3,906 research outputs found

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    Deep Data Locality on Apache Hadoop

    Full text link
    The amount of data being collected in various areas such as social media, network, scientific instrument, mobile devices, and sensors is growing continuously, and the technology to process them is also advancing rapidly. One of the fundamental technologies to process big data is Apache Hadoop that has been adopted by many commercial products, such as InfoSphere by IBM, or Spark by Cloudera. MapReduce on Hadoop has been widely used in many data science applications. As a dominant big data processing platform, the performance of MapReduce on Hadoop system has a significant impact on the big data processing capability across multiple industries. Most of the research for improving the speed of big data analysis has been on Hadoop modules such as Hadoop common, Hadoop Distribute File System (HDFS), Hadoop Yet Another Resource Negotiator (YARN) and Hadoop MapReduce. In this research, we focused on data locality on HDFS to improve the performance of MapReduce. To reduce the amount of data transfer, MapReduce has been utilizing data locality. However, even though the majority of the processing cost occurs in the later stages, data locality has been utilized only in the early stages, which we call Shallow Data Locality (SDL). As a result, the benefit of data locality has not been fully realized. We have explored a new concept called Deep Data Locality (DDL) where the data is pre-arranged to maximize the locality in the later stages. Specifically, we introduce two implementation methods of the DDL, i.e., block-based DDL and key-based DDL. In block-based DDL, the data blocks are pre-arranged to reduce the block copying time in two ways. First the RLM blocks are eliminated. Under the conventional default block placement policy (DBPP), data blocks are randomly placed on any available slave nodes, requiring a copy of RLM (Rack-Local Map) blocks. In block-based DDL, blocks are placed to avoid RLMs to reduce the block copy time. Second, block-based DDL concentrates the blocks in a smaller number of nodes and reduces the data transfer time among them. We analyzed the block distribution status with the customer review data from TripAdvisor and measured the performances with Terasort Benchmark. Our test result shows that the execution times of Map and Shuffle have been improved by up to 25% and 31% respectively. In key-based DDL, the input data is divided into several blocks and stored in HDFS before going into the Map stage. In comparison with conventional blocks that have random keys, our blocks have a unique key. This requires a pre-sorting of the key-value pairs, which can be done during ETL process. This eliminates some data movements in map, shuffle, and reduce stages, and thereby improves the performance. In our experiments, MapReduce with key-based DDL performed 21.9% faster than default MapReduce and 13.3% faster than MapReduce with block-based DDL. Additionally, key-based DDL can be combined with other methods to further improve the performance. When key-based DDL and block-based DDL are combined, the Hadoop performance went up by 34.4%. In this research, we developed the MapReduce workflow models with a novel computational model. We developed a numerical simulator that integrates the computational models. The model faithfully predicts the Hadoop performance under various conditions

    Reducing Microservices Interference and Deployment Time in Resource-constrained Cloud Systems

    Get PDF
    In resource-constrained cloud systems, e.g., at the network edge or in private clouds, it is essential to deploy microservices (MSs) efficiently. Unlike most of the existing approaches, we tackle this issue by accounting for two important facts: (i) the interference that arises when MSs compete for the same resources and degrades their performance, and (ii) the MSs’ deployment time. In particular, we first present some experiments highlighting the impact of interference on the throughput of MSs co-located in the same server, as well as the benefits of MSs’ parallel deployment. Then, we formulate an optimization problem that minimizes the number of used servers while meeting the MSs’ performance requirements. In light of the problem complexity, we design a low-complexity heuristic, called iPlace, that clusters together MSs competing for resources as diverse as possible and, hence, interfering as little as possible. Importantly, clustering MSs also allows us to exploit the benefit of parallel deployment, which greatly reduces the deployment time as compared to the sequential approach applied in prior art and by default in state-of-the-art orchestrators. Our numerical results show that iPlace closely matches the optimum and uses 21-92% fewer servers compared to alternative schemes while proving to be highly scalable. Further, by deploying MSs in parallel using Kubernetes, iPlace reduces the deployment time by 69% compared to state-of-the-art solutions

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Enabling Distributed Applications Optimization in Cloud Environment

    Get PDF
    The past few years have seen dramatic growth in the popularity of public clouds, such as Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Container-as-a-Service (CaaS). In both commercial and scientific fields, quick environment setup and application deployment become a mandatory requirement. As a result, more and more organizations choose cloud environments instead of setting up the environment by themselves from scratch. The cloud computing resources such as server engines, orchestration, and the underlying server resources are served to the users as a service from a cloud provider. Most of the applications that run in public clouds are the distributed applications, also called multi-tier applications, which require a set of servers, a service ensemble, that cooperate and communicate to jointly provide a certain service or accomplish a task. Moreover, a few research efforts are conducting in providing an overall solution for distributed applications optimization in the public cloud. In this dissertation, we present three systems that enable distributed applications optimization: (1) the first part introduces DocMan, a toolset for detecting containerized application’s dependencies in CaaS clouds, (2) the second part introduces a system to deal with hot/cold blocks in distributed applications, (3) the third part introduces a system named FP4S, a novel fragment-based parallel state recovery mechanism that can handle many simultaneous failures for a large number of concurrently running stream applications
    • …
    corecore