Provided by DCU Online Research Access Service

Metadata, citation and similar papers at core.ac.uk

Desirable Properties for XML Update Mechanisms

Martin F. O’'Connor

Mark Roantree

Interoperable Systems Group, School of Computing,
Dublin City University, Glasnevin, Dublin 9, Ireland
{moconnor,mark}@computing.dcu.ie

ABSTRACT

The adoption of XML as the default data interchange for-
mat and the standardisation of the XPath and XQuery lan-
guages has resulted in significant research in the develop-
ment and implementation of XML databases capable of pro-
cessing queries efficiently. The ever-increasing deployment
of XML in industry and the real-world requirement to sup-
port efficient updates to XML documents has more recently
prompted research in dynamic XML labelling schemes. In
this paper, we provide an overview of the recent research
in dynamic XML labelling schemes. Our motivation is to
define a set of properties that represent a more holistic dy-
namic labelling scheme and present our findings through an
evaluation matrix for most of the existing schemes that pro-
vide update functionality.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing—XML

General Terms
Algorithms, Theory, Languages.

Keywords
Semi-structured data, labelling scheme, XML update.

1. INTRODUCTION

XML [24] has been adopted as the defacto standard for data
exchange on the World Wide Web and increasingly so in in-
dustry as the interchange format for enterprise applications
and web services. The key ingredient to the successful adop-
tion of XML is its expressive and extensible nature. XML is
a versatile markup language capable of labelling the informa-
tion content of diverse data sources including structured and
semi-structured documents. Semi-structured data is such
that the structure is not necessarily known in advance, it is
often self-describing (as is the case with XML) and consists
of irregular and non-uniform organisation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Updates in XML (EDBT Workshop Proceedings), March 22, 2010, Lau-
sanne, Switzerland.

Many labelling schemes have been proposed for XML data
with an overview provided in [20]. Labelling schemes can
be broadly categorised under three headings: containment
schemes, prefix schemes and prime number schemes. Most
of the research to date has focused on the construction of
labelling schemes capable of efficient query processing and
query optimisation over static XML data. However, as the
volume of XML data increases and the adoption of XML
repositories in mainstream industry becomes more widespre-
ad, there is a requirement for a labelling scheme that can
support efficient updates.

In this paper, we focus on dynamic labelling schemes sup-
porting XML updates. There are many types of XML up-
date operations possible based on the underlying update op-
erations on a tree structure: leaf node, internal node and
subtrees updates. Furthermore, the elements in an XML
document are intrinsically ordered and this order must be
maintained in the presence of updates in order to comply
with the semantic requirements of W3C XPath and XQuery
languages.

Each of the dynamic labelling schemes proposed to date have
differing characteristics offering distinct advantages and lim-
itations with respect to one another, and in terms of queries
supported, their update costs and encoding size. Most of the
evaluations provided by researchers has focused on compar-
ative performance analysis. To the best of our knowledge, no
comprehensive analysis of existing dynamic labelling schemes
has been performed with a view to identifying the key char-
acteristics of a robust dynamic labelling scheme, the number
and specification of the core properties they should encode
and the essential requirements they should satisfy. The out-
put from such an analysis will be a template of properties
that would form a key component in the evaluation of any
new dynamic labelling scheme in conjunction with a com-
parative performance evaluation.

1.1 Contribution

In this paper, we provide a survey and review of the princi-
ple dynamic node labelling schemes proposed to date. From
our analysis we define a template of properties that are rep-
resentative of the characteristics of a good dynamic labelling
scheme. We will use this template to assess and critique each
of the labelling schemes in our review, detailing precisely the
characteristics supported and to what degree. This exhaus-
tive analysis will play a valuable role in providing input and
metrics into the development of a new encoding scheme for

https://core.ac.uk/display/11309531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

facilitating XML updates.

This paper is structured as follows: in §2, we discuss the
terminology involved in indexing and update mechanisms
for XML databases; in §3, our main body of work is in the
examination of present dynamic labelling schemes with a
view to identifying desirable properties; in §4, we describe
the main issue or point of failure for many of these schemes;
in §5, we re-examine existing work in light of our template of
desirable properties; and finally in §6, we offer conclusions.

2. BACKGROUND TERMINOLOGY

In the context of XML, the terms labelling scheme and en-
coding scheme are often used interchangeably. To begin, it
is important to clarify what these terms mean and the rela-
tionship between them. An overview of the core terminology
will help to set the scope and define the context of our work.

2.1 XML Tree Basics

Both labelling schemes and encoding schemes are defined
over a tree representation of XML data and not the textual
XML document. This is a direct consequence of the XPath
data model defining its operations in terms of a tree rep-
resentation of an XML document. Thus, we commence by
outlining the relationship between an XML document and a
tree and explain why XPath was defined to operate on the
tree representation of XML.

The basic structure underlying an XML document is an
ordered rooted tree. The leaves in the tree correspond to
the data values (text) and the internal nodes correspond to
XML elements. The tree is an abstract datatype. There is
no defined API and no defined data representation, only a
conceptual model that defines the objects (nodes) in a tree,
their properties and their relationships [10]. The decision
to define XPath operations in terms of a tree representation
of an XML document and not the textual XML document
was motivated by the fact that an XML document may be
constructed from many data sources, such as a view over
relational data or an XML fragment constructed by an ap-
plication in memory. In such cases, it is not required or even
desirable to put an XML document through an XML parser
each time it is to be processed. In fact, it would put an un-
necessary overhead on the query processing costs to convert
these into textual documents and parse them before XPath
evaluation could proceed. Furthermore, trees do not have
values in the XPath data model precisely because they are
an abstract datatype. Thus, in order to pass a tree as an
argument to an XPath function, one passes the root node of
the tree.

2.2 Labelling Schemes

An XPath processor must be capable of distinguishing be-
tween nodes to evaluate an expression and this motivates us-
age of a labelling scheme. The purpose of a labelling scheme
is to provide unique labels for each node in the XML tree.
Figure 1(a) presents a sample XML document in textual for-
mat and figure 1(b) illustrates the XML tree representation
of the sample document labelled using a preorder/postorder?
labelling scheme.

!Preorder and postorder tree traversals are introduced in
§3.1.1

<book>
<title genre=“Fantasy”> Wayfarer </title>
<author> Matthew Dickens </author>
<publisher>
<editor>
<name> Destiny Image </name>
<address> USA </address>
</editor>
<edition year="2004"> 1.0 </edition>
</publisher>

</book>
(a) A sample XML file in textual format
0,9
1,1 4,8
32 55
8,7
2,0
6,3 7,4 9,6

(b) A Preorder/Postorder labelled tree
representation of the sample XML file

Figure 1: Two representations of a Sample XML file

Definition 1. A labelling scheme for XML assigns unique
identifiers (labels) to each node in the XML tree and these
labels facilitate node ordering.

Labels may be numeric, alphabetic or alphanumeric. The
node labels must be unique because XPath requires all its
operators to eliminate duplicate nodes from their result se-
quences based on node identity. Furthermore, as the result-
ing node sequence must be returned in document order, an
XML labelling scheme should also facilitate the identifica-
tion of node order.

Although a labelling scheme’s primary function is to pro-
vide ids, often they are constructed to also capture some
of the structural semantics of the XML tree itself. For ex-
ample, prefix-based labelling schemes? incorporate the la-
bels of the parent and ancestors in the label of the node
itself and thus permit parent-child and ancestor-descendant
evaluations. Preorder/postorder labelling schemes permit
ancestor-descendant evaluations but not parent-child evalu-
ations. We shall examine the properties of the various la-
belling schemes in the next section but it is sufficient to say
at this point that labelling schemes incorporate some of the
structural semantics of an XML tree. The precise details
of the structural semantics captured are determined by the
properties of the labelling scheme employed.

2.3 Encoding Schemes

However, no labelling scheme captures the node type, the
element or attribute names nor the content of the XML
data and thus, lack the sufficient information required to
permit full XPath query evaluations. These requirements

2Prefix-based labelling schemes are introduced in §3.1.2

Pre | Post | Node Parent | Name Value
Type (Pre)
0 9 Element book
1 1 Element |0 title Wayfarer
2 0 Attribute | 1 genre Fantasy
3 2 Element author Matthew
Dickens
4 8 Element |0 publisher
Element |4 editor
Element |5 name Destiny
Image
4 Element address | USA
Element edition 1.0
Attribute | 8 year 2004

Figure 2: An XML encoding of the sample XML
File

motivate the need for an XML encoding scheme. An XML
encoding scheme is constructed upon a labelling scheme and
augments it with the information necessary to perform full
XPath query evaluations. A sample encoding scheme is il-
lustrated in figure 2. The XML encoding scheme should also
permit the full reconstruction of the textual XML document
that corresponds to the XML tree representation.

Just as there are many labelling schemes for XML, there
may be several different encoding schemes proposed for each
labelling scheme. The exact contents of an XML encoding
scheme is often determined by the type and purpose of the
underlying data. If the XML data is rarely updated, an
encoding scheme may bear the cost of storing extra infor-
mation in order to facilitate faster query performance, at
the expense of slower update performance. A more formal
definition of an XML encoding scheme now follows:

Definition 2. An XML encoding scheme codifies the struc-
ture of the node sequence in the XML tree and the properties
and content of each node.

2.4 Summary

Many of the labelling schemes proposed to date assume that
underlying XML data is static. If updates to XML doc-
uments are supported, efficiently updating node labels and
maintaining document order in the presence of such updates,
offers significant challenges. In this paper, we focus specifi-
cally on dynamic labelling schemes for XML. The principle
challenges in the development of an efficient and dynamic
encoding scheme for XML lie primarily in the specification
of an efficient and dynamic labelling scheme upon which the
encoding scheme is constructed. The properties of the la-
belling scheme and the number of structural relationships it
encapsulates necessarily determine the quantity and proper-
ties of the supplementary information required by the XML
encoding scheme.

3. RESEARCH INTO XML UPDATES

As dynamic labelling schemes are most suited to XML up-
dates, in this section, we provide a detailed analysis of differ-
ing forms of dynamic schemes. We begin with an overview
of the characteristics of dynamic labelling schemes, before
providing our analysis of two of the major dynamic types:
containment schemes and prefix schemes.

3.1 Dynamic Labelling Schemes

XML update operations can be broadly classified as either
structural updates or content updates. Content updates refer
to changes in the underlying data values such as element con-
tent, comments and processing instructions and the names
of elements and attributes. Structural updates refer to the
insertion or deletion of nodes in the XML tree. We omit
from this survey, the dynamic labelling schemes [21, 4, 26]
that do not support the maintenance of document order un-
der updates.

Document order is defined for all nodes in the XML tree
and corresponds to the order in which the first character
of each element occurs in the XML document. There are
three generic approaches to capturing document order in a
labelling scheme [22]: Global order, Local order and Hy-
brid order (a hybrid of the local and global order). With
global order, a node is assigned an identifier that represents
the element’s absolute position in the document. With lo-
cal order, an identifier representing the position of the node
relative to its siblings is assigned. A global order approach
tends to be efficient for query processing but unsuitable for
a dynamic labelling scheme because insertions modify the
positional values of all nodes after the inserted node. A
local order approach is more update friendly in that only
the following siblings (and their descendants) of an inserted
node must be modified. However, local order presents diffi-
culties in the evaluation of the following and preceding axis
as no global order information is available. The hybrid ap-
proach attempts to strike a balance between the strengths
and weaknesses of global and local order. Most of the dy-
namic label schemes proposed to date follow the hybrid ap-
proach.

Many dynamic labelling schemes for XML have been pro-
posed and these can be broadly categorised under two head-
ings: containment schemes and prefix schemes. Our detailed
analysis of these schemas can now commence.

3.1.1 Containment Schemes

Containment based labelling schemes (otherwise known as
Interval based labelling schemes or Region encoded labelling
schemes) exploit the properties of tree traversal to maintain
document order and to determine various structural rela-
tionships between nodes. Thus, we begin by introducing
tree traversal and then provide an overview of the contain-
ment based labelling schemes proposed to date.

Tree traversal is the process of visiting each node in a tree
data structure. Tree traversal provides for sequential pro-
cessing of each node in what is, by nature, a non-sequential
data structure (e.g., semi-structured data). Such traversals
are characterised by the order in which the nodes are visited.
In preorder traversal, each node u is visited and assigned its

1.1 1.2 13

111 1.1.2 121 131 132 133

Figure 3: DeweyID Labelled XML tree.

preorder traversal rank pre(u) before its children are recur-
sively traversed from left to right. It is worth observing at
this point that the act of parsing an XML document in doc-
ument order, that is, processing each line from left to right
and from top to bottom, corresponds to a preorder traver-
sal of the XML document tree. Thus, preorder traversal
maintains the document node order of an XML document.
In postorder traversal, a node u is assigned its postorder
traversal rank post(u) after all its children have been tra-
versed from left to right.

The concept of containment based or interval based labelling
schemes for tree structured data was first proposed in [6].
The author made use of tree traversals to determine the
ancestor-descendant relationships between any given pair of
nodes. He proposed that node u is an ancestor of node v in
a tree 7 iff u occurs before v in the preorder traversal of 7
and after v in the postorder traversal. To be specific, in [9],
the author shows that the evaluation of a location step on a
major XPath axis (ancestor, descendant, following, preced-
ing) amounts to a rectangular region query in the pre/post
labelled plane. Most containment based schemes adopt a
global ordering approach to document order.

Several variations of the containment based labelling scheme
have been proposed [9, 31, 1, 30] that record the begin posi-
tion and end position of each element in the XML document
and optionally their level. The begin and end positions may
be generated by performing a depth-first traversal of the
tree and sequentially assigning a number at each visit. Each
non-leaf node will be traversed twice, once before visiting
all its descendants and once after. Leaf nodes will always
contain content values and not structural information and
are thus, considered by the XML encoding scheme and not
the labelling scheme. The level of an element is its nesting
depth in the document. For any pair of nodes, v and v, u
is an ancestor of v iff u.begin < v.begin and v.end < wu.end.
Essentially, this states that the interval of u contains the in-
terval v. By incorporating the level information in the label
identifiers, this labelling scheme permits the evaluation of
the parent-child axis. Node u is a parent of node v iff u is
an ancestor of v and u.level = v.level - 1. Node u is a sibling
of node v if they share the same parent and are at the same
level.

In [23], a hybrid ordering approach is adopted whereby sec-
tors are used instead of intervals and mathematical for-
mulae are presented to determine ancestor-descendant and
document-order relationships between label pairs. The lim-
itation with all of the above labelling schemes is that a sig-
nificant number of labels may need to be recomputed when
a node is inserted. Several extensions were proposed [17,
9, 11] which permit gaps in the labelling schemes to facil-
itate future insertions gracefully. However, these solutions

o

O
1.1-1 111 113 131 133 151 1521 153

Figure 4: ORDPATH Labelled XML tree.

serve to increase the label size through the sparse allocation
of labels and only postpone the relabelling process until the
interval gaps have been consumed by the update process. In
[2], they propose the use of real (floating point) numbers for
label identifiers instead of integers to facilitate an arbitrary
number of insertions between two labels. However, comput-
ers represent floating point numbers with a fixed number of
bits and thus in practice the solution is similar to an integer
representation of labels with sparse allocation and conse-
quently suffers from the same limitations. In other words,
none of these solutions are scalable.

3.1.2 Prefix Schemes

In a prefix labelling scheme, the label of a node in the XML
tree consists of the parent’s label concatenated with a de-
limiter and a positional identifier of the node itself. The po-
sitional identifier indicates the position of the node relative
to its siblings and incorporates the Local Order approach
for document order. For a pair of nodes v and v, u is an
ancestor of v iff label(u) is a prefix of label(v). The node’s
position combined with its ancestors’ labels provides a path
vector that uniquely identifies the absolute position of the
node in the document - capturing Global order. Thus, a
prefix labelling scheme follows the Hybrid order approach
to document order.

DeweylD [22] is a prefix labelling scheme adapted from the
Dewey Decimal Classification system [5] for the organisation
of library collections. Figure 3 illustrates a DeweyID labelled
XML tree. DeweylD is a naive prefix scheme whereby the
positional identifier of the n*® child of a node is assigned the
integer n and this is concatenated to the parent’s label and
a delimiter. The insertion of new nodes requires the rela-
belling of any follow-sibling nodes (and their descendants)
which can have significant costs.

The OrdPath labelling scheme [18] is conceptually similar
to the DeweylD and permits the insertion of new nodes in
arbitrary positions in the XML tree without the need to re-
label existing nodes. The XML tree is initially traversed in
document order and nodes are labelled with positive, odd
integers only (beginning with 1). Even-numbered and nega-
tive integer component values are reserved for later node in-
sertion into an existing tree. The ORDPATH labels are not
stored as dotted-decimal strings but rather in compressed
binary representation to enable efficient XPath evaluations.
Figure 4 illustrates an ORDPATH labelled XML tree; the
grey nodes indicating newly inserted nodes. A new node
inserted to the right of all existing child nodes is labelled
by adding two to the positional identifier of the right-most
child node (e.g.: node 1.3.3 in figure 4). In a similar fashion
a new node inserted to the left of all existing child nodes
is labelled by adding -2 to the positional identifier of the

O
2ab.ab 2ab.b 2ab.c 2ac.b 2ac.c 2ad.b 2ad.bb 2ad.c

Figure 5: LSDX Labelled XML tree.

left-most child node (e.g.: node 1.1.-1 in figure 4). Lastly, a
new node is inserted between two consecutive nodes using a
careting-in technique whereby the positional identifier of the
new node is assigned the even-number that sits between the
two odd positional identifiers of its neighbour siblings, and
then concatenating a new component consisting of an odd
number (e.g.: node 1.5.2.1 in figure 4). Subtree insertions
may be serialised as a sequence of nodes and inserted indi-
vidually. The level or depth of each node in the tree may be
determined by counting the number of odd component val-
ues in the label. ORDPATH labels permit the evaluation of
ancestor-descendant, parent-child and sibling-order relation-
ships. The limitations of the ORDPATH labelling scheme
are a result of the variable length labelling scheme employed
in conjunction with the waste of half of the total numbers
by virtue of labels ending in odd numbers. This can result
in increases storage costs in the case of frequent updates as
well as expensive comparative label evaluations between sib-
ling nodes of varying length. Furthermore, the ORDPATH
labelling scheme cannot completely avoid the relabelling of
existing nodes due to the overflow problem (more details are
provided in the next section).

A labelling scheme quite similar to ORDPATH is presented
in [3] called the DLN (Dynamic Level Numbering) scheme
which adopts a fixed bit-length for component values and
supports arbitrary insertions through the addition of suffix
values between any two consecutive positional identifiers.
However, under frequent updates, the fixed label size may
overflow and thus, this scheme will succumb to the same
limitations as the DeweyID scheme using sparse allocation
of labels.

In [4], two prefix-based labelling schemes are proposed which
assign bit codes as the positional identifiers in node labels.
The first approach has a label growth rate of one-bit such
that the positional identifier of the first child of node w is 0O,
of the second child is 10, of the third child is 110 and of the
n'" child is (n-1) ones with a 0 concatenated at the end. The
second approach has a double-bit label growth rate. As a re-
sult, both approaches tend to have significant label sizes and
consequently large storage costs and expensive comparative
evaluation costs for even modest document sizes.

In [7], the LSDX labelling scheme is proposed which employs
both integers and letters in the construction of a node’s la-
bel. The root node of the tree is label 0a, where the integer
component 0 represents the level or depth of the node and
the alphabetic component a represents the positional iden-
tifier. Figure 5 illustrates an LSDX labelled XML tree; the
grey nodes indicating newly inserted nodes in an existing
tree. During the initial XML tree construction, the first

0101.001 0101.01 0101.011 011.01 011.0101 011.011

Figure 6: ImprovedBinary Labelled XML tree.

child of every node uses the letter b instead of a to permit
future insertions before the first child. If the previously as-
signed positional identifier is z, then the next identifier will
be zb. A new node inserted to the left of all existing child
nodes is labelled by taking the existing leftmost child la-
bel and prefixing an a to its positional identifier (e.g.: node
2ab.ab in figure 5). A new node inserted to the right of all
existing child nodes is labelled by taking the existing right-
most child label and lexicographically incrementing the last
letter of its positional identifier (e.g.: node 2ac.c in figure 5).
A new node is inserted between two existing nodes by lex-
icographically incrementing the positional identifier of the
new node such that it is greater than its left neighbour and
less than its right neighbour (e.g.: node 2ad.bb in figure 5).
Essentially, the labelling scheme supports updates such that
the labels of sibling nodes will always have their alphabetic
components lexicographically ordered. LSDX permits the
evaluation of ancestor-descendant, parent-child and sibling-
based relationships. Furthermore, labels are not persistent
and may be reassigned upon deletion.

The authors of LSDX acknowledge that the label size grows
very quickly for nodes with hundreds of siblings and they
propose an improved version of their labelling scheme in [§]
called Compressed Dynamic Labelling Scheme or Com-D for
short. The basic concept is to compress reoccurring letters
within a label by prefixing the repetitive letter(s) with an
integer indicating the number of repetitions. For example,
the positional identifier aaaaabcbcbedddde would be rewrit-
ten as 5a3(bc)4de. In [12] a labelling scheme very similar to
LSDX is proposed and differs only in the method to deter-
mine the positional identifier of a node. However, LSDX and
the two labelling schemes derived from it do not always pro-
duce unique node labels for several corner-case update sce-
narios and therefore they are unsuitable for use as dynamic
labelling schemes for XML. Examples and illustrations of the
labelling collisions that may occur using the LSDX labelling
scheme are outlined in [19].

In [13], the authors propose a prefix-based labelling scheme
call ImprovedBinary that uses bit strings in conjunction with
a recursive algorithm to assign unique and persistent labels
to each node in the XML tree. Figure 6 illustrates an Im-
provedBinary labelled XML tree; the grey nodes indicating
newly inserted nodes in an existing tree. When the XML
tree is initially constructed, the root node is assigned the
empty string. Initially the leftmost child of the root node
is assigned the positional identifier 01 and the rightmost
child of the root node is assigned the positional identifier
011. From this point onwards, the Labelling algorithm is a
recursive function that takes three inputs; an array of nodes
(corresponding to all sibling children of a given node), the
label of the leftmost sibling node and the label of the right-

most sibling node. An AssignMiddleSelfLabel function is
invoked to compute a binary string (positional identifier) for
the middle node residing between the leftmost and right-
most sibling nodes (e.g.: node 0101 in figure 6). The middle
node is determined using the simple calculation ((1 + n) /
2)) where n is the number of sibling nodes passed to the
Labelling algorithm. The AssignMiddleSelfLabel function
takes into account both values of the leftmost and right-
most nodes as well as their lengths to compute a binary
string identifier that is minimal in length while ordered lex-
icographically between the leftmost and rightmost node la-
bels. This is always possible due to a useful property of the
algorithm that ensures the computed binary string always
ends with 7. Finally the labelling algorithm uses the new
left and right node labels to recursively call itself until each
node in the XML tree has a label.

There are three types of node insertions possible. To insert
a new node before the first sibling node, the positional iden-
tifier of the inserted node is assigned the identifier of the
first sibling node with the last I changed to 01 (e.g.: node
0101.001 in figure 6). To insert a new node after the last
sibling node, the positional identifier of the inserted node is
assigned the identifier of the last sibling node with an extra
1 concatenated (e.g.: node 0101.011 in figure 6). To insert a
node between any two nodes, the AssignMiddleSelfLabel
function is used to compute the new positional identifier of
the node (e.g.: node 011.0101 in figure 6).

The ImprovedBinary labelling scheme ensures that the po-
sitional identifiers and node prefixes are lexicographically
ordered and consequently node labels are lexicographically
ordered when performing component by component com-
parisons. This labelling scheme permits the evaluation of
ancestor-descendant, parent-child and sibling-based relation-
ships. However, the label sizes can grow quite rapidly. In
particular, repeated insertions before the first sibling node
and after the last sibling node has a bit-growth rate of 1 for
each insertion. Also, the ImprovedBinary labelling scheme
cannot completely avoid the relabelling of existing nodes due
to the overflow problem.

4. THE OVERFLOW PROBLEM

All of the labelling schemes surveyed thus far cannot avoid
the overflow problem. In this section we outline the over-
flow problem and then provide an overview of the dynamic
labelling schemes that overcome this problem. All of the la-
belling schemes outlined in this section are orthogonal to the
different classifications of labelling schemes; in other words,
they may be applied to and used in conjunction with exist-
ing containment schemes, prefix schemes and prime number
based schemes.

The overflow problem concerns both fixed length labelling
schemes and variable length labelling schemes. It should be
clear that all fixed length labelling schemes are subject to
overflow once all the assigned bits have been consumed by
the update process and consequently require the relabelling
of all existing labels. It is not obvious that most variable
length labelling schemes designed to date are also subject to
the overflow problem. Variable length codes require the size
of the code to be stored in addition to the code itself. Thus,
if many nodes are inserted into the XML tree, at some point

the original fixed length of bits assigned to store the size of
the code will be too small and overflow, requiring all existing
nodes to be relabelled. This problem has been named the
overflow problem in [14].

The authors of the ImprovedBinary labelling scheme pro-
posed a novel dynamic quaternary scheme called QED [14]
that can completely avoid the relabelling of nodes in the
presence of updates. The QED labelling scheme is concep-
tually similar to the approach taken by the ImprovedBinary
scheme. However, instead of using a binary string, a qua-
ternary code is employed consisting of four numbers 0, 1,
2, 8 and each number is stored with two bits, i.e.: 00, 01,
10, 11. Moreover, the number 0 is reserved for use as a
separator and only 1, 2, and & are used in the QED code it-
self. The Labelling algorithm is also a recursive function and
operates in a similar manner to its counterpart in the Im-
provedBinary scheme. The distinction arises from the fact
that the ImprovedBinary scheme is based on the (3)"* node
position whereas the QED scheme is based on (1) and
(2)" node positions. The AssignMiddleSelfLabel function
is replaced with the GetOneThirdAndTwoThirdCode function.
Thus, rather than computing a QED code for the middle
node, two QED codes (positional identifiers) are computed,
one each for the (%)th and (%)th nodes that reside between
the leftmost and rightmost sibling nodes. The GetOneThir-
dAndTwoThirdCode function takes into account the values
of the leftmost and rightmost sibling nodes as well as their
lengths to compute two QED codes that always have the
following lexicographic order properties: Left node < (%)th
node < (%)th node < Right node. The Labelling algorithm
recursively calls itself until all nodes in the XML tree have
been labelled. The key mechanism employed to overcome
the overflow problem is the use of the separator 0 (2 bits)
to separate the different codes instead of explicitly storing
the size of each variable code. The QED codes may vary in
size but the size of the separator 0 remains constant. Each
number in the QED code will always be represented by two
bits and due to the properties of the labelling scheme, the
numbers will never have the 2-bit value 00, which has been
reserved as the separator.

The QED codes are lexicographically and not numerical or-
dered. Furthermore, the properties of the QED labelling
scheme ensure that an infinite number of QED codes may
be inserted between any two consecutive labels without the
need to relabel existing nodes and document order will be
maintained. The QED labelling scheme is orthogonal to the
different classifications of labelling schemes. However, when
applied to prefix based labelling schemes, in the case that
nodes are repeatedly inserted at a fixed position, the size
of the QED-Prefix label increases rapidly. The authors of
QED attempted to address this problem in [15] and proposed
a novel Compact Dynamic Binary String (CDBS) labelling
scheme which is a highly compact adaptation of the Im-
provedBinary labelling scheme with more efficient update
costs. However, these improvements were made possible
through the use of fixed length bit encoding of the labels
and thus, are subject to the overflow problem mentioned
earlier. A more compact version of QED is presented in [16]
called the Compact Dynamic Quaternary String (CDQS)
labelling scheme, which can completely avoid relabelling ex-
isting nodes in the presence of node insertions.

& . & ©° < 48
<\&o Qg,Q N N <© & S (Jo‘(\ Q\%%
& P R R R S Rt
&S & F & LS
Labelling Schemes P <& X W@ o e
XPath Accelerator [9] Global |Fixed N P F N N F F F
XRel [30] Global [Fixed N [P [F N N F O [F|F
Sector [23] Hybrid [Fixed N P N N N P F N
QRS [2] Global |Fixed N P N N N P F F
DeweylD [22] Hybrid [Variable |N F F N N N F F
Ordpath [18] Hybrid ([Variable |F F F N N N N F
DLN [3] Hybrid |Fixed N [F |[F [N [N N [F [F
LSDX [7] Hybrid [Variable |N F F N N N F F
ImprovedBinary [13] Hybrid [Variable [F F F N N N N N
QED [14] Hybrid [Variable |F F F F F N N N
CDQS [16] Hybrid ([Variable |F F F F F F N N
Vector [27] Hybrid [Variable |F P N F F F F N

Figure 7: Evaluation Framework

A novel compact dynamic labelling scheme for XML is pro-
posed in [27] based on vector encoding. The Labelling algo-
rithm follows a similar approach as the QED algorithm, in
that initially the leftmost and rightmost nodes are assigned
fixed values - vectors (1,0) and (0,1) respectively. There-
after, a recursive function is called that assigns to the mid-
dle node a vector that equals the sums of two vectors that
corresponds to the start and end positions in each itera-
tion. Document order is maintained among nodes based on
the numerical order of the gradients of the vector labels.
Although the gradient of a vector is defined in terms of divi-
sion, this labelling scheme exploits the property permitting
the comparison of the gradient of two vectors via multipli-
cation; that is G(A) > G(B) iff y1x2 > x1y2.

The vector labelling scheme has many of the advantages of
the QED labelling scheme. It is orthogonal to the different
classifications of labelling schemes. The authors provide em-
pirical evidence to show that the update processing costs are
less expensive than QED and in particular, under skewed in-
sertions (frequent insertions at a fixed position), the vector
label growth rate is much slower than QED under similar
conditions. The authors state the vector labelling scheme
completely avoids the relabelling of existing nodes in the
presence of updates by using UTF-8 encoding to process de-
limiters. UTF-8 [29] is a variable-length character encoding
for unicode. UTF-8 uses a variable number of bytes (one
to four bytes) to encode different integer values. However,
given that the largest integer that may be encoded with a
single UTF-8 4byte instance is 22!, it is unclear how the
vector labelling scheme uses UTF-8 to process delimiters for
larger integer values and thus avoid the overflow problem.

S. EVALUATION FRAMEWORK

In §3, we provided an outline of the principle dynamic la-
belling schemes for XML currently available and indicated
their key advantages and limitations. From our analysis,
we have attempted to extract the core properties that are
representative of the characteristics of a good dynamic la-
belling scheme for XML. These properties should consti-
tute the principle components of an evaluation template or

framework of metrics by which all new and existing labelling
schemes could be evaluated. To the best of our knowledge,
an evaluation template of properties for dynamic schemes in
XML has not been presented in current research.

5.1 Framework Properties

In this section, these properties are introduced and described
briefly. Our evaluation framework is then presented in fig-
ure 7. The properties are described as Full (F) compliance;
Partial (P) compliance and No (N) compliance. In addition,
our evaluation framework will describe the document order-
ing method and the encoding representation employed by
each labelling scheme.

Document Order. This property indicates the ap-
proach adopted by the labelling scheme to maintain
document order. The advantages and limitations of
each approach were outlined in §3.1

Encoding Representation. This property indicates
if the labelling scheme requires a fixed-length storage
representation or a variable-length storage representa-
tion.

Persistent Labels. The labelling scheme assigns node
labels that are not just unique but persistent. Persis-
tent labels ensure that all deletion and insertion oper-
ations on the XML tree do not effect existing nodes.

XPath Evaluations. The value of a node label per-
mits the evaluation of ancestor-descendant, parent-
child and sibling-based relationships. Enabling the
evaluation of the above relationships from the node
label alone contributes significantly to the reduction
of XPath processing costs.

Level Encoding. The level or nesting depth of a
node in the XML tree can be determined from the label
value of a node. By encoding the level information in
the label of a node, it eliminates the need for an extra
join operation within an XML encoding scheme when
processing several XPath axes.

e Overflow Problem. The labelling scheme is not sub-
ject to the overflow problem presented in §4 and con-
sequently completely avoids relabelling under various
update scenarios.

e Orthogonal Labelling Scheme. The labelling sche-
me may be applied to and used in conjunction with ex-
isting containment schemes, prefix schemes and prime
number based schemes.

e Compact Encoding. The labelling scheme support
a compact storage representation and maintains a rea-
sonably constrained growth rate under various update
scenarios such as: frequent random updates, frequent
uniform updates and skewed frequent updates (fre-
quent updates at a fixed position).

e Division Computation. The labelling scheme is not
required to perform division computations when ini-
tially assigning labels to the XML tree or during an
update operation. Division computation may lead to
floating-point errors when processing very large num-
bers.

e Recursive Labelling Algorithm. The labelling sch-
eme does not employ a recursive algorithm to compute
and assign labels during the initial construction of the
XML tree. The use of a recursive algorithm is more
computationally expensive because it requires multiple
passes of the XML tree.

5.2 Analysis of Results

An analysis of the evaluation framework presented in fig-
ure 7 provides interesting results. No two labelling schemes
share the same properties. This is a positive finding as there
is no one size fits all solution to the XML update problem.
There is a natural tension between the requirements of query
optimisation and those of update efficiency. The evaluation
framework can provide assistance in the selection of a dy-
namic labelling scheme for an XML repository by enabling
the database designer or data modeller to select the labelling
scheme that is most suitable for their requirements. For
example, a repository that may want to record document
history and enable version control would select a labelling
scheme supporting persistent labels. Alternatively, an XML
repository that is expected to consume very large documents
on a regular basis may consider a labelling scheme that is
not subject to the overflow problem. From the evaluation
template, it can be seen the CDQS labelling scheme satisfies
the greater number of properties and thus, may be consid-
ered as the labelling scheme that is most generic.

6. CONCLUSIONS

In this paper, we sought to provide a set of desirable proper-
ties for labelling and encoding of XML documents to support
an efficient updating mechanism. As part of this research,
we examined many of the available schemes and focused on
the primary issue of accommodating structural updates in
XML schemas and documents. The output was a clear iden-
tification of those properties that were essential to good up-
date mechanisms and those that were required key engineer-
ing decisions before they could be included, or in the manner
in which they could be used.

While the motivation behind this research was to create a
list of desirable (and sometimes essential) properties for up-
date mechanisms, we have omitted several schemes. These
include the Prime Number labelling scheme [25] and the
newer DDE labelling scheme [28]. Using our existing frame-
work, we will now seek to evaluate these and other schemes,
although it is possible that we may accommodate some new
features in our template as new schemes are incorporated in
our study.

7. ACKNOWLEDGEMENTS
This work is supported by Enterprise Ireland under grant
CFTD/07/201.

8. REFERENCES

[1] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,

N. Koudas, and D. Srivastava. Structural Joins: A
Primitive for Efficient XML Query Pattern Matching.
In ICDE, pages 141-152, 2002.

[2] T. Amagasa, M. Yoshikawa, and S. Uemura. QRS: A
Robust Numbering Scheme for XML Documents. In
ICDE, pages 705-707, 2003.

[3] T. Bohme and E. Rahm. Supporting Efficient
Streaming and Insertion of XML Data in RDBMS. In
DIWeb, pages 70-81, 2004.

[4] E. Cohen, H. Kaplan, and T. Milo. Labeling Dynamic
XML trees. In PODS, pages 271-281, 2002.

[5] M. Dewey. Dewey Decimal Classification (DDC)
system. http://www.oclc.org/dewey/.

[6] P. F. Dietz. Maintaining Order in a Linked List. In
STOC, pages 122-127, 1982.

[7] M. Duong and Y. Zhang. LSDX: A New Labelling
Scheme for Dynamically Updating XML Data. In
ADC, pages 185-193, 2005.

[8] M. Duong and Y. Zhang. Dynamic Labelling Scheme
for XML Data Processing. In OTM Conferences (2),
pages 1183-1199, 2008.

[9] T. Grust. Accelerating XPath Location Steps. In
SIGMOD Conference, pages 109-120, 2002.

[10] M. Kay. XPath 2.0 Programmer’s Reference. Wiley,
2004.

[11] D. D. Kha, M. Yoshikawa, and S. Uemura. An XML
Indexing Structure with Relative Region Coordinate.
In ICDE, pages 313-320, 2001.

[12] A. A. Khaing and N. L. Thein. A Persistent Labeling
Scheme for Dynamic Ordered XML Trees. In Web
Intelligence, pages 498-501, 2006.

[13] C. Li and T. W. Ling. An Improved Prefix Labeling
Scheme: A Binary String Approach for Dynamic
Ordered XML. In DASFAA, pages 125-137, 2005.

[14] C. Li and T. W. Ling. QED: A Novel Quaternary
Encoding to Completely Avoid Re-labeling in XML
Updates. In CIKM, pages 501-508, 2005.

[15] C. Li, T. W. Ling, and M. Hu. Efficient Processing of
Updates in Dynamic XML Data. In ICDE, page 13,
2006.

[16] C. Li, T. W. Ling, and M. Hu. Efficient Updates in
Dynamic XML Data: from Binary String to
Quaternary String. VLDB Journal, 17(3):573-601,
2008.

[17]

[18]

[19]

[20]

[21]

Q. Li and B. Moon. Indexing and Querying XML
Data for Regular Path Expressions. In VLDB, pages
361-370, 2001.

P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller,
and N. Westbury. ORDPATHSs: Insert-Friendly XML
Node Labels. In SIGMOD Conference, pages 903-908,
2004.

V. Sans and D. Laurent. Prefix based Numbering
Schemes for XML: Techniques, Applications and
Performances. PVLDB, 1(2):1564-1573, 2008.

A. Silberstein, H. He, K. Yi, and J. Yang. BOXes:
Efficient Maintenance of Order-Based Labeling for
Dynamic XML Data. In ICDE, pages 285-296, 2005.

I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld.

Updating XML. In SIGMOD Conference, pages
413-424, 2001.

I. Tatarinov, S. Viglas, K. S. Beyer,

J. Shanmugasundaram, E. J. Shekita, and C. Zhang.
Storing and Querying Ordered XML using a
Relational Database System. In SIGMOD Conference,
pages 204-215, 2002.

R. Thonangi. A Concise Labeling Scheme for XML
Data. In International Conference on Management of
Data (COMAD ’06). Computer Society of India,
December 2006.

[24]

25]

[26]

27]

(28]

29]

(30]

(31]

World Wide Web Consortium. Extensible Markup
Language (XML) 1.0 (Fifth Edition), W3C
Recommendation edition, November 2008.

X. Wu, M.-L. Lee, and W. Hsu. A Prime Number
Labeling Scheme for Dynamic Ordered XML Trees. In
ICDE, pages 66-78, 2004.

G. Xing and B. Tseng. Extendible Range-Based
Numbering Scheme for XML Document. In ITCC (2),
pages 140-141, 2004.

L. Xu, Z. Bao, and T. W. Ling. A Dynamic Labeling
Scheme Using Vectors. In DEXA, pages 130140, 2007.
L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: From
Dewey to a Fully Dynamic XML Labeling Scheme. In
SIGMOD Conference, pages 719-730, 2009.

F. Yergeau. UTF-8, A Transformation Format of ISO
10646, Request for Comments (RFC) 3629 edition,
November 2003.

M. Yoshikawa, T. Amagasa, T. Shimura, and

S. Uemura. XRel: A Path-based Approach to Storage
and Retrieval of XML Documents using Relational
Databases. ACM Trans. Internet Techn.,
1(1):110-141, 2001.

C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On Supporting Containment Queries
in Relational Database Management Systems. In
SIGMOD Conference, pages 425—436, 2001.

