804 research outputs found

    An Investigation into the Performance Evaluation of Connected Vehicle Applications: From Real-World Experiment to Parallel Simulation Paradigm

    Get PDF
    A novel system was developed that provides drivers lane merge advisories, using vehicle trajectories obtained through Dedicated Short Range Communication (DSRC). It was successfully tested on a freeway using three vehicles, then targeted for further testing, via simulation. The failure of contemporary simulators to effectively model large, complex urban transportation networks then motivated further research into distributed and parallel traffic simulation. An architecture for a closed-loop, parallel simulator was devised, using a new algorithm that accounts for boundary nodes, traffic signals, intersections, road lengths, traffic density, and counts of lanes; it partitions a sample, Tennessee road network more efficiently than tools like METIS, which increase interprocess communications (IPC) overhead by partitioning more transportation corridors. The simulator uses logarithmic accumulation to synchronize parallel simulations, further reducing IPC. Analyses suggest this eliminates up to one-third of IPC overhead incurred by a linear accumulation model

    Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication

    Get PDF
    In this paper, a minimalist, completely distributed freeway traffic information system is introduced. It involves an autonomous, vehicle-based jam front detection, the information transmission via inter-vehicle communication, and the forecast of the spatial position of jam fronts by reconstructing the spatiotemporal traffic situation based on the transmitted information. The whole system is simulated with an integrated traffic simulator, that is based on a realistic microscopic traffic model for longitudinal movements and lane changes. The function of its communication module has been explicitly validated by comparing the simulation results with analytical calculations. By means of simulations, we show that the algorithms for a congestion-front recognition, message transmission, and processing predict reliably the existence and position of jam fronts for vehicle equipment rates as low as 3%. A reliable mode of operation already for small market penetrations is crucial for the successful introduction of inter-vehicle communication. The short-term prediction of jam fronts is not only useful for the driver, but is essential for enhancing road safety and road capacity by intelligent adaptive cruise control systems.Comment: Published in the Proceedings of the Annual Meeting of the Transportation Research Board 200

    Providing Real-time Driver Advisories in Connected Vehicles: A Data-Driven Approach Supported by Field Experimentation

    Get PDF
    Approximately 94\% of the annual transportation crashes in the U.S. involve driver errors and violations contributing to the $1 Trillion losses in the economy. Recent V2X communication technologies enabled by Dedicated Short Range Communication (DSRC) and Cellular-V2X (C-V2X) can provide cost-effective solutions for many of these transportation safety applications and help reduce crashes up to 85%. This research aims towards two primary goals. First, understanding the feasibility of deploying V2V-based safety critical applications under the constraints of limited communication ranges and adverse roadway conditions. Second, to develop a prototype application for providing real-time advisories for hazardous driving behaviors and to notify neighboring vehicles using available wireless communication platform. Towards accomplishing the first goal, we have developed a mathematical model to quantify V2V communication parameters and constraints pertaining to a DSRC-based “Safe pass advisory” application and validated the theoretical model using field experiments by measuring the communication ranges between two oncoming vehicles. We also investigated the impacts of varying altitudes, vehicle-interior obstacles, and OBU placement on V2V communication reliability and its implications. Along the direction of the second goal, we derived a data-driven model to characterize the acceleration/deceleration profile of a regular passenger vehicle with respect to speed and throttle position. As a proof of concept demonstration, we implemented an IoT-based communication architecture for disseminating the hazardous driving alerts to vulnerable drivers through cellular and/or V2X communication infrastructure

    Video Streaming over Vehicular Ad Hoc Networks: A Comparative Study and Future Perspectives

    Get PDF
    Vehicular  Ad Hoc Network  (VANET) is emerged as an important research area that provides ubiquitous short-range connectivity among moving vehicles.  This network enables efficient traffic safety and infotainment applications. One of the promising applications is video transmission in vehicle-to-vehicle or vehicle-to-infrastructure environments.  But, video streaming over vehicular environment is a daunting task due to high movement of vehicles. This paper presents a survey on state-of-arts of video streaming over VANET. Furthermore, taxonomy of vehicular video transmission is highlighted in this paper with special focus on significant applications and their requirements with challenges, video content sharing, multi-source video streaming and video broadcast services. The comparative study of the paper compares the video streaming schemes based on type of error resilient technique, objective of study, summary of their study, the utilized simulator and the type of video sharing.  Lastly, we discussed the open issues and research directions related to video communication over VANET

    Performance Analysis of V2I Zone Activation and Scalability for C-V2X Transactional Services

    Full text link
    Cellular-V2X (C-V2X) enables communication between vehicles and other transportation entities over the 5.9GHz spectrum. C-V2X utilizes direct communication mode for safety packet broadcasts (through the usage of periodic basic safety messages) while leaving sufficient room in the resource pool for advanced service applications. While many such ITS applications are under development, it is crucial to identify and optimize the relevant network parameters. In this paper, we envision an infrastructure-assisted transaction procedure entirely carried out by C-V2X, and we optimize it in terms of the service parameters. To achieve the service utility of a transaction class, two C-V2X entities require a successive exchange of multiple messages. With this notion, our proposed application prototype can be generalized for any vehicular service to establish connections on-the-fly. We identify suitable activation zones for vehicles and assess their impact on service efficiency. The results show a variety of potential service and parameter settings that can be appropriate for different use-cases, laying the foundation for subsequent studies

    A Comparative Study of AODV & DSR with Varying Speed, Pause Time, and Node Density over TCP Connections in VANET

    Get PDF
    This paper presents a comparative study of two routing protocols in vehicular ad hoc networks, popularly known as VANETs. A VANET is a special type of ad hoc network consists of moving cars referred to as nodes; provide a way to exchange any information between cars without depending on fixed infrastructure. Due to rapid topology changing and frequent disconnection makes it difficult to select suitable mobility model and routing protocols. Hence performance evaluation and comparison between routing protocols is required to understand any routing protocol as well as to develop a new routing protocol. In this research paper, the performance of two on-demand routing protocols AODV & DSR has been analyzed by means of packet delivery ratio with varying speed limit, pause time, and node density under the TCP connection.. Finally, it concludes the discussion by pointing out some open issues and possible direction of future research related to VANET routing

    Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey

    Full text link
    A Vehicular Ad hoc Network (VANET) is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Beaconing approaches is an important research challenge in high mobility vehicular networks with enabling safety applications. In this article, we perform a survey and a comparative study of state-of-the-art adaptive beaconing approaches in VANET, that explores the main advantages and drawbacks behind their design. The survey part of the paper presents a review of existing adaptive beaconing approaches such as adaptive beacon transmission power, beacon rate adaptation, contention window size adjustment and Hybrid adaptation beaconing techniques. The comparative study of the paper compares the representatives of adaptive beaconing approaches in terms of their objective of study, summary of their study, the utilized simulator and the type of vehicular scenario. Finally, we discussed the open issues and research directions related to VANET adaptive beaconing approaches.Ghafoor, KZ.; Lloret, J.; Abu Bakar, K.; Sadiq, AS.; Ben Mussa, SA. (2013). Beaconing Approaches in Vehicular Ad Hoc Networks: A Survey. Wireless Personal Communications. 73(3):885-912. doi:10.1007/s11277-013-1222-9S885912733ITS-Standards (1996) Intelligent transportation systems, U.S. Department of Transportation, http://www.standards.its.dot.gov/about.aspCheng, L., Henty, B., Stancil, D., Bai, F., & Mudalige, P. (2005). Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 Ghz dedicated short range communication (DSRC) frequency band. IEEE Transactions on Selected Areas in Communications, 25(8), 1501–1516.van Eenennaam, E., Wolterink, K., Karagiannis, G., & Heijenk, G. (2009). Exploring the solution space of beaconing in vanets. In Proceedings of the 2009 IEEE international vehicular networking conference, Tokyo (pp. 1–8).Torrent-Moreno, M. (2007). Inter-vehicle communications: Assessing information dissemination under safety constraints. In Proceedings of the 2007 IEEE conference wireless on demand network systems and services, Austria (pp. 59–64).Lloret, J., Canovas, A., Catalá, A., & Garcia, M. (2012). Group-based protocol and mobility model for vanets to offer internet access. Journal of Network and Computer Applications 2224–2245 doi: 10.1016j.jnca.2012.02.009 .Nzouonta, J., Rajgure, N., Wang, G., & Borcea, C. (2009). Vanet routing on city roads using real-time vehicular traffic information. IEEE Transactions on Vehicular Technology, 58(7), 3609–3626.Fukui, R., Koike, H., & Okada, H. (2002). Dynamic integrated transmission control(ditrac) over inter-vehicle communications. In Proceedings of the 2002 IEEE vehicular technology conference, Birmingham (pp. 483–487).Schmidt, R., Leinmuller, T., Schoch, E., Kargl, F., & Schafer, G. (2010). Exploration of adaptive beaconing for efficient intervehicle safety communication. IEEE Network, 24(1), 14–19.Ghafoor, K., Bakar, K., van Eenennaam, E., Khokhar, R., Gonzalez, A. A fuzzy logic approach to beaconing for vehicular ad hoc networks, Accepted for publication in Telecommunication Systems Journal.Ghafoor, K., & Bakar, K. (2010). A novel delay and reliability aware inter vehicle routing protocol. Network Protocols and Algorithms, 2(2), 66–88.Mittag, J., Thomas, F., Härri, J., & Hartenstein, H. (2009). A comparison of single-and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehicular internetworking, Beijing (pp. 69–78).Sommer, C., Tonguz, O., & Dressler, F. (2010). Adaptive beaconing for delay-sensitive and congestion-aware traffic information systems. In Proceedings of the 2010 IEEE international vehicular networking conference (VNC), New Jersey (pp. 1–8).Guan, X., Sengupta, R., Krishnan, H., & Bai, F. (2007). A feedback-based power control algorithm design for vanet. In Proceedings of the 2007 IEEE international conference on mobile networking for vehicular environments, USA (pp. 67–72).AL-Hashimi, H., Bakar, K., & Ghafoor, K. (2011). Inter-domain proxy mobile ipv6 based vehicular network. Network Protocols and Algorithms, 2(4), 1–15.Rawat, D., Popescu, D., Yan, G., & Olariu, S. (2011). Enhancing vanet performance by joint adaptation of transmission power and contention window size. Transactions on Parallel and Distributed Systems, 22(9), 1528–1535.European-ITS (2009) Eits-technical report 102 638 v1.1.1, European Telecommunications Standards Institute (ETSI), http://www.etsi.org/WebSite/homepage.aspxNHTSA, I. Joint program office”, report to congress on the national highway traffic safety administration its program, program progress during 1992–1996 and strategic plan for 1997–2002, US Department of Transportation, Washington, DC.Godbole, D., Sengupta, R., Misener, J., Kourjanskaia, N., & Michael, J. (1998). Benefit evaluation of crash avoidance systems. Transportation Research, 1621(1), 1–9.Reinders, R., van Eenennaam, M., Karagiannis, G., & Heijenk, G. (2004). Contention window analysis for beaconing in vanets. In Proceedings of the 2011 IEEE international conference on wireless communications and mobile computing (IWCMC), Istanbul (pp. 1481–1487).Yang, L., Guo, J., & Wu, Y. (2008). Channel adaptive one hop broadcasting for vanets. In Proceedings of the 2008 IEEE international conference on intelligent transportation systems, Beijing (pp. 369–374).Tseng, Y., Ni, S., Chen, Y., & Sheu, J. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 8(2), 153–167.van Eenennaam, E. M., Karagiannis, G., & Heijenk, G. (2010). Towards scalable beaconing in vanets. In Proceedings of the 2010 ERCIM workshop on eMobility, Lulea (pp. 103–108).Ros, F., Ruiz, P., & Stojmenovic, I. (2012). Acknowledgment-based broadcast protocol for reliable and efficient data dissemination in vehicular ad-hoc networks. IEEE Transactions on Mobile Computing, 11(1), 33–46.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2006). Distributed fair transmit power adjustment for vehicular ad hoc networks. In Proceedings of the 2007 IEEE international conference on sensor and ad hoc communications and networks, Reston, VA (pp. 479–488).Artimy, M. (2007). Local density estimation and dynamic transmission-range assignment in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 8(3), 400–412.Caizzone, G., Giacomazzi, P., Musumeci, L., & Verticale, G. (2005). A power control algorithm with high channel availability for vehicular ad hoc networks. In Proceedings of the 2005 IEEE international conference on communications, Seoul (pp. 3171–3176).Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2009). Vehicle-to-vehicle communication: Fair transmit power control for safety critical information. IEEE Transaction for Vehicular Technology, 58(7), 3684–3703.Torrent-Moreno, M., Schmidt-Eisenlohr, F., Fubler, H., & Hartenstein, H. (2006). Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In Proceedings of the 2007 IEEE conference on wireless communications and networking, USA (pp. 385–391).NS, Network simulator (June 2011). http://nsnam.isi.edu/nsnam/index.php/MainPageNakagami, M. (1960). The m-distribution: A general formula of intensity distribution of rapid fadinge. In W. C. Hoffman (Ed.), Statistical method of radio propagation. New York: Pergamon Press.Narayanaswamy, S., Kawadia, V., Sreenivas, R., & Kumar, P. (2002). Power control in ad-hoc networks: Theory, architecture, algorithm and implementation of the compow protocol. In Proceedings of the 2002 European wireless conference next generation wireless networks: technologies, protocols, Italy (pp. 1–6).Cheng, P., Lee, K., Gerla, M., & Harri, J. (2010). Geodtn+ nav: Geographic dtn routing with navigator prediction for urban vehicular environments. Mobile Networks and Applications, 15(1), 61–82.Gomez, J., & Campbell, A. (2004). A case for variable-range transmission power control in wireless multihop networks. In Proceedings twenty-third annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 1425–1436).Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multihop wireless networks using transmit power adjustment. In Proceedings nineteenth annual joint conference of the IEEE computer and communications societies, Hong kong (pp. 404–413).Artimy, M., Robertson, W., & Phillips, W. (2005). Assignment of dynamic transmission range based on estimation of vehicle density. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany (pp. 40–48).Samara, G., Ramadas, S., & Al-Salihy, W. (2010). Safety message power transmission control for vehicular ad hoc networks. Computer Science, 6(10), 1027–1032.Rezaei, S., Sengupta, R., Krishnan, H., Guan, X., & Student, P. (2008). Adaptive communication scheme for cooperative active safety system.Rezaei, S., Sengupta, R., Krishnan, H., & Guan, X. (2007). Reducing the communication required by dsrc-based vehicle safety systems. In Proceedings of the 2007 IEEE international conference on intelligent transportation systems, Bellevue, WA (pp. 361–366).Sommer, C., Tonguz, O., & Dressler, F. (2011). Traffic information systems: Efficient message dissemination via adaptive beaconing. IEEE Communications Magazine, 49(5), 173–179.Thaina, C., Nakorn, K., & Rojviboonchai, K. (2011). A study of adaptive beacon transmission on vehicular ad-hoc networks. In Proceeding of the 2011 IEEE 13th international conference on communication technology (ICCT), Vancouver (pp. 597–602).Boukerche, A., Rezende, C., & Pazzi, R. (2009). Improving neighbor localization in vehicular ad hoc networks to avoid overhead from periodic messages. In Proceedings of the 2009 IEEE global telecommunications conference, USA (pp. 1–6).Bai, F., Sadagopan, N., & Helmy, A. (2008). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In Proceedings of the 2003 22th annual joint conference of the IEEE computer and communications, USA (pp. 825–835).Nguyen, H., Bhawiyuga, A., & Jeong, H. (2012). A comprehensive analysis of beacon dissemination in vehicular networks. In Proceedings of the 75th IEEE vehicular technology conference, Korea (pp. 1–5).Djahel, S., & Ghamri-Doudane, Y. (2012). A robust congestion control scheme for fast and reliable dissemination of safety messages in vanets. In Proceeding of the 2012 IEEE conference wireless communications and networking, Paris, France (pp. 2264–2269).O. Technologies (Augast 2012) Opnet modeler, http://www.opnet.com/Huang, C., Fallah, Y., Sengupta, R., & Krishnan, H. (2010). Adaptive intervehicle communication control for cooperative safety systems. IEEE Network, 24(1), 6–13.OPNET (June 2012) Opnet modeler, http://www.opnet.com/Kerner, B. (2004). The physics of traffic: Empirical freeway pattern features, engineering applications, and theory. Berlin: Springer.Vinel, A., Vishnevsky, V., & Koucheryavy, Y. (2008). A simple analytical model for the periodic broadcasting in vehicular ad-hoc networks. In Proceedings of the 2008 IEEE international GLOBECOM workshops, Philadelphia, PA (pp. 1–5).Mariyasagayam, N., Menouar, H., & Lenardi, M. (2009). An adaptive forwarding mechanism for data dissemination in vehicular networks. In Proceedings of the 2009 IEEE Vehicular Networking Conference, Boston (pp. 1–5).Hung, C., Chan, H., & Wu, E. (2008). Mobility pattern aware routing for heterogeneous vehicular networks. In Proceedings of the 2008 international conference on wireless communications and networking, Las Vegas (pp. 2200–2205).Yang, K., Ou, S., Chen, H., & He, J. (2007). A multihop peer-communication protocol with fairness guarantee for ieee 802.16-based vehicular networks. IEEE Transactions on Vehicular Technology, 56(6), 3358–3370.Lequerica, I., Ruiz, P., & Cabrera, V. (2010). Improvement of vehicular communications by using 3G capabilities to disseminate control information. IEEE Network Magazine, 24(1), 32–38.Oh, D., Kim, P., Song, J., Jeon, S., & Lee, H. (2005). Design considerations of satellite-based vehicular broadband networks. IEEE Wireless Communications Magazine, 12(5), 91–97.Ko, Y., Sim, M., & Nekovee, M. (2006). Wi-fi based broadband wireless access for users on the road. BT Technology Journal, 24(2), 123–129.Choffnes, D., & Bustamante, F. (2005). An integrated mobility and traffic model for vehicular wireless networks. In Proceedings of the 2005 ACM international workshop on vehicular ad hoc networks, Cologne (pp. 69–78).TIGER (October 2010) Topologically integrated geographic encoding and referencing system, http://www.census.gov/geo/www/tiger/Mittag, J., Thomas, F., Harri, J., & Hartenstein, H. (2009). A comparison of single and multi-hop beaconing in vanets. In Proceedings of the 2009 ACM international workshop on vehiculaar internetworking, Beijing (pp. 69–78).Rappaport, T. (1996). Wireless communications: Principles and practice (2nd ed.). New Jersey: Prentice Hall PTR

    Assessing the effectiveness of managed lane strategies for the rapid deployment of cooperative adaptive cruise control technology

    Get PDF
    Connected and Automated Vehicle (C/AV) technologies are fast expanding in the transportation and automotive markets. One of the highly researched examples of C/AV technologies is the Cooperative Adaptive Cruise Control (CACC) system, which exploits various vehicular sensors and vehicle-to-vehicle communication to automate vehicular longitudinal control. The operational strategies and network-level impacts of CACC have not been thoroughly discussed, especially in near-term deployment scenarios where Market Penetration Rate (MPR) is relatively low. Therefore, this study aims to assess CACC\u27s impacts with a combination of managed lane strategies to provide insights for CACC deployment. The proposed simulation framework incorporates 1) the Enhanced Intelligent Driver Model; 2) Nakagami-based radio propagation model; and 3) a multi-objective optimization (MOOP)-based CACC control algorithm. The operational impacts of CACC are assessed under four managed lane strategies (i.e., mixed traffic (UML), HOV (High Occupancy Vehicle)-CACC lane (MML), CACC dedicated lane (DL), and CACC dedicated lane with access control (DLA)). Simulation results show that the introduction of CACC, even with 10% MPR, is able to improve the network throughput by 7% in the absence of any managed lane strategies. The segment travel times for both CACC and non-CACC vehicles are reduced. The break-even point for implementing dedicated CACC lane is 30% MPR, below which the priority usage of the current HOV lane for CACC traffic is found to be more appropriate. It is also observed that DLA strategy is able to consistently increase the percentage of platooned CACC vehicles as MPR grows. The percentage of CACC vehicles within a platoon reaches 52% and 46% for DL and DLA, respectively. When it comes to the impact of vehicle-to-vehicle (V2V), it is found that DLA strategy provides more consistent transmission density in terms of median and variance when MPR reaches 20% or above. Moreover, the performance of the MOOP-based cooperative driving is examined. With average 75% likelihood of obtaining a feasible solution, the MOOP outperforms its counterpart which aims to minimize the headway objective solely. In UML, MML, and DL strategy, the proposed control algorithm achieves a balance spread among four objectives for each CACC vehicle. In the DLA strategy, however, the probability of obtaining feasible solution falls to 60% due to increasing size of platoon owing to DLA that constraints the feasible region by introduction more dimensions in the search space. In summary, UML or MML is the preferred managed lane strategy for improving traffic performance when MPR is less than 30%. When MRP reaches 30% or above, DL and DLA could improve the CACC performance by facilitating platoon formation. If available, priority access to an existing HOV lane can be adopted to encourage adaptation of CACC when CACC technology becomes publically available
    • …
    corecore