1,458 research outputs found

    A practical vision system for the detection of moving objects

    Get PDF
    The main goal of this thesis is to review and offer robust and efficient algorithms for the detection (or the segmentation) of foreground objects in indoor and outdoor scenes using colour image sequences captured by a stationary camera. For this purpose, the block diagram of a simple vision system is offered in Chapter 2. First this block diagram gives the idea of a precise order of blocks and their tasks, which should be performed to detect moving foreground objects. Second, a check mark () on the top right corner of a block indicates that this thesis contains a review of the most recent algorithms and/or some relevant research about it. In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction has been widely used for this purpose as the first step. In this work, a review of the efficiency of a number of important background subtraction and modelling algorithms, along with their major features, are presented. In addition, two background approaches are offered. The first approach is a Pixel-based technique whereas the second one works at object level. For each approach, three algorithms are presented. They are called Selective Update Using Non-Foreground Pixels of the Input Image , Selective Update Using Temporal Averaging and Selective Update Using Temporal Median , respectively in this thesis. The first approach has some deficiencies, which makes it incapable to produce a correct dynamic background. Three methods of the second approach use an invariant colour filter and a suitable motion tracking technique, which selectively exclude foreground objects (or blobs) from the background frames. The difference between the three algorithms of the second approach is in updating process of the background pixels. It is shown that the Selective Update Using Temporal Median method produces the correct background image for each input frame. Representing foreground regions using their boundaries is also an important task. Thus, an appropriate RLE contour tracing algorithm has been implemented for this purpose. However, after the thresholding process, the boundaries of foreground regions often have jagged appearances. Thus, foreground regions may not correctly be recognised reliably due to their corrupted boundaries. A very efficient boundary smoothing method based on the RLE data is proposed in Chapter 7. It just smoothes the external and internal boundaries of foreground objects and does not distort the silhouettes of foreground objects. As a result, it is very fast and does not blur the image. Finally, the goal of this thesis has been presenting simple, practical and efficient algorithms with little constraints which can run in real time

    Vision-Based 2D and 3D Human Activity Recognition

    Get PDF

    Computer Vision Techniques for Background Modeling in Urban Traffic Monitoring

    Get PDF
    Jose Manuel Milla, Sergio Luis Toral, Manuel Vargas and Federico Barrero (2010). Computer Vision Techniques for Background Modeling in Urban Traffic Monitoring, Urban Transport and Hybrid Vehicles, Seref Soylu (Ed.), ISBN: 978-953-307-100-8, InTech, DOI: 10.5772/10179. Available from: http://www.intechopen.com/books/urban-transport-and-hybrid-vehicles/computer-vision-techniques-for-background-modeling-in-urban-traffic-monitoringIn this chapter, several background modelling techniques have been described, analyzed and tested. In particular, different algorithms based on sigma-delta filter have been considered due to their suitability for embedded systems, where computational limitations affect a real-time implementation. A qualitative and a quantitative comparison have been performed among the different algorithms. Obtained results show that the sigma-delta algorithm with confidence measurement exhibits the best performance in terms of adaptation to particular specificities of urban traffic scenes and in terms of computational requirements. A prototype based on an ARM processor has been implemented to test the different versions of the sigma-delta algorithm and to illustrate several applications related to vehicle traffic monitoring and implementation details

    Occlusion handling in multiple people tracking

    Get PDF
    Object tracking with occlusion handling is a challenging problem in automated video surveillance. Occlusion handling and tracking have always been considered as separate modules. We have proposed an automated video surveillance system, which automatically detects occlusions and perform occlusion handling, while the tracker continues to track resulting separated objects. A new approach based on sub-blobbing is presented for tracking objects accurately and steadily, when the target encounters occlusion in video sequences. We have used a feature-based framework for tracking, which involves feature extraction and feature matching

    Object detection in surveillance videos

    Get PDF
    In this thesis, a novel scheme for object detection in complex background scenes has been proposed.The input videos used have fixed backgrounds and static cameras. Initially median of few frames is evaluated for obtaining a proper estimate of the background.Local threshold based background subtraction is done for extracting objects from the video sequence.During sudden illumination changes, optical flow analysis is used for motion segmentation.It is assumed that during photometric distortions, the object is in motion.Subsequently shadow detection and suppression is done to the resulting thresholded image. Hue Saturation Value(HSV) color space model is used for shadow suppression.Visual measures convey the performance of the algorithm

    Background Subtraction Based on Perception-Contained Piecewise Memorizing Framework

    Get PDF
    A key issue for full-time video surveillance is to search or establish a reference image of background which corresponds to current video frame. However, background that was ever in presence long time ago is enclosed or discarded due to background forgetting assumption. How to rapidly pick up or even rebuild long-term background needs to be discussed. This paper aims to present a framework for background maintenance in order to solve the problem. A piecewise memorizing framework is proposed for matching, updating and even rebuilding long-term background. Based on the metaphors of psychological selective attention theory, the framework is composed of a prior piecewise perception processor for intensity stationary test. Besides, a hierarchical memorizing mechanism constitutes the other part of the framework for overcoming the exponential forgetting of long period background appearances. Applied to Gaussian mixture model (GMM), this framework is capable of maintaining short-term background states, identifying long period background appearances, and rapidly adjusting to new background states according to different expressions derived from the prior perception of scene intensity changes. Its effectiveness can be demonstrated by experimental results for solving various typical problems

    Advanced traffic video analytics for robust traffic accident detection

    Get PDF
    Automatic traffic accident detection is an important task in traffic video analysis due to its key applications in developing intelligent transportation systems. Reducing the time delay between the occurrence of an accident and the dispatch of the first responders to the scene may help lower the mortality rate and save lives. Since 1980, many approaches have been presented for the automatic detection of incidents in traffic videos. In this dissertation, some challenging problems for accident detection in traffic videos are discussed and a new framework is presented in order to automatically detect single-vehicle and intersection traffic accidents in real-time. First, a new foreground detection method is applied in order to detect the moving vehicles and subtract the ever-changing background in the traffic video frames captured by static or non-stationary cameras. For the traffic videos captured during day-time, the cast shadows degrade the performance of the foreground detection and road segmentation. A novel cast shadow detection method is therefore presented to detect and remove the shadows cast by moving vehicles and also the shadows cast by static objects on the road. Second, a new method is presented to detect the region of interest (ROI), which applies the location of the moving vehicles and the initial road samples and extracts the discriminating features to segment the road region. After detecting the ROI, the moving direction of the traffic is estimated based on the rationale that the crashed vehicles often make rapid change of direction. Lastly, single-vehicle traffic accidents and trajectory conflicts are detected using the first-order logic decision-making system. The experimental results using publicly available videos and a dataset provided by the New Jersey Department of Transportation (NJDOT) demonstrate the feasibility of the proposed methods. Additionally, the main challenges and future directions are discussed regarding (i) improving the performance of the foreground segmentation, (ii) reducing the computational complexity, and (iii) detecting other types of traffic accidents
    corecore