1,817 research outputs found

    Analysis and Improvement of the Generic Higher-Order Masking Scheme of FSE 2012

    Get PDF
    Masking is a well-known technique used to prevent block cipher implementations from side-channel attacks. Higher-order side channel attacks (e.g. higher-order DPA attack) on widely used block cipher like AES have motivated the design of efficient higher-order masking schemes. Indeed, it is known that as the masking order increases, the difficulty of side-channel attack increases exponentially. However, the main problem in higher-order masking is to design an efficient and secure technique for S-box computations in block cipher implementations. At FSE 2012, Carlet et al. proposed a generic masking scheme that can be applied to any S-box at any order. This is the first generic scheme for efficient software implementations. Analysis of the running time, or \textit{masking complexity}, of this scheme is related to a variant of the well-known problem of efficient exponentiation (\textit{addition chain}), and evaluation of polynomials. In this paper we investigate optimal methods for exponentiation in F2n\mathbb{F}_{2^{n}} by studying a variant of addition chain, which we call \textit{cyclotomic-class addition chain}, or \textit{CC-addition chain}. Among several interesting properties, we prove lower bounds on min-length CC-addition chains. We define the notion of \GFn-polynomial chain, and use it to count the number of \textit{non-linear} multiplications required while evaluating polynomials over F2n\mathbb{F}_{2^{n}}. We also give a lower bound on the length of such a chain for any polynomial. As a consequence, we show that a lower bound for the masking complexity of DES S-boxes is three, and that of PRESENT S-box is two. We disprove a claim previously made by Carlet et al. regarding min-length CC-addition chains. Finally, we give a polynomial evaluation method, which results into an improved masking scheme (compared to the technique of Carlet et al.) for DES S-boxes. As an illustration we apply this method to several other S-boxes and show significant improvement for them

    Power Side Channels in Security ICs: Hardware Countermeasures

    Full text link
    Power side-channel attacks are a very effective cryptanalysis technique that can infer secret keys of security ICs by monitoring the power consumption. Since the emergence of practical attacks in the late 90s, they have been a major threat to many cryptographic-equipped devices including smart cards, encrypted FPGA designs, and mobile phones. Designers and manufacturers of cryptographic devices have in response developed various countermeasures for protection. Attacking methods have also evolved to counteract resistant implementations. This paper reviews foundational power analysis attack techniques and examines a variety of hardware design mitigations. The aim is to highlight exposed vulnerabilities in hardware-based countermeasures for future more secure implementations

    An Efficient Side-Channel Protected AES Implementation with Arbitrary Protection Order

    Get PDF
    Passive physical attacks, like power analysis, pose a serious threat to the security of digital circuits. In this work, we introduce an efficient sidechannel protected Advanced Encryption Standard (AES) hardware design that is completely scalable in terms of protection order. Therefore, we revisit the private circuits scheme of Ishai et al. [13] which is known to be vulnerable to glitches. We demonstrate how to achieve resistance against multivariate higher-order attacks in the presence of glitches for the same randomness cost as the private circuits scheme. Although our AES design is scalable, it is smaller, faster, and less randomness demanding than other side-channel protected AES implementations. Our first-order secure AES design, for example, requires only 18 bits of randomness per S-box operation and 6 kGE of chip area. We demonstrate the flexibility of our AES implementation by synthesizing it up to the 15th protection order

    An Enhanced Dataflow Analysis to Automatically Tailor Side Channel Attack Countermeasures to Software Block Ciphers

    Get PDF
    Protecting software implementations of block ciphers from side channel attacks is a significant concern to realize secure embedded computation platforms. The relevance of the issue calls for the automation of the side channel vulnerability assessment of a block cipher implementation, and the automated application of provably secure defenses. The most recent methodology in the field is an application of a specialized data-flow analysis, performed by means of the LLVM compiler framework, detecting in the AES cipher the portions of the code amenable to key extraction via side channel analysis. The contribution of this work is an enhancement to the existing data-flow analysis which extending it to tackle any block cipher implemented in software. In particular, the extended strategy takes fully into account the data dependencies present in the key schedule of a block cipher, regardless of its complexity, to obtain consistently sound results. This paper details the analysis strategy and presents new results on the tailored application of power and electro-magnetic emission analysis countermeasures, evaluating the performances on both the ARM Cortex-M and the MIPS ISA. The experimental evaluation reports a case study on two block ciphers: the first designed to achieve a high security margin at a non-negligible computational cost, and a lightweight one. The results show that, when side-channel-protected implementations are considered, the high-security block cipher is indeed more efficient than the lightweight one

    AES Side-Channel Countermeasure using Random Tower Field Constructions

    No full text
    International audienceMasking schemes to secure AES implementations against side-channel attacks is a topic of ongoing research. The most sensitive part of the AES is the non-linear SubBytes operation, in particular, the inversion in GF(2^8), the Galois field of 2^8 elements. In hardware implementations, it is well known that the use of the tower of extensions GF(2) ⊂ GF(2^2) ⊂ GF(2^4) ⊂ GF(2^8) leads to a more efficient inversion. We propose to use a random isomorphism instead of a fixed one. Then, we study the effect of this randomization in terms of security and efficiency. Considering the field extension GF(2^8)/GF(2^4), the inverse operation leads to computation of its norm in GF(2^4). Hence, in order to thwart side-channel attack, we manage to spread the values of norms over GF(2^4). Combined with a technique of boolean masking in tower fields, our countermeasure strengthens resistance against first-order differential side-channel attacks

    Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations

    Get PDF
    The threat posed by side channels requires ciphers that can be efficiently protected in both software and hardware against such attacks. In this paper, we proposed a novel Sbox construction based on iterations of shift-invariant quadratic permutations and linear diffusions. Owing to the selected quadratic permutations, all of our Sboxes enable uniform 3-share threshold implementations, which provide first order SCA protections without any fresh randomness. More importantly, because of the shift-invariant property, there are ample implementation trade-offs available, in software as well as hardware. We provide implementation results (software and hardware) for a four-bit and an eight-bit Sbox, which confirm that our constructions are competitive and can be easily adapted to various platforms as claimed. We have successfully verified their resistance to first order attacks based on real acquisitions. Because there are very few studies focusing on software-based threshold implementations, our software implementations might be of independent interest in this regard
    • …
    corecore