
University of Huddersfield Repository

Klaib, Alhadi and Joan, Lu

Investigation into Indexing XML Data Techniques

Original Citation

Klaib, Alhadi and Joan, Lu (2014) Investigation into Indexing XML Data Techniques. In: 

ICOMP'14 - The 2014 International Conference on Internet Computing and Big Data, 21st - 24th 

July 2014, Las Vegas, USA. 

This version is available at http://eprints.hud.ac.uk/21300/

The University Repository is a digital collection of the research output of the

University, available on Open Access. Copyright and Moral Rights for the items

on this site are retained by the individual author and/or other copyright owners.

Users may access full items free of charge; copies of full text items generally

can be reproduced, displayed or performed and given to third parties in any

format or medium for personal research or study, educational or not-for-profit

purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;

• A hyperlink and/or URL is included for the original metadata page; and

• The content is not changed in any way.

For more information, including our policy and submission procedure, please

contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Huddersfield Repository

https://core.ac.uk/display/30729713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Investigation into Indexing XML Data 

Techniques  

Alhadi Klaib, Joan Lu 
Department of Informatics 
University of Huddersfield 

Huddersfield, UK 
 

Abstract- The rapid development of XML technology 

improves the WWW, since the XML data has many 

advantages and has become a common technology for 

transferring data cross the internet. Therefore, the 

objective of this research is to investigate and study the 

XML indexing techniques in terms of their structures. The 

main goal of this investigation is to identify the main 

limitations of these techniques and any other open issues. 

Furthermore, this research considers most common XML 

indexing techniques and performs a comparison between 

them. Subsequently, this work makes an argument to find 

out these limitations. To conclude, the main problem of all 

the XML indexing techniques is the trade-off between the 

size and the efficiency of the indexes. So, all the indexes 

become large in order to perform well, and none of them is 

suitable for all users’ requirements. However, each one of 

these techniques has some advantages in somehow.  

Keywords: XML Data; indexing XML data techniques; 

indexing techniques; XML database. 

1 Introduction 
XML has become a common technology for the 
transformation of data across the WWW. It was 
recommended by the World Wide Web Consortium (W3C) 
in 1998, and has become the standard medium for data 
presentation and exchange over the WWW. Indexing plays 
a major role in enhancing XML data queries operation.  
The relational database is a robust and mature technology 
and thus more reliable compared with XML. However, the 
XML data has some advantages compared with the 
relational model, which are the following: 1) the structure 
of an XML document is integrated with the data, whereas 
the structure in a relational model is separate. Thus, it is 
better to use XML as a medium for transforming data on 
the Web; 2) XML data has the advantage of flexibility for 
querying languages, a feature that is not available in SQL; 
3) XML data is flexible for adapting to the development of 
the data structures[1, 2].  

1.1 Research questions: this research considers the 
following questions: 
a) What are the main XML data indexing techniques and 

structures that have been developed and investigated?    
b) What are the key results and findings on the XML 

indexing techniques and structures? 
c) What problems, limitations, and challenges that this 

research area faces? 

1.2 Research aims: Broadly speaking, the main goal 
of this research is to study XML indexing techniques and 
structures in order to ascertain the key advantages and 

disadvantages for each of these techniques. In more detail, 
the following points are the objectives:   
a) Investigate the main indexing techniques and schemes. 
b) Consider some common comparison criteria for these 

indexing techniques.   
c) Compare these techniques and determine the 

limitations.   
d) Identify the issues and open problems of XML indexing 

techniques.   

1.3 Motivations: The motivation of this research is 
basically the significance of XML data for database 
management systems and web technology. Moreover, 
XML database indexing is a major factor in the efficiency 
and reliability of XML data technology.  This indexing is 
also a critical demand nowadays due to the growth of XML 
data usage, XML database size, and the number of users 
during the last decade. Therefore, it is important to 
investigate the performance of XML indexing techniques. 
Thus, this research considers and studies the most popular 
XML indexing techniques in order to find out the 
advantages and limitations for each kind of them [3-5].   

1.4 Paper organization: The remainder of the paper 
is structured as follows: Section 2 discusses the research 
method. The literature review is presented in Section 3. 
Section 4 discusses the results. Section 5 describes the 
discussion and the analysis. Section 6 discusses the 
conclusion, with future work presented in Section 7.  
     

2 Research method 
The research method used is a comparison review with a 
consideration of the research questions, identification of 
research area, selection process, comparison criteria, and 
evaluation. The research discusses these stages in the 
following:  

2.1 Review Plan: the first step is to make a plan for the 
review. This plan considers the method and the process that 
will be applied. The goal of the study is to review the 
studied indexing XML data techniques and answer the 
research questions.  

2.2 Identification of Research: a comprehensive 
and fair search is an important factor to obtain relevant 
materials such as articles and conference papers, and then 
to achieve a good review. The start of this search was to 
identify the search keywords and terms. Different 
keywords were used in order to obtain as many papers and 
other materials as possible. The table 1 shows examples of 
these keywords.  
 
 

Int'l Conf. Internet Computing and Big Data |  ICOMP'14  | 83



 
 

TABLE 1: SEARCH KEYWORDS AND TERMS 
XML data Indexing XML 

� XML principles. 
� XML data and database. 
� XML data and semi-structured. 
� XML Database.  
� Query XML. 
� Query optimization.  
� XML applications. 
� XML documents.  

� Indexing XML techniques. 
� XML indexes classification. 
� XML Schemes.  
� XML index structures.  
� Evaluation of XML indexes. 

 

 
All possible keywords and terms of the indexing and XML 
technologies were tried in the search. The Summon 
(Huddersfield University search engine) and Google 
Scholar are the most used search engines for the search. 
The following electronic databases and libraries are the 
most used resources: ACM Digital Library, Google Scholar 
database, Science Direct, Springer Link, and Huddersfield 
University library.     

2.3 Selection process: after each search operation, a 
number of identified articles and papers were ignored since 
they were irrelevant or duplicate titles. To identify which 
articles to select, the selection process went through a 
number of stages as follows: 
1- Check the title to find those related to the review.  
2- Read the abstract in order to find more details about the 
articles and exclude all articles not relevant. After 
conducting this criterion, the number of articles was 
reduced to about 100.  
3- These articles were scanned and considered, as a final 
check and to exclude any not related ones.  

2.4 Quality assessment and classification: the 
identified papers and articles need to be classified into 
categories. There are many kinds of classifications for 
XML indexing techniques, each of which depends on the 
aims and aspects of the study. The next section gives more 
detail about the classification and criteria used in this 
research. With respect to quality, the articles are divided 
into two classes, namely, development and innovation 
studies, and analysis and review studies. The criterion for 
any study being considered as development and innovation 
study is that the article has proposed or developed a new 
contribution; whereas the criterion for the analysis and 
review study is that the article has a survey or a review of 
others.          

2.5 Techniques for classification and review: 
XML indexing techniques can be classified into three 
categories according to the ways and aspects in which they 
are evaluated. First, the indexing techniques are evaluated 
on the basis of the structural relationships in the index. The 
classification of this category is usually divided into three 
classes, as follows: 1) node indexes; 2) path indexes; 3) 
sequence indexes [6, 7]. Second, this classification is based 
on the position or location of the index residence. The 
position can be either in the main memory as a temporary 
index or in the hard disk, called a disk-based index. The 
former has the advantage of fast response as it avoids the 
input and output expenses. However, it has the 
disadvantage that it lacks scalability for large index files.  
Third, in this category, classification is based on the type of 
document that is indexed. There are two classes, namely, 
the index data-centric document, and the index document-
centric XML database [8].  

This research focuses on structural relationships indexes as 
this category is the most relevant to the objectives of the 
research [9, 10]. 

2.6 Common criteria for the evaluation of 

indexing techniques: the ideal method for evaluating 
a XML indexing technique is to compare it with other 
techniques using some of the criteria that are suitable for 
all such techniques. There are a number of common criteria 
that are used to compare indexing techniques. This research 
uses some of them in order to evaluate the three structural 
indexes, namely, node index, graph index and sequence 
index. These criteria were chosen as the most helpful ones 
for users to select the best technique for their requirements. 
The selection is carried out by determining the features that 
these indexes support, for instance: precision, response 
time, and completeness. The following are these used 
criteria:                                                                                                      
a) Retrieval power: this means the precision and 

completeness of the result, and the type of queries 
supported.  

b) Processing complexity: this step covers a few issues, 
such as the requirement of structural joins – in order to 
improve the performance of a query operation; there is 
a need to minimize the number of joins. Other issues 
include the processing cost, and the need to compute 
the relationships between elements.   

c) Scalability: large indexes involve many input and 
output operations. Thus this increases the query 
processing time.  

d) Update cost: basically, there are two kinds of updates, 
namely, inserting a node and inserting a subtree. The 
nodes in a tree index need to be kept organized in a 
particular way to reflect all kinds of relationships. 
These relationships have to be preserved if a new node 
is inserted into the tree. Thus, the index has to reflect its 
location with respect to these relationships, which 
makes the case more complex, especially if the scheme 
has no spaces for the new node.  

 

3 Literature review 
XML data is considered to be a semi-structured data since 
the schema and the data are mixed in the semi-structured 
data. Thus, this feature provides flexibility for the semi-
structured data. Moreover, XML and semi-structured data 
have more similar features such as simple models, 
flexibility, self-descriptive models, and readable models for 
both humans and computers. The semi-structured data is 
able to represent XML data from other models [1, 11-13]. 

3.1 XML data indexing techniques:  this research 
focuses on the XML indexes of structural relationships as 
this category is the most relevant to the objectives of this 
research. These indexing techniques are evaluated on the 
basis of the structural relationships in the index. The 
classification of this category is usually divided into three 
classes, which are the following: 1) node indexes;  2) path 
indexes;  3) sequence indexes.   
3.1.1 Node indexes: basically, node indexes retain values 
in the XML tree structure. Each value reflects the location 
of a node in the tree. These values are used to find a certain 
node’s parents, child, sibling, ancestor and descendent. 
These values are represented by numbers and used to 

84 Int'l Conf. Internet Computing and Big Data |  ICOMP'14  |



 
 

resolve simple and twig queries. Generally, the most 
commonly used schemes are the interval (also known as 
region) labelling scheme and the prefix (also known as 
path) scheme. Further details about these schemes can be 
found in the following sections  [14-17] [18-21] [22]. 
3.1.1.1 Prefix scheme: this type of scheme generates code 
containing two fragments which are the prefix part and the 
actual-code. The prefix part encodes the previous node 
code. The actual-code encodes the order of the node in the 
tree. There are many examples of this scheme, and the 
most popular one is Dewey labelling. Dewey labelling has 
two parts in each node except in the root node. This code is 
called the Dewey code [23-25]. The code at each node has 
two parts. The first part is an increasing number that 
reflects the location of the node. The second part is the 
Dewey code which is the parent’s code. These parts are 
separated by a dot like this “.”. The root code has only one 
part since it has no parent. Figure 1 shows an example of a 
Dewey labelling scheme [16, 24, 26-28]. 
 

 
Figure 1. Dewey labelling scheme. 

 
A number of researchers [17] developed a dynamic 
labelling method that can be used with Dewey labels with 
identifiers of size 0(log n) where “n” is the size of the 
database. All labelling schemes including Dewey need 0(n) 
bits per label [7]. Different kinds of prefix labels are 
suggested. The following are examples of some of them: 
Duong and Zhang [29] developed Labelling Scheme for 
Dynamic XML Data called (LSDX). In this method the 
numbers and letters are combined. This scheme supports 
the ancestor/descendent relationship and the sibling 
between nodes. Lu and Ling [23] propose a labelling 
scheme that contains two parts. The first part is the group 
ID. The second part is the group prefix. This scheme is 
called GRoup base Prefix (GRP). Both the LSDX and GRP 
schemes are firm and immutable as the label sizes of these 
schemes can reach 0(n) bits per label. The ORDPATH 
labelling scheme was developed by a number of 
researchers [30].   
3.1.1.2 Interval labelling Scheme: this is also known as 
Region-based Encoding. Basically, the idea of this scheme 
is to attach two values to each node – the startID and the 
endID. The startID is used to save the node ID for first 
element or attribute. The endID is used to store the end of 
the attribute. There are some examples of this labelling 
scheme such as the (Beg, End) and (Pre, Post) labelling 
schemes. The (Beg, End) labelling scheme allocates two 
numbers to each node, based on its sequential traversal 
order as follows: the mechanism gives a “Beg” number to 
all elements starting from the root, and each element, 
attribute of an element, value of an attribute, and value of 
an element, according to the sequential location in the 

XML document. When we reach the end of an attribute or 
an attribute value then the allocated value is the “End” 
number [31-33]. 

 
Figure 2. (Beg, End) labelling Scheme [34]. 

  
The scheme (Beg, End) can be used to answer both twig 
query and path query by making use of the relational 
database management system. This can be achieved by 
using “structural joins” [35]. To answer a query, the 
relationships between any couple of nodes in a path in this 
query is investigated individually as the granularity of this 
indexing scheme is determined at the level of each node 
and therefore this provides a precise and complete answer 
for the query. XML queries shred XML documents into 
tables of relational databases with the fixed schema (Label, 
Beg, End, Level, Flag, and Value) [8]. Table 2 represents 
the relational table of shredded XML document of the 
above node tree.  
 
TABLE 2:  A NODE TABLE OF THE XML DATA IN FIGURE 2 [34] 

Label Beg End Level Flag 

(Type) 

Value 

Book 2 6 2 Element Null  
Author  3 5 3 Value Tim  
Paper 7 8 2 Element  Null 

..... ... ... .... ....... ....... 
Paper 14 21 2 Element Null 
Reviewer  15 17 3 Attribute  Ahmad  

  
A number of researchers such as Silberstein et al. and Chen 
et al. [33] have developed dynamic labelling schemes for 
interval indexes. The dynamic labelling schemes allow 
relabeling of the schemes. The interval labelling scheme is 
the most used scheme for fixed encoding. Such examples 
propose leaving spaces between the values in order to add 
new nodes. In case of adding new nodes, there is a need for 
re-numbering or other solution.  
Cohen et al. [7] approved that persistent labelling needs 
0(n) bits per label where n is the size of the tree. The 
interval labels size is used to measure the complexity as 
this size determines the total size of the index. It is 
preferable to keep the used number of bits small as this can 
allow the index to reside in the main memory. 
Li and Moon [18] developed the (Order, Size) labelling 
scheme. Each Order and Size has a certain job. The Order 
one is based on a traversal of pre-order, whereas the Size 
part is an estimation of the number of child or descendent 
nodes for a given node. The advantage of this mechanism 
is that this labeling scheme leaves space for any case of 
adding or inserting nodes in order to avoid relabeling of the 
data-tree as relabeling can cause delay.  
3.1.1.3 Summary: to conclude, both the prefix scheme and 
interval labelling scheme perform well in XML operations. 
The interval labelling scheme is better than the prefix 
scheme in terms of the storage space cost. Thus, some 

Int'l Conf. Internet Computing and Big Data |  ICOMP'14  | 85



 
 

enhancements have been added by reducing the 
comparison costs and other features in interval labelling 
scheme. Nevertheless, this scheme is costly in terms of 
updates [35, 36] [37, 38].  
3.1.2 Graph indexing scheme (Path scheme): this type of 
indexing scheme is also known as a summary index and is 
described as a structural path summary. It is used to 
enhance query efficiency by producing a path summary for 
XML data in order to accelerate the process of query 
evaluation. However, it can also be used to solve twig 
queries, but with the extra cost of multiple joins operations. 
There are a number of graph indexes such as DataGuide 
[39, 40]; Index Fabric [41]; APEX [42]; D(K)-index [43];  
(F+B)K-index [44]; and F&B-index [1, 8]. Graph indexes 
are classified in different categories according to the 
number of criteria [41, 42, 45, 46]. 
Graph indexes have been classified into different types of 
categories on the basis of different criteria. Examples of 
these classifications are the following: Polyzotis and 
Garofalakis classified the graph indexes according to 
exactness [47]. This classification divided the schemes into 
exact schemes such as strong Data Guide, 1-index, disk-
based F&B-index, Index Fabric, and F&B-index, and 
approximate schemes. Examples of approximate schemes 
are A(K)-index, approximate Data Guide, D(K)-index, and 
(F+B)K-index [47].   
There is another category that classifies schemes into two 
classes, namely, path indexes (aka P-index), which are 
suitable for simple path queries such as DataGuide and 1-
Index, and twig indexes (aka T-index), suitable for twig 
queries such as F&B-index [8].     
Another category [34] considers a classification that 
categorizes the graph schemes into determinism and 
bisimilarity. In more detail, in determinism, the paths of the 
tree are considered to be deterministic paths. The other 
category, bisimilarity, has two sub classes – forward and 
backward. According to the determinism and bisimilarity 
classification, for more detail, graph indexes are 
categorized into the following classes:   

3.1.2.1 Deterministic graph indexes: in this index, every 
path is listed once in the summary graph. Each path in a 
summary graph has at least one identical path in the data 
graph. There are some indexing schemes that are 
considered as deterministic graph indexes such as Strong 
DataGuide, Approximate DataGuide, and Index Fabric [39, 
40, 43].     
The Strong DataGuide was proposed by Goldman and 
Widon [39]. Strong DataGuides have the ability to give 
complete and precise results for both simple parent/child 
path queries and ancestor/descent path. Regarding the twig 
queries, Strong DataGuides are complete but not precise 
[44].  
The Approximate DataGuide (ADG) has solved the 
problem of the large size of the Strong Data Guide since 
this scheme shows large size in some cases [40].   
Cooper et al. proposed the Index Fabric in order to solve 
the problem of scalability [41]. The Index Fabric is 
theoretically like the Strong Data Guide as the size might 
enlarge dramatically. Moreover, the Index Fabric is 
complete for both path and twig queries. However, it is 
precise for the path but not for the twig [34].  

3.1.2.2 Non-deterministic graph indexes with 

backward bisimilarity: there are a number of these 
indexing schemes such as: 1-index, A(K) index, and D(K) 
index. These indexes are divided based on backward 
bisimilarity. The 1-index was proposed by Milo and Suciu 
[48] in order to decrease the size of a structural summary. 
The 1-index divides the data nodes of a document into 
similar classes based on their backward bisimilarity. The 1-
index and DataGuide are the same in the case of s simple 
XML data tree.  
Kaushik et al. [44] proposed the A(K)-index mostly to 
solve the size cost. The size of an A(K)-index is small 
compared with Strong DataGuide and 1-index. The A(K)-
index is usually complete but not always precise. 
Chen, Lim, et al. propose the D(K)-index [43] in order to 
select the most appropriate value of “k” which is a big 
problem for the A(K)-index. Thus, the D(K)-index is better 
than the A(K)-index with respect to processing time and 
storage size. Apart from this, the A(K)-index and D(K)-
index are similar schemes in terms of scalability, 
completeness and precision [34].                   
3.1.2.3 Non-deterministic graph index with forward 
and backward bisimilarity: this is the only kind of graph 
index that has the ability to support twig queries: the F&B-
index, (F+B)K-index, and the disk based F&B-index [49] 
[44]. The F&B-index was proposed by Abiteboul et al. [1]. 
It is different from the A(K)-index and D(K)-index as this 
scheme is based on the incoming and outgoing paths’ 
bisimilarity for all nodes. Thus, it is a twig structural index 
scheme. [50] developed the (F+B)k-index. This scheme is 
an improved release of the F&B-index. The (F+B)k-index 
scheme controls the size of the F&B-index by identifying 
the value of the “K” [8].    
The Disk-based F&B-index was proposed by [51]. This 
index scheme has provided additional properties and 
criteria. The Disk-based F&B-index is an integration of 1-
index and F&B-index in a new clustered Disk-based F&B-
index which is then saved on the disk. [34].    
3.1.3 Sequence indexing scheme: this kind of index 
converts both XML documents and queries into structure 
sequences. Sequence indexes put the values and the 
structures of XML data together into an integrated index 
structure. This new structure is used to evaluate both path 
and twig queries efficiently: answering a query, making a 
string sequence that matches the sequence of the data with 
the query. This technique reduces the need for joins to 
evaluate twig query [27]. Basically, the sequence schemes 
are classified into two types according to the importance of 
tree mapping direction, which are as follows: top-down 
sequence indexing schemes, and bottom-up sequence 
indexing schemes.  
Wang, Park, Fan and Yu (2003) proposed the ViST. This 
scheme is based on B+ tree [52]. The ViST (Virtual Suffix 
Tree) is an example of top-down sequence indexes. The 
ViST scheme is based on the B+ tree. In addition, the ViST 
has the disadvantage of weakening the query operations 
due to the large number of nodes being checked. This is 
due to the ViST being used as a top-down sequence. Thus, 
the size of the index becomes very large when dealing with 
large XML documents since the top elements are added 
into the sequence. This is the main disadvantage of the 
ViST scheme. The PRIX (Prufer sequence for indexing 

86 Int'l Conf. Internet Computing and Big Data |  ICOMP'14  |



 
 

XML) is an example of a bottom-up sequence index. This 
indexing technique does a good job in decreasing the query 
processing time. Since the ViST has a problem of 
scalability as mentioned above, Rao and Moon propose the 
PRIX as another method that uses a bottom-up sequence to 
solve the scalability problem with the ViST [53]. 
 Some studies show that these two indexing schemes have 
a weakness in terms of precision, recall, and processing 
complexity [52, 54]. However, the sequence indexing 
techniques have some advantages such as 1) the ability to 
expect the results of the query; 2) using the complete query 
tree as one component in order to avoid the cost of the joint 
operations.  Figure 3 is an example illustrates how this 
indexing technique works.   
 

 
Figure 3: Sequence-based indexing examples 

 
From Figure 3, the XML tree is changed into a sequence as 
follows: T= (A), (S,A), (N,AS), (F1,ASN), (G,AS),  
(F2,ASG), (S,A), (N,AS), (F3,ASN), (G,AS), (F4,ASG). 
Despite the sequence indexing technique having the 
advantage of speeding the query pre-evaluation and getting 
rid of the increase of structural joins, this technique also 
has two disadvantages, namely, 1) the sequence of XML 
produced by one of these technique algorithms has to be 
reconstructed quite often; 2) this technique uses a hashing 
algorithm to encode the textual values, which makes the 
hash list increase very fast, therefore the indexing becomes 
very slow [53, 55-60].   
 

4  Results 
Using the framework that was defined in the Methods 
section, the articles were classified accordingly. Table 3 
shows this classification and the statistics.  
The indexing techniques have been categorized into three 
classes. Node indexes, graph indexes, and sequence 
indexes. The investigation in this research has found the 
following consequences: 
1- To the best of our investigation, there is no single 
indexing technique that is ideal for all users’ requirements. 
Therefore, choosing a suitable indexing technique depends 
on the user’s requirements.   
2- With respect to the retrieval power and processing 
complexity, the node indexing technique is a good one for 
precision of the results.   
3- Regarding scalability, it is clear that most of the 
indexing techniques suffer from this problem. The problem 
that these techniques always face is the trade-off between 
size and efficiency.   
4- Update cost is also a common limitation and all 
investigated techniques have this disadvantage.  
 

TABLE 3: CLASSIFIED ARTICLES 
             indexing 
Articles     techniques 
classifications 

Node 
index 

Graph 
index 

Sequence 
index 

Sum Other 
articles 

Development and 
Innovation 

5 9 7 21  
 

16 Analysis and 
Review 

3 2 2 7 

Sum of each class 8 11 9 28 

 

4.1 Limitations and open issues of the indexing 

techniques: there are number of limitations and open 
issues that will be discussed in the following: 
4.1.1 Limitations: having investigated and studied most 
indexing techniques, there are three key limitations and 
problems. These limitations are given as follows:  
1- Index size: most of the studied indexing techniques 
have a problem of scalability. Some indexing techniques 
are considered to be main memory indexes. Thus, owing to 
the large size of indexes they cannot reside in the main 
memory. Furthermore, other approaches that use disk-
based indexing techniques also have a problem with the 
scalability of the indexes as the processing time is affected 
by the index capacity and its performance.      
2- The cost of computation problem: there is a high cost 
with respect to construction of indexes and the query 
evaluations procedure. Regarding the relational XML 
indexes, the disadvantage is that there is a need for a 
complex computation process in the query evaluation by 
working out the elements’ relationships. The updating of 
indexes: this problem is a common one among XML 
indexing techniques.  

4.1.2 Open issues and challenges: many researches have 
been carried out on the indexes of XML data. However, 
there are still many challenges and open issues that need to 
be considered. Perhaps the key challenge for XML indexes 
is the irregularity of structure and data. XML data is 
considered as semi-structured data. This means that data 
may be not be complete or may be irregular, and the 
structure may change quickly and randomly.  
 

5  Discussion and analysis 
The XML database systems are a relatively new research 
area and not as mature as the DBMS. However, many 
previous studies considered the classifications and 
evaluations of XML indexing and structures. Each of them 
has a different investigation and results, depending on the 
aims and the methodology of the study. Furthermore, XML 
indexing data is a key factor in enhancing the XML query.  
Although heavy research in XML indexing data has been 
carried out, most of these techniques still face a lack of 
efficiency. This research has found there is no single 
technique that is perfect for all types of queries. However, 
each kind of XML indexing technique has some 
advantages in different aspects. Node indexes are the most 
inefficient with regard to structural joins since they need 
joins for both path and twig queries, whereas graph indexes 
need no structural joins to support path queries. But for the 
evaluation of the twig queries, the structural joins are 
required. Regarding the sequence indexes, they are the 
most efficient as they encode the structure within the 
sequence. To summarize, Table 4 shows a summary 

Label Map 

Students A 
PGR S 
Name N 
Group G 
Omar F1 
XDIR F2 
James F3 
SE F4 

Int'l Conf. Internet Computing and Big Data |  ICOMP'14  | 87



 
 

evaluation for the four techniques using the mentioned 
criteria. 
 

 TABLE 4: COMPARISON BETWEEN THE INDEXING 
TECHNIQUES USING THE CRITERIA 

 
No. 

 
Criteria 

Node 
index 

technique 

Graph index 
technique 

Sequence 
index 

technique 

 

1 

Retrieval 

power  

(precision) 

 
Yes 

Yes/no 
( yes for path & 

no for Twig) 

 
No 

 

2 

Processing 

complexity 

No Yes/no 
(join required ) 

Yes 

3 Scalability Yes Yes Yes 
4 Update cost Yes Yes Yes 

 

6  Conclusion 
To conclude, The XML database systems are not as mature 
as the relational database management systems which have 
been studied heavily for decades. The indexing of XML 
data plays a major role in enhancing the performance of 
queries. In addition, since XML has a great deal of 
advantages in terms of data transformation in the WWW, 
this research has investigated and studied the XML 
indexing data techniques and structures. The issue is that, 
to index XML data, it has to represent and reflect the 
structure, so an efficient path can be made. Moreover, the 
main problem for indexing techniques is the trade-off 
between the size and efficiency of the indexes. Therefore, 
all the indexes become large in order to perform well. The 
analysis of this research has been carried out on the basis of 
factors that influence the performance, such as the retrieval 
power, processing complexity, scalability and update cost. 
The initial findings show that no one of all the indexing 
techniques is ideal for all cases and user’s requirements.  
 

7  References: 
 
[1] S. Abiteboul, P. Buneman, and D. Suciu, Data on the 

Web: from relations to semistructured data and XML: 
Morgan Kaufmann, 2000. 

[2] R. W. P. Luk, H. V. Leong, T. S. Dillon, A. T. S. Chan, 
W. B. Croft, and J. Allan, "A survey in indexing and 
searching XML documents," Journal of the American 

Society for Information Science and Technology, vol. 
53, pp. 415-437, 2002. 

[3] S. H. Simon, XML: McGraw-Hill, 2001. 
[4] S. St. Laurent, XML: a primer: MIS: Press, 1997. 
[5] A. Vakali, B. Catania, and A. Maddalena, "XML data 

stores: emerging practices," IEEE Internet Computing, 

vol. 9, pp. 62-69, 2005. 
[6] N. Bruno, N. Koudas, and D. Srivastava, "Holistic twig 

joins: optimal XML pattern matching," pp. 310-321. 
[7] C. Edith, K. Haim, and M. Tova, "LABELING 

DYNAMIC XML TREES," SIAM Journal on 

Computing, vol. 39, p. 2048, 2010. 
[8] G. Gang, R. Chirkova, and R. Chirkova, "Efficiently 

Querying Large XML Data Repositories: A Survey," 
IEEE Transactions on Knowledge and Data 

Engineering, vol. 19, pp. 1381-1403, 2007. 
[9] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, 

D. Srivastava, and W. Yuqing, "Structural joins: a 
primitive for efficient XML query pattern matching," 
pp. 141-152. 

[10] M. Atay, A. Chebotko, D. Liu, S. Lu, and F. Fotouhi, 
"Efficient schema-based XML-to-Relational data 

mapping," Information Systems, vol. 32, pp. 458-476, 
2007. 

[11] G. Thom, "Data on the Web: From Relations to 
Semistructured Data and XML,"  vol. 125, ed: Media 
Source, 2000, p. 112. 

[12] B. Catania, A. Maddalena, and A. Vakali, "XML 
document indexes: a classification," IEEE Internet 

Computing, vol. 9, pp. 64-71, 2005. 
[13] D. DeHaan, D. Toman, M. Consens, and M. Özsu, "A 

comprehensive XQuery to SQL translation using 
dynamic interval encoding," pp. 623-634. 

[14] M. El-Sayed, K. Dimitrova, and E. Rundensteiner, 
"Efficiently supporting order in XML query 
processing," pp. 147-154. 

[15] M. Maghaydah and M. A. Orgun, "Labeling XML 
nodes in RDBMS," pp. 122-126. 

[16] T. Härder, M. Haustein, C. Mathis, and M. Wagner, 
"Node labeling schemes for dynamic XML documents 
reconsidered," Data & Knowledge Engineering, vol. 
60, pp. 126-149, 2007. 

[17] D. Fisher, F. Lam, W. Shui, and R. Wong, "Efficient 
ordering for XML data," pp. 350-357. 

[18] Q. Li and B. Moon, "Indexing and querying XML data 
for regular path expressions," in VLDB, 2001, pp. 361-
370. 

[19] M. Al-Badawi, S. North, and B. Eaglestone, 
"Classifications, Problems Identification and a New 
Approach," 2007. 

[20] M. Al-Badawi, S. North, and B. Eaglestone, "The 3D 
XML benchmark." vol. 1, ed, 2010, pp. 13-20. 

[21] M. Al-Badawi, H. A. Ramadhan, S. North, and B. 
Eaglestorne, "A performance evaluation of a new 
bitmap-based XML processing approach over 
RDBMS," International Journal of Web Engineering 

and Technology, vol. 7, pp. 143-172, 2012. 
[22] S. Mohammad, P. Martin, and W. Powley, "Relational 

universal index structure for evaluating XML twig 
queries," pp. 116-120. 

[23] J. Lu and T. W. Ling, "Labeling and querying dynamic 
XML trees," in Advanced Web Technologies and 

Applications, ed: Springer, 2004, pp. 180-189. 
[24] M. L. Scott and M. L. SCOTT, Dewey decimal 

classification: Libraries Unlimited, 1998. 
[25] D. K. Fisher, F. Lam, W. M. Shui, and R. K. Wong, 

"Dynamic labeling schemes for ordered XML based on 
type information," in Proceedings of the 17th 

Australasian Database Conference-Volume 49, 2006, 
pp. 59-68. 

[26] I. Tatarinov, S. D. Viglas, K. Beyer, J. 
Shanmugasundaram, E. Shekita, and C. Zhang, 
"Storing and querying ordered XML using a relational 
database system," Proceedings of the ACM SIGMOD 

International Conference on Management of Data, pp. 
204-215, 2002. 

[27] W. Wei, J. Haifeng, L. Hongjun, and Y. Jeffrey Xu, 
"PBiTree coding and efficient processing of 
containment joins," pp. 391-402. 

[28] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen, "From 
region encoding to extended dewey: On efficient 
processing of XML twig pattern matching," in 
Proceedings of the 31st international conference on 

Very large data bases, 2005, pp. 193-204. 
[29] M. Duong and Y. Zhang, "LSDX: a new labelling 

scheme for dynamically updating XML data," in 
Proceedings of the 16th Australasian database 

conference-Volume 39, 2005, pp. 185-193. 
[30] P. O'Neil, E. O'Neil, S. Pal, I. Cseri, G. Schaller, and N. 

Westbury, "ORDPATHs: insert-friendly XML node 
labels," pp. 903-908. 

88 Int'l Conf. Internet Computing and Big Data |  ICOMP'14  |



 
 

[31] P. Dietz, "Maintaining order in a linked list," pp. 122-
127. 

[32] D. D. Kha, M. Yoshikawa, and S. Uemura, "An XML 
indexing structure with relative region coordinate," pp. 
313-320. 

[33] A. Silberstein, H. He, K. Yi, and J. Yang, "BOXes: 
Efficient maintenance of order-based labeling for 
dynamic XML data," in Data Engineering, 2005. ICDE 

2005. Proceedings. 21st International Conference on, 
2005, pp. 285-296. 

[34] S. Mohammad and P. Martin, "XML structural 
indexes," Citeseer2009. 

[35] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. 
Lohman, "On supporting containment queries in 
relational database management systems," Proceedings 

of the ACM SIGMOD International Conference on 

Management of Data, pp. 425-436, 2001. 
[36] X. Wu, M. L. Lee, and W. Hsu, "A prime number 

labeling scheme for dynamic ordered XML trees," in 
Data Engineering, 2004. Proceedings. 20th 

International Conference on, 2004, pp. 66-78. 
[37] Y. Chen, G. Mihaila, R. Bordawekar, and S. 

Padmanabhan, "L-Tree: a dynamic labeling structure 
for ordered XML data," in Current Trends in Database 

Technology-EDBT 2004 Workshops, 2005, pp. 209-
218. 

[38] B. Yang, M. Fontoura, E. Shekita, S. Rajagopalan, and 
K. Beyer, "Virtual cursors for XML joins," pp. 523-
532. 

[39] R. Goldman and J. Widom, "Dataguides: Enabling 
query formulation and optimization in semistructured 
databases," 1997. 

[40] R. Goldman and J. Widom, "Approximate dataguides," 
in Proceedings of the Workshop on Query Processing 

for Semistructured Data and Non-Standard Data 

Formats, 1999, pp. 436-445. 
[41] B. F. Cooper, N. Sample, M. J. Franklin, G. R. 

Hjaltason, and M. Shadmon, "A fast index for 
semistructured data," in VLDB, 2001, pp. 341-350. 

[42] C.-W. Chung, J.-K. Min, and K. Shim, "APEX: An 
adaptive path index for XML data," in Proceedings of 

the 2002 ACM SIGMOD international conference on 

Management of data, 2002, pp. 121-132. 
[43] Q. Chen, A. Lim, and K. W. Ong, "D (k)-index: An 

adaptive structural summary for graph-structured data," 
in Proceedings of the 2003 ACM SIGMOD 

international conference on Management of data, 2003, 
pp. 134-144. 

[44] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth, 
"Covering indexes for branching path queries," pp. 133-
144. 

[45] "XRel: a path-based approach to storage and retrieval 
of XML documents using relational databases," ACM 

Transactions on Internet Technology (TOIT), vol. 1, pp. 
110-141, 2001. 

[46] M. Yoshikawa, T. Amagasa, T. Shimura, and S. 
Uemura, "XRel: a path-based approach to storage and 

retrieval of XML documents using relational 
databases," ACM Transactions on Internet Technology, 

vol. 1, pp. 110-141, 2001. 
[47] N. Polyzotis and M. Garofalakis, "Structure and value 

synopses for XML data graphs," in Proceedings of the 

28th international conference on Very Large Data 

Bases, 2002, pp. 466-477. 
[48] T. Milo and D. Suciu, "Index structures for path 

expressions," in Database Theory—ICDT’99, ed: 
Springer, 1999, pp. 277-295. 

[49] H. Su-Cheng and L. Chien-Sing, "Evolution of 
Structural Path Indexing Techniques in XML 
Databases: A Survey and Open Discussion," pp. 2054-
2059. 

[50] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes, 
"Exploiting local similarity for indexing paths in graph-
structured data," in Data Engineering, 2002. 

Proceedings. 18th International Conference on, 2002, 
pp. 129-140. 

[51] W. Wang, H. Jiang, H. Wang, X. Lin, H. Lu, and J. Li, 
"Efficient processing of XML path queries using the 
disk-based F&B index," in Proceedings of the 31st 

international conference on Very large data bases, 
2005, pp. 145-156. 

[52] H. Wang, S. Park, W. Fan, and P. Yu, "ViST: a 
dynamic index method for querying XML data by tree 
structures," pp. 110-121. 

[53] P. Rao and B. Moon, "PRIX: Indexing and querying 
XML using prufer sequences," in Data Engineering, 

2004. Proceedings. 20th International Conference on, 
2004, pp. 288-299. 

[54] H. Wang and X. Meng, "On the sequencing of tree 
structures for XML indexing," in Data Engineering, 

2005. ICDE 2005. Proceedings. 21st International 

Conference on, 2005, pp. 372-383. 
[55] S. Mohammad, "INDEX STRUCTURES FOR XML 

DATABASES," Dissertation/Thesis, 2011. 
[56] P. Rao and B. Moon, "Sequencing XML data and query 

twigs for fast pattern matching," ACM Transactions on 

Database Systems (TODS), vol. 31, pp. 299-345, 2006. 
[57] J.-M. Bremer and M. Gertz, "Integrating document and 

data retrieval based on XML," The VLDB Journal, vol. 
15, pp. 53-83, 2006. 

[58] X. Meng, Y. Jiang, Y. Chen, and H. Wang, "XSeq: an 
indexing infrastructure for tree pattern queries," in 
Proceedings of the 2004 ACM SIGMOD international 

conference on Management of data, 2004, pp. 941-942. 
[59] K. H. Prasad and P. S. Kumar, "Efficient indexing and 

querying of XML data using modified Prüfer 
sequences," in Proceedings of the 14th ACM 

international conference on Information and knowledge 

management, 2005, pp. 397-404. 
[60] B. Stein, "Principles of hash-based text retrieval," in 

Proceedings of the 30th annual international ACM 

SIGIR conference on Research and development in 

information retrieval, 2007, pp. 527-534. 

 
 

Int'l Conf. Internet Computing and Big Data |  ICOMP'14  | 89


