3,704 research outputs found

    RoboTSP - A Fast Solution to the Robotic Task Sequencing Problem

    Full text link
    In many industrial robotics applications, such as spot-welding, spray-painting or drilling, the robot is required to visit successively multiple targets. The robot travel time among the targets is a significant component of the overall execution time. This travel time is in turn greatly affected by the order of visit of the targets, and by the robot configurations used to reach each target. Therefore, it is crucial to optimize these two elements, a problem known in the literature as the Robotic Task Sequencing Problem (RTSP). Our contribution in this paper is two-fold. First, we propose a fast, near-optimal, algorithm to solve RTSP. The key to our approach is to exploit the classical distinction between task space and configuration space, which, surprisingly, has been so far overlooked in the RTSP literature. Second, we provide an open-source implementation of the above algorithm, which has been carefully benchmarked to yield an efficient, ready-to-use, software solution. We discuss the relationship between RTSP and other Traveling Salesman Problem (TSP) variants, such as the Generalized Traveling Salesman Problem (GTSP), and show experimentally that our method finds motion sequences of the same quality but using several orders of magnitude less computation time than existing approaches.Comment: 6 pages, 7 figures, 1 tabl

    The development of a weighted directed graph model for dynamic systems and application of Dijkstra’s algorithm to solve optimal control problems.

    Get PDF
    Master of Science (Chemical Engineering). University of KwaZulu-Natal. Durban, 2017.Optimal control problems are frequently encountered in chemical engineering process control applications as a result of the drive for more regulatory compliant, efficient and economical operation of chemical processes. Despite the significant advancements that have been made in Optimal Control Theory and the development of methods to solve this class of optimization problems, limitations in their applicability to non-linear systems inherent in chemical process unit operations still remains a challenge, particularly in determining a globally optimal solution and solutions to systems that contain state constraints. The objective of this thesis was to develop a method for modelling a chemical process based dynamic system as a graph so that an optimal control problem based on the system can be solved as a shortest path graph search problem by applying Dijkstra’s Algorithm. Dijkstra’s algorithm was selected as it is proven to be a robust and global optimal solution based algorithm for solving the shortest path graph search problem in various applications. In the developed approach, the chemical process dynamic system was modelled as a weighted directed graph and the continuous optimal control problem was reformulated as graph search problem by applying appropriate finite discretization and graph theoretic modelling techniques. The objective functional and constraints of an optimal control problem were successfully incorporated into the developed weighted directed graph model and the graph was optimized to represent the optimal transitions between the states of the dynamic system, resulting in an Optimal State Transition Graph (OST Graph). The optimal control solution for shifting the system from an initial state to every other achievable state for the dynamic system was determined by applying Dijkstra’s Algorithm to the OST Graph. The developed OST Graph-Dijkstra’s Algorithm optimal control solution approach successfully solved optimal control problems for a linear nuclear reactor system, a non-linear jacketed continuous stirred tank reactor system and a non-linear non-adiabatic batch reactor system. The optimal control solutions obtained by the developed approach were compared with solutions obtained by the variational calculus, Iterative Dynamic Programming and the globally optimal value-iteration based Dynamic Programming optimal control solution approaches. Results revealed that the developed OST Graph-Dijkstra’s Algorithm approach provided a 14.74% improvement in the optimality of the optimal control solution compared to the variational calculus solution approach, a 0.39% improvement compared to the Iterative Dynamic Programming approach and the exact same solution as the value–iteration Dynamic Programming approach. The computational runtimes for optimal control solutions determined by the OST Graph-Dijkstra’s Algorithm approach were 1 hr 58 min 33.19 s for the nuclear reactor system, 2 min 25.81s for the jacketed reactor system and 8.91s for the batch reactor system. It was concluded from this work that the proposed method is a promising approach for solving optimal control problems for chemical process-based dynamic systems

    Geometric Path-Planning Algorithm in Cluttered 2D Environments Using Convex Hulls

    Get PDF
    Routing or path planning is the problem of finding a collision-free path in an environment usually scattered with multiple objects. Finding the shortest route in a planar (2D) or spatial (3D) environment has a variety of applications such as robot motion planning, navigating autonomous vehicles, routing of cables, wires, and harnesses in vehicles, routing of pipes in chemical process plants, etc. The problem often times is decomposed into two main sub-problems: modeling and representation of the workspace geometrically and optimization of the path. Geometric modeling and representation of the workspace are paramount in any path planning problem since it builds the data structures and provides the means for solving the optimization problem. The optimization aspect of the path planning involves satisfying some constraints, the most important of which is to avoid intersections with the interior of any object and optimizing one or more criteria. The most common criterion in path planning problems is to minimize the length of the path between a source and a destination point of the workspace while other criteria such as minimizing the number of links or curves could also be taken into account. Planar path planning is mainly about modeling the workspace of the problem as a collision-free graph. The graph is, later on, searched for the optimal path using network optimization techniques such as branch-and-bound or search algorithms such as Dijkstra\u27s. Previous methods developed to construct the collision-free graph explore the entire workspace of the problem which usually results in some unnecessary information that has no value but to increase the time complexity of the algorithm, hence, affecting the efficiency significantly. For example, the fastest known algorithm to construct the visibility graph, which is the most common method of modeling the collision-free space, in a workspace with a total of n vertices has a time complexity of order O(n2). In this research, first, the 2D workspace of the problem is modeled using the tessellated format of the objects in a CAD software which facilitates handling of any free-form object. Then, an algorithm is developed to construct the collision-free graph of the workspace using the convex hulls of the intersecting obstacles. The proposed algorithm focuses only on a portion of the workspace involved in the straight line connecting the source and destination points. Considering the worst case that all the objects of the workspace are intersecting, the algorithm yields a time complexity of O(nlog(n/f)), with n being the total number of vertices and f being the number of objects. The collision-free graph is later searched for the shortest path between the two given nodes using a search algorithm known as Dijkstra\u27s

    Lying Your Way to Better Traffic Engineering

    Full text link
    To optimize the flow of traffic in IP networks, operators do traffic engineering (TE), i.e., tune routing-protocol parameters in response to traffic demands. TE in IP networks typically involves configuring static link weights and splitting traffic between the resulting shortest-paths via the Equal-Cost-MultiPath (ECMP) mechanism. Unfortunately, ECMP is a notoriously cumbersome and indirect means for optimizing traffic flow, often leading to poor network performance. Also, obtaining accurate knowledge of traffic demands as the input to TE is elusive, and traffic conditions can be highly variable, further complicating TE. We leverage recently proposed schemes for increasing ECMP's expressiveness via carefully disseminated bogus information ("lies") to design COYOTE, a readily deployable TE scheme for robust and efficient network utilization. COYOTE leverages new algorithmic ideas to configure (static) traffic splitting ratios that are optimized with respect to all (even adversarially chosen) traffic scenarios within the operator's "uncertainty bounds". Our experimental analyses show that COYOTE significantly outperforms today's prevalent TE schemes in a manner that is robust to traffic uncertainty and variation. We discuss experiments with a prototype implementation of COYOTE

    Geometric-based Optimization Algorithms for Cable Routing and Branching in Cluttered Environments

    Get PDF
    The need for designing lighter and more compact systems often leaves limited space for planning routes for the connectors that enable interactions among the system’s components. Finding optimal routes for these connectors in a densely populated environment left behind at the detail design stage has been a challenging problem for decades. A variety of deterministic as well as heuristic methods has been developed to address different instances of this problem. While the focus of the deterministic methods is primarily on the optimality of the final solution, the heuristics offer acceptable solutions, especially for such problems, in a reasonable amount of time without guaranteeing to find optimal solutions. This study is an attempt to furthering the efforts in deterministic optimization methods to tackle the routing problem in two and three dimensions by focusing on the optimality of final solutions. The objective of this research is twofold. First, a mathematical framework is proposed for the optimization of the layout of wiring connectors in planar cluttered environments. The problem looks at finding the optimal tree network that spans multiple components to be connected with the aim of minimizing the overall length of the connectors while maximizing their common length (for maintainability and traceability of connectors). The optimization problem is formulated as a bi-objective problem and two solution methods are proposed: (1) to solve for the optimal locations of a known number of breakouts (where the connectors branch out) using mixed-binary optimization and visibility notion and (2) to find the minimum length tree that spans multiple components of the system and generates the optimal layout using the previously-developed convex hull based routing. The computational performance of these methods in solving a variety of problems is further evaluated. Second, the problem of finding the shortest route connecting two given nodes in a 3D cluttered environment is considered and addressed through deterministically generating a graphical representation of the collision-free space and searching for the shortest path on the found graph. The method is tested on sample workspaces with scattered convex polyhedra and its computational performance is evaluated. The work demonstrates the NP-hardness aspect of the problem which becomes quickly intractable as added components or increase in facets are considered
    • …
    corecore