1,443 research outputs found

    Desirable properties for XML update mechanisms

    Get PDF
    The adoption of XML as the default data interchange format and the standardisation of the XPath and XQuery languages has resulted in significant research in the development and implementation of XML databases capable of processing queries efficiently. The ever-increasing deployment of XML in industry and the real-world requirement to support efficient updates to XML documents has more recently prompted research in dynamic XML labelling schemes. In this paper, we provide an overview of the recent research in dynamic XML labelling schemes. Our motivation is to define a set of properties that represent a more holistic dynamic labelling scheme and present our findings through an evaluation matrix for most of the existing schemes that provide update functionality

    SCOOTER: A compact and scalable dynamic labeling scheme for XML updates

    Get PDF
    Although dynamic labeling schemes for XML have been the focus of recent research activity, there are significant challenges still to be overcome. In particular, though there are labeling schemes that ensure a compact label representation when creating an XML document, when the document is subject to repeated and arbitrary deletions and insertions, the labels grow rapidly and consequently have a significant impact on query and update performance. We review the outstanding issues todate and in this paper we propose SCOOTER - a new dynamic labeling scheme for XML. The new labeling scheme can completely avoid relabeling existing labels. In particular, SCOOTER can handle frequently skewed insertions gracefully. Theoretical analysis and experimental results confirm the scalability, compact representation, efficient growth rate and performance of SCOOTER in comparison to existing dynamic labeling schemes

    MonetDB/XQuery: a fast XQuery processor powered by a relational engine

    Get PDF
    Relational XQuery systems try to re-use mature relational data management infrastructures to create fast and scalable XML database technology. This paper describes the main features, key contributions, and lessons learned while implementing such a system. Its architecture consists of (i) a range-based encoding of XML documents into relational tables, (ii) a compilation technique that translates XQuery into a basic relational algebra, (iii) a restricted (order) property-aware peephole relational query optimization strategy, and (iv) a mapping from XML update statements into relational updates. Thus, this system implements all essential XML database functionalities (rather than a single feature) such that we can learn from the full consequences of our architectural decisions. While implementing this system, we had to extend the state-of-the-art with a number of new technical contributions, such as loop-lifted staircase join and efficient relational query evaluation strategies for XQuery theta-joins with existential semantics. These contributions as well as the architectural lessons learned are also deemed valuable for other relational back-end engines. The performance and scalability of the resulting system is evaluated on the XMark benchmark up to data sizes of 11GB. The performance section also provides an extensive benchmark comparison of all major XMark results published previously, which confirm that the goal of purely relational XQuery processing, namely speed and scalability, was met

    Investigation into Indexing XML Data Techniques

    Get PDF
    The rapid development of XML technology improves the WWW, since the XML data has many advantages and has become a common technology for transferring data cross the internet. Therefore, the objective of this research is to investigate and study the XML indexing techniques in terms of their structures. The main goal of this investigation is to identify the main limitations of these techniques and any other open issues. Furthermore, this research considers most common XML indexing techniques and performs a comparison between them. Subsequently, this work makes an argument to find out these limitations. To conclude, the main problem of all the XML indexing techniques is the trade-off between the size and the efficiency of the indexes. So, all the indexes become large in order to perform well, and none of them is suitable for all users’ requirements. However, each one of these techniques has some advantages in somehow

    Transformation of XML Data Sources for Sequential Path Mining

    Get PDF

    PReaCH: A Fast Lightweight Reachability Index using Pruning and Contraction Hierarchies

    Full text link
    We develop the data structure PReaCH (for Pruned Reachability Contraction Hierarchies) which supports reachability queries in a directed graph, i.e., it supports queries that ask whether two nodes in the graph are connected by a directed path. PReaCH adapts the contraction hierarchy speedup techniques for shortest path queries to the reachability setting. The resulting approach is surprisingly simple and guarantees linear space and near linear preprocessing time. Orthogonally to that, we improve existing pruning techniques for the search by gathering more information from a single DFS-traversal of the graph. PReaCH-indices significantly outperform previous data structures with comparable preprocessing cost. Methods with faster queries need significantly more preprocessing time in particular for the most difficult instances

    Level based labeling scheme for extensible markup language (XML) data processing

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 56-57)Text in English; Abstract: Turkish and Englishx, 70 leavesWith the continuous growth of data in businesses and the increasing demand for reaching that data immediately, raised the need of having real time data warehouses. In order to provide such a system, the ETL mechanism will need to be very efficient on updating data. From the literature surveys, it has been observed that there are many studies performed on efficient update of the relational data, while there is limited amount of study on updating the XML data. With the extensible structure and effective performance on data exchange, the usage of XML data structure is increasing day by day. Like relational databases, real time XML databases also need to be updated continuously. The hierarchic characteristic of XML required the usage of tree representations for indexing the data since they provide necessary means to capture different relationships between the nodes. The principal purpose of this study is to define and compare algorithms which label the XML tree with an effective update mechanism. Proposed labeling algorithms aim to provide a mechanism to query and update the XML data by defining all relations between the nodes. In the experimental evaluation part of this thesis, all algorithms is examined and tested with an existing labeling algorithm

    Efficient data representation for XML in peer-based systems

    Get PDF
    Purpose - New directions in the provision of end-user computing experiences mean that the best way to share data between small mobile computing devices needs to be determined. Partitioning large structures so that they can be shared efficiently provides a basis for data-intensive applications on such platforms. The partitioned structure can be compressed using dictionary-based approaches and then directly queried without firstly decompressing the whole structure. Design/methodology/approach - The paper describes an architecture for partitioning XML into structural and dictionary elements and the subsequent manipulation of the dictionary elements to make the best use of available space. Findings - The results indicate that considerable savings are available by removing duplicate dictionaries. The paper also identifies the most effective strategy for defining dictionary scope. Research limitations/implications - This evaluation is based on a range of benchmark XML structures and the approach to minimising dictionary size shows benefit in the majority of these. Where structures are small and regular, the benefits of efficient dictionary representation are lost. The authors' future research now focuses on heuristics for further partitioning of structural elements. Practical implications - Mobile applications that need access to large data collections will benefit from the findings of this research. Traditional client/server architectures are not suited to dealing with high volume demands from a multitude of small mobile devices. Peer data sharing provides a more scalable solution and the experiments that the paper describes demonstrate the most effective way of sharing data in this context. Social implications - Many services are available via smartphone devices but users are wary of exploiting the full potential because of the need to conserve battery power. The approach mitigates this challenge and consequently expands the potential for users to benefit from mobile information systems. This will have impact in areas such as advertising, entertainment and education but will depend on the acceptability of file sharing being extended from the desktop to the mobile environment. Originality/value - The original work characterises the most effective way of sharing large data sets between small mobile devices. This will save battery power on devices such as smartphones, thus providing benefits to users of such devices

    Sharing large data collections between mobile peers

    Get PDF
    New directions in the provision of end-user computing experiences mean that we need to determine the best way to share data between small mobile computing devices. Partitioning large structures so that they can be shared efficiently provides a basis for data-intensive applications on such platforms. In conjunction with such an approach, dictionary-based compression techniques provide additional benefits and help to prolong battery life
    • 

    corecore