1,909 research outputs found

    Data Aggregation Scheduling in Wireless Networks

    Get PDF
    Data aggregation is one of the most essential data gathering operations in wireless networks. It is an efficient strategy to alleviate energy consumption and reduce medium access contention. In this dissertation, the data aggregation scheduling problem in different wireless networks is investigated. Since Wireless Sensor Networks (WSNs) are one of the most important types of wireless networks and data aggregation plays a vital role in WSNs, the minimum latency data aggregation scheduling problem for multi-regional queries in WSNs is first studied. A scheduling algorithm is proposed with comprehensive theoretical and simulation analysis regarding time efficiency. Second, with the increasing popularity of Cognitive Radio Networks (CRNs), data aggregation scheduling in CRNs is studied. Considering the precious spectrum opportunity in CRNs, a routing hierarchy, which allows a secondary user to seek a transmission opportunity among a group of receivers, is introduced. Several scheduling algorithms are proposed for both the Unit Disk Graph (UDG) interference model and the Physical Interference Model (PhIM), followed by performance evaluation through simulations. Third, the data aggregation scheduling problem in wireless networks with cognitive radio capability is investigated. Under the defined network model, besides a default working spectrum, users can access extra available spectrum through a cognitive radio. The problem is formalized as an Integer Linear Programming (ILP) problem and solved through an optimization method in the beginning. The simulation results show that the ILP based method has a good performance. However, it is difficult to evaluate the solution theoretically. A heuristic scheduling algorithm with guaranteed latency bound is presented in our further investigation. Finally, we investigate how to make use of cognitive radio capability to accelerate data aggregation in probabilistic wireless networks with lossy links. A two-phase scheduling algorithm is proposed, and the effectiveness of the algorithm is verified through both theoretical analysis and numerical simulations

    Aggregation Latency-Energy Tradeoff in Wireless Sensor Networks with Successive Inter- ference Cancellation

    Get PDF
    published_or_final_versio

    A distributed delay-efficient data aggregation scheduling for duty-cycled WSNs

    Get PDF
    With the growing interest in wireless sensor networks (WSNs), minimizing network delay and maximizing sensor (node) lifetime are important challenges. Since the sensor battery is one of the most precious resources in a WSN, efficient utilization of the energy to prolong the network lifetime has been the focus of much of the research on WSNs. For that reason, many previous research efforts have tried to achieve tradeoffs in terms of network delay and energy cost for such data aggregation tasks. Recently, duty-cycling technique, i.e., periodically switching ON and OFF communication and sensing capabilities, has been considered to significantly reduce the active time of sensor nodes and thus extend network lifetime. However, this technique causes challenges for data aggregation. In this paper, we present a distributed approach, named distributed delay efficient data aggregation scheduling (DEDAS-D) to solve the aggregation-scheduling problem in duty-cycled WSNs. The analysis indicates that our solution is a better approach to solve this problem. We conduct extensive simulations to corroborate our analysis and show that DEDAS-D outperforms other distributed schemes and achieves an asymptotic performance compared with centralized scheme in terms of data aggregation delay.N/

    Many-to-many data aggregation scheduling in wireless sensor networks with two sinks

    Get PDF
    Traditionally, wireless sensor networks (WSNs) have been deployed with a single sink. Due to the emergence of sophisticated applications, WSNs may require more than one sink. Moreover, deploying more than one sink may prolong the network lifetime and address fault tolerance issues. Several protocols have been proposed for WSNs with multiple sinks. However, most of them are routing protocols. Differently, our main contribution, in this paper, is the development of a distributed data aggregation scheduling (DAS) algorithm for WSNs with two sinks. We also propose a distributed energy-balancing algorithm to balance the energy consumption for the aggregators. The energy-balancing algorithm first forms trees rooted at nodes which are termed virtual sinks and then balances the number of children at a given level to level the energy consumption. Subsequently, the DAS algorithm takes the resulting balanced tree and assigns contiguous slots to sibling nodes, to avoid unnecessary energy waste due to frequent active-sleep transitions. We prove a number of theoretical results and the correctness of the algorithms. Through simulation and testbed experiments, we show the correctness and performance of our algorithms

    Cross-layer design for network performance optimization in wireless networks

    Get PDF
    In this dissertation, I use mathematical optimization approach to solve the complex network problems. Paper l and paper 2 first show that ignoring the bandwidth constraint can lead to infeasible routing solutions. A sufficient condition on link bandwidth is proposed that makes a routing solution feasible, and then a mathematical optimization model based on this sufficient condition is provided. Simulation results show that joint optimization models can provide more feasible routing solutions and provide significant improvement on throughput and lifetime. In paper 3 and paper 4, an interference model is proposed and a transmission scheduling scheme is presented to minimize the end-to-end delay. This scheduling scheme is designed based on integer linear programming and involves interference modeling. Using this schedule, there are no conflicting transmissions at any time. Through simulation, it shows that the proposed link scheduling scheme can significantly reduce end-to-end latency. Since to compute the maximum throughput is an NP-hard problem, efficient heuristics are presented in Paper 5 that use sufficient conditions instead of the computationally-expensive-to-get optimal condition to capture the mutual conflict relation in a collision domain. Both one-way transmission and two-way transmission are considered. Simulation results show that the proposed algorithms improve network throughput and reduce energy consumption, with significant improvement over previous work on both aspects. Paper 6 studies the complicated tradeoff relation among multiple factors that affect the sensor network lifetime and proposes an adaptive multi-hop clustering algorithm. It realizes the best tradeoff among multiple factors and outperforms others that do not. It is adaptive in the sense the clustering topology changes over time in order to have the maximum lifetime --Abstract, page iv

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Aggregation Scheduling Algorithms in Wireless Sensor Networks

    Get PDF
    In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure

    Design Aspects of An Energy-Efficient, Lightweight Medium Access Control Protocol for Wireless Sensor Networks

    Get PDF
    This document gives an overview of the most relevant design aspects of the lightweight medium access control (LMAC) protocol [16] for wireless sensor networks (WSNs). These aspects include selfconfiguring and localized operation of the protocol, time synchronization in multi-hop networks, network setup and strategies to reduce latency.\ud The main goal in designing a MAC protocol for WSNs is to minimize energy waste - due to collisions of messages and idle listening - , while limiting latency and loss of data throughput. It is shown that the LMAC protocol performs well on energy-efficiency and delivery ratio [19] and can\ud ensure a long-lived, self-configuring network of battery-powered wireless sensors.\ud The protocol is based upon scheduled access, in which each node periodically gets a time slot, during which it is allowed to transmit. The protocol does not depend on central managers to assign time slots to nodes.\ud WSNs are assumed to be multi-hop networks, which allows for spatial reuse of time slots, just like frequency reuse in GSM cells. In this document, we present a distributed algorithm that allows nodes to find unoccupied time slots, which can be used without causing collision or interference to other nodes. Each node takes one time slot in control to\ud carry out its data transmissions. Latency is affected by the actual choice of controlled time slot. We present time slot choosing strategies, which ensure a low latency for the most common data traffic in WSNs: reporting of sensor readings to central sinks
    • …
    corecore