individual optimization of

objective functions). In this manner, the worst value of

each objective function is approximated with selecting

the minimum value of corresponding column.

In the case of alternative optima, the solutions

obtained from the individual optimization of objective

functions may not be an efficient but weakly efficient

one. In order to overcome this ambiguity, Mavrotas

[23] proposes the use of lexicographic optimization for

each objective function to construct the payoff table

ensuring to yield just Pareto optimal solutions. The

lexicographic optimization is applied as follows. We

optimize the first objective function, obtaining max�� �
 �m. Then, we optimize the second objective function by

adding the constraint �� H �m in order to keep the

10

optimal solution of the first optimization. Assume that

we obtain max�Z � Zm. Subsequently, we optimize the

third objective function by adding the constraints

�� H �m and �Z H Zm in order to keep the previous

optimal solutions and so on, until we finish with the

objective functions.

The second point is that the optimal solution of the

conventional ε-constraint is guaranteed to be an

efficient solution only if all the (p-1) objective

functions’ constraints are biding; otherwise, if there are

alternative optima (that may improve at least one of the

non-binding constraints that corresponds to an

objective function), the obtained optimal solution of the

problem is not in fact efficient, but is a weakly efficient

solution [24]. In order to overcome this ambiguity

Mavrotas [23] proposes the transformation of the

objective function constraints to equalities by

introducing slack or surplus variables. In the same time,

these slack or surplus variables are used as a second

term (with lower priority) in the objective function to

force the model to produce only efficient solutions. In

this way, the new problem (AUGMECON model) can

be written as follows:

 <>������� @ Lnc o �cZ@cl @ p @ cb��

s.t. �Z��� I cZ � LZ �l��� I cl � Ll

(19) �b��� I cb � Lb

� O 7 >=� ci O qr

Where eps is a small number (usually between 10st

and 10sl). Mavrotas [23] proves that AUGMECON

produces only efficient solutions i.e., it avoids to

generate weakly efficient solutions. In order to avoid

any scaling problems Mavrotas [23] recommends to

replace the ci in the second term of the objective

function by ci Niu , where Ni is the range of ith objective

function obtained from payoff table. Thus, the final

version of augmented ε-constraint method is written as

follow.

<>������� @ Lnc o �cZ NZu @ cl Nlu @ p @ cb Nbu ��

s.t. �Z��� I cZ � LZ �l��� I cl � Ll (20) p �b��� I cb � Lb

� O 7 >=� ci O qr

The third point in the conventional ε-constraint

method is the additional computations when the

problem becomes infeasible. Mavrotas [23] adds an

innovative addition to the algorithm, i.e., the early exit

from the nested loops when the problem becomes

infeasible. He state that this issue can accelerate the

algorithm speed significantly in the case of having

several (more than two) objective functions.

Practically, the AUGMECON method is

implemented as follows: From the payoff table we

obtain the range of each (p-1) objective functions that

are going to be used as constraints. Then we divide the

range of the i-th objective function into �i equal

intervals using (�i-1) intermediate equidistant grid

points. Thus, we obtain in total (�i+1) grid points that

are used to vary parametrically the RHS of the i-th

objective function �Li�. Therefore, the total number of

single-objective models (runs) which certainly lead to

the generation of efficient solutions becomes

(�Z+1)×(�l+1)×p×(�b+1) ones.

4 An illustrative example

In this section to show the applicability and usefulness

of the proposed model and solution method, we provide

an illustrative example, for which we generate a set of 5

efficient solutions using the augmented epsilon

constraint method. The inputs of the sample problem

are summarized through Tables 1-4.

11

Table 1 The parameters of sample problem

Number of heads component
types

nozzles

Value 3 10 4

Table 2 The values of d(t), f(t) and N(t)

t 1 2 3 4 5 6 7 8 9 10
d(t) 7 6 4 7 5 4 4 7 3 2
f(t) 0.1 0.2 0.1 0.5 0.2 0.3 0.3 0.9 0.9 0.8

N(t) 3 4 6 2 2 2 3 4 9 7

Head 1 2 3 vw 1 1 1

Table 4 Values of x�y, z�

 q

 1 2 3 4

 1 1 5 2 5

 2 1 4 3 5

 3 4 3 7 5

 4 4 6 6 5

t 5 2 5 4 4

 6 3 7 1 5

 7 1 6 4 2

 8 4 4 3 2

 9 3 2 5 1

 10 5 5 6 2

The first step in applying the AUGMECON is to

construct the payoff table using the lexicographic

optimization as follows:

First we optimize the first objective function over

the feasible region by which we obtain the optimal

solution (37.57, 0) in the objectives space (i.e., point
a{m in the decision space). Then, the second objective is

optimized with the additional constraint ` J 37.57 by

which we obtain the optimal solution (37.57, 148) in

the objectives space (i.e., the first row of payoff table)

which is a non-dominated solution dominating the

previous one.

For constructing the second row of payoff table, we

first optimize the second objective over the feasible

region by which we obtain the optimal solution (40.94,

180) in the objectives space. Then, the first objective is

optimized with the additional constraint

∑ ∑ ∑ ������� . ���F��� G��� H 180 by which we obtain

the same optimal solution which ensures that it is a

non-dominated solution.

Consequently, the payoff table is constructed as

follows:

Table 5 Payoff table

 Z1 Z2 a{m 37.57 148.00
a�m 40.94 180.00

After the construction of payoff table, we divide the

range of the second objective function to four equal

intervals and we use the resulting five grid points as the

values of LZ. Hence, vector �� is written as �� = (148,

156, 164, 172, 180). Now for each components of ��

the following model is solved:

<�= �` I Lnc BcZNZC�

s.t.

A A A ���
�

���
. ���

F

���
 I cZ

G

���
� LZ

 (23)

Constraint (16)

Constraints (3)-(13)

cZ O qr

Where NZ denotes the range of second objective

function from the payoff table which is equal to 32. In

this manner, for each given value of LZ, the optimal

solution of above model will certainly generate an

Table 3 The values of ��

12

efficient solution. Table 6 shows the resulting non-

dominated solutions.

 Table 6 Non-dominated solutions found by AUGMECON

Z1 (min) Z2 (max)
37.57 148.00
37.74 159.00
38.27 168.00
39.62 174.00
40.94 180.00

It is noteworthy that the early exit option does not

require for our problem because our problem is a bi-

objective one and we vary only one RHS value,

therefore, we do not have nested loops in this case.

Furthermore, the augmented epsilon-constraint version

of the proposed model was coded in GAMS and the

CPLEX 7.5 solver was used for solving the

corresponding single-objective models on a 2.0 GHz

Dual Core CPU with 1GB of RAM. The above sample

problem was solved within the 4.12 seconds of CPU

time.

6 Concluding remarks

In this paper, a novel bi-objective mathematical model

is proposed to make the best decisions relating to the

heads of multi-head beam-type placement machines.

Due to the importance of the heads from the machine

performance point of view, optimizing their

performance has a great effect on the whole production

process. In the present study, a criterion, namely

appropriateness function, is presented for the first time

to evaluate the compatibility of each pair of component

type-nozzle. The selection of an appropriate set of

nozzles for handling the components on the heads

enables the robotic arm to move faster. Hence, the

machine cycle time can considerably be improved by

adopting appropriate nozzles to the heads. In order to

offer several efficient solutions to the decision maker

before making his/her final decision, we apply an

improved version of a well-known multi-objective

solution method, i.e., the epsilon constraint method

called augmented epsilon constraint method

(AUGMECON). Although the efficient solutions of the

proposed model could be found using the

AUGMECON method by applying the commercial

optimization solvers like CPLEX, it should be noted

that the corresponding computational time grows

exponentially with the problem size. Therefore, in order

to solve the real-sized problem instances more

efficiently, developing appropriate heuristic or meta-

heuristic solution methods is of great interest.

Considering the synchronous nozzle exchanges on the

heads can also be used to define the new problem

scenarios.

Acknowledgement

This study was supported by the University of Tehran

under the research grant No. 8109920/1/03. The authors

are grateful for this financial support.

 References

1. Hardas C, Doolen T, Jensen D (2008)

Development of a genetic algorithm for component

placement sequence optimization in printed circuit

board assembly. Comput ind eng 55:165-182

2. Ayob M, Kendall G (2008) A survey of surface

mount device placement machine optimization:

Machine classification. Eur J Oper Res 186:893-

914

3. Sun D-S, Lee T-E (2008) A branch-and-price

algorithm for placement routing for a multi-head

beam-type component placement tool. OR Spectr

30:515-534

13

4. Crama Y, Klundert J, Spieksma F-C-R (2002)

Production planning problems in printed circuit

board assembly. Discrete Appl Math 123:339-361

5. Lee W, Lee S, Lee B, Lee Y (2000) An efficient

planning algorithm for multi-head surface

mounting machines using a genetic algorithm. J

Univers Comput Sci 5:833-854

6. Ball M-O, Magazine M-J (1988) Sequence of

insertions in printed circuit board assembly. Oper

Res 36:192-201

7. Leipala T, Nevalainen O (1989) Optimization of

the movements of a component placement

machine. Eur J Oper Res 38:167-177

8. Or I, Duman E (1996) Optimization issues in

automated production of printed circuit boards

operations sequencing, feeder configuration and

load balancing problems. Proc IEEE Emerging

Technologies and Factory Automation 227-232

9. Khoo L, Loh, K (2000) A genetic algorithms

enhanced planning systems for surface mount PCB

assembly. Int J Adv Manuf Technol 16:289-296

10. Ho W, Ji P (2005) A genetic algorithm to optimize

the component placement process in PCB

assembly. Int J Adv Manuf Technol 26:1397-1401

11. Moon G (2009) Efficient operation methods for a

component placement machine using the patterns

on printed circuit boards. Int J Prod Res DOI:

10.1080/00207540802553608

12. Van Laarhoven P-J-M, Zijim W-H-M (1993)

Production preparation and numerical control in

PCB assembly. Int J Flex Manuf Syst 5:187-207

13. Magyar G, Johnson M, Nevalainen O (1999) On

solving single machine optimization problems in

electronics assembly. J Electron Manuf 9:249-267

14. Hong J, Lee W, Lee S, Lee B, Lee Y (2000) An

efficient production planning algorithm for multi-

head surface mounting machines using the

biological immune algorithm. Int J Fuzzy Syste

2:45-53

15. Jeevan K, Parthiban A, Seetharamu K-N, Azid,

Quadir G-A (2004) Optimization of PCB

component placement using genetic algorithms. J

Electron Manuf 11:69-79

16. Grunow M, Gunther H-O, Schleusener M, Yilmaz

I-O (2004) Operations planning for collect-and-

place machines in PCB assembly. Comput ind eng

47:409-429

17. Sun D-S, Lee T-E, Kim K-H (2005) Component

allocation and feeder arrangement for a dual-gantry

multi-head surface mounting placement tool. Int J

Prod Econ 95:245-264

18. Raduly-Baka C, Knuutila (2007) Selecting the

nozzle assortment for a Gantry-type placement

machine. OR Spectr 30:493-513

19. Kulak O, Yilmaz I-O, Gunther H-O (2007) PCB

assembly scheduling for collect-and-place

machines using genetic algorithms. Int J Prod Res

45:3949-3969

20. Li S, Hu C, Tian F (2008) Enhancing optimal

feeder assignment of the multi-head surface

mounting machine using genetic algorithms. Appl

Soft Comput 8:522-529

21. Ayob M, Kendall G, (2009) The optimisation of

the single surface mount device placement

machine in printed circuit board assembly: a

survey, Int J Systems Science, 40:553–569.

22. Miettinen K (1999) Nonlinear multi-objective

optimization. Kluwer Academic Publishers, Boston

23. Mavrotas G (2009) Effective implementation of

the ε-constraint method in Multi-Objective

Mathematical Programming problems. Appl Math

Comput, 213:455-465

24. Ehrgott M, Wiecek M (2005) Multiobjective

Programming in. In: J Figueira, S.Greco, M

14

Ehrgott (eds) Multiple Criteria Decision Analysis

State of the Art Surveys. Springer, 667-722

	vdp2010-128.pdf
	/No. 2010-128

