12,553 research outputs found

    Non-intrusive on-the-fly data race detection using execution replay

    Full text link
    This paper presents a practical solution for detecting data races in parallel programs. The solution consists of a combination of execution replay (RecPlay) with automatic on-the-fly data race detection. This combination enables us to perform the data race detection on an unaltered execution (almost no probe effect). Furthermore, the usage of multilevel bitmaps and snooped matrix clocks limits the amount of memory used. As the record phase of RecPlay is highly efficient, there is no need to switch it off, hereby eliminating the possibility of Heisenbugs because tracing can be left on all the time.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AAdebug 2000), August 2000, Munich. cs.SE/001003

    Partially ordered distributed computations on asynchronous point-to-point networks

    Full text link
    Asynchronous executions of a distributed algorithm differ from each other due to the nondeterminism in the order in which the messages exchanged are handled. In many situations of interest, the asynchronous executions induced by restricting nondeterminism are more efficient, in an application-specific sense, than the others. In this work, we define partially ordered executions of a distributed algorithm as the executions satisfying some restricted orders of their actions in two different frameworks, those of the so-called event- and pulse-driven computations. The aim of these restrictions is to characterize asynchronous executions that are likely to be more efficient for some important classes of applications. Also, an asynchronous algorithm that ensures the occurrence of partially ordered executions is given for each case. Two of the applications that we believe may benefit from the restricted nondeterminism are backtrack search, in the event-driven case, and iterative algorithms for systems of linear equations, in the pulse-driven case

    Efficient, Near Complete and Often Sound Hybrid Dynamic Data Race Prediction (extended version)

    Full text link
    Dynamic data race prediction aims to identify races based on a single program run represented by a trace. The challenge is to remain efficient while being as sound and as complete as possible. Efficient means a linear run-time as otherwise the method unlikely scales for real-world programs. We introduce an efficient, near complete and often sound dynamic data race prediction method that combines the lockset method with several improvements made in the area of happens-before methods. By near complete we mean that the method is complete in theory but for efficiency reasons the implementation applies some optimizations that may result in incompleteness. The method can be shown to be sound for two threads but is unsound in general. We provide extensive experimental data that shows that our method works well in practice.Comment: typos, appendi

    Monitoring Partially Synchronous Distributed Systems using SMT Solvers

    Full text link
    In this paper, we discuss the feasibility of monitoring partially synchronous distributed systems to detect latent bugs, i.e., errors caused by concurrency and race conditions among concurrent processes. We present a monitoring framework where we model both system constraints and latent bugs as Satisfiability Modulo Theories (SMT) formulas, and we detect the presence of latent bugs using an SMT solver. We demonstrate the feasibility of our framework using both synthetic applications where latent bugs occur at any time with random probability and an application involving exclusive access to a shared resource with a subtle timing bug. We illustrate how the time required for verification is affected by parameters such as communication frequency, latency, and clock skew. Our results show that our framework can be used for real-life applications, and because our framework uses SMT solvers, the range of appropriate applications will increase as these solvers become more efficient over time.Comment: Technical Report corresponding to the paper accepted at Runtime Verification (RV) 201
    • 

    corecore