3,371 research outputs found

    A performance model of communication in the quarc NoC

    Get PDF
    Networks on-chip (NoC) emerged as a promising communication medium for future MPSoC development. To serve this purpose, the NoCs have to be able to efficiently exchange all types of traffic including the collective communications at a reasonable cost. The Quarc NoC is introduced as a NOC which is highly efficient in performing collective communication operations such as broadcast and multicast. This paper presents an introduction to the Quarc scheme and an analytical model to compute the average message latency in the architecture. To validate the model we compare the model latency prediction against the results obtained from discrete-event simulations

    Energy Efficient Network Generation for Application Specific NoC

    Get PDF
    Networks-on-Chip is emerging as a communication platform for future complex SoC designs, composed of a large number of homogenous or heterogeneous processing resources. Most SoC platforms are customized to the domainspecific requirements of their applications, which communicate in a specific, mostly irregular way. The specific but often diverse communication requirements among cores of the SoC call for the design of application-specific network of SoC for improved performance in terms of communication energy, latency, and throughput. In this work, we propose a methodology for the design of customized irregular network architecture of SoC. The proposed method exploits priori knowledge of the application2019;s communication characteristic to generate an energy optimized network and corresponding routing tables

    Statistical approach to NoC design

    Get PDF
    Chip multiprocessors (CMPs) combine increasingly many general-purpose processor cores on a single chip. These cores run several tasks with unpredictable communication needs, resulting in uncertain and often-changing traffic patterns. This unpredictability leads network-on-chip (NoC) designers to plan for the worst-case traffic patterns, and significantly over-provision link capacities. In this paper, we provide NoC designers with an alternative statistical approach. We first present the traffic-load distribution plots (T-Plots), illustrating how much capacity over-provisioning is needed to service 90%, 99%, or 100% of all traffic patterns. We prove that in the general case, plotting T-Plots is #P-complete, and therefore extremely complex. We then show how to determine the exact mean and variance of the traffic load on any edge, and use these to provide Gaussian-based models for the T-Plots, as well as guaranteed performance bounds. Finally, we use T-Plots to reduce the network power consumption by providing an efficient capacity allocation algorithm with predictable performance guarantees. © 2008 IEEE

    Statistical approach to networks-on-chip

    Get PDF
    Chip multiprocessors (CMPs) combine increasingly many general-purpose processor cores on a single chip. These cores run several tasks with unpredictable communication needs, resulting in uncertain and often-changing traffic patterns. This unpredictability leads network-on-chip (NoC) designers to plan for the worst case traffic patterns, and significantly overprovision link capacities. In this paper, we provide NoC designers with an alternative statistical approach. We first present the traffic-load distribution plots (T-Plots), illustrating how much capacity overprovisioning is needed to service 90, 99, or 100 percent of all traffic patterns. We prove that in the general case, plotting T-Plots is #P-complete, and therefore extremely complex. We then show how to determine the exact mean and variance of the traffic load on any edge, and use these to provide Gaussian-based models for the T-Plots, as well as guaranteed performance bounds. We also explain how to practically approximate T-Plots using random-walk-based methods. Finally, we use T-Plots to reduce the network power consumption by providing an efficient capacity allocation algorithm with predictable performance guarantees. © 2006 IEEE

    Physical-aware link allocation and route assignment for chip multiprocessing

    Get PDF
    The architecture definition, design, and validation of the interconnect networks is a key step in the design of modern on-chip systems. This paper proposes a mathematical formulation of the problem of simultaneously defining the topology of the network and the message routes for the traffic among the processing elements of the system. The solution of the problem meets the physical and performance constraints defined by the designer. The method guarantees that the generated solution is deadlock free. It is also capable of automatically discovering topologies that have been previously used in industrial systems. The applicability of the method has been validated by solving realistic size interconnect networks modeling the typical multiprocessor systems.Peer ReviewedPostprint (published version

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Application-Aware Deadlock-Free Oblivious Routing

    Get PDF
    Conventional oblivious routing algorithms are either not application-aware or assume that each flow has its own private channel to ensure deadlock avoidance. We present a framework for application-aware routing that assures deadlock-freedom under one or more channels by forcing routes to conform to an acyclic channel dependence graph. Arbitrary minimal routes can be made deadlock-free through appropriate static channel allocation when two or more channels are available. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic approach for producing deadlock-free routes that minimize maximum channel load. The heuristic algorithm is calibrated using the MILP algorithm and evaluated on a number of benchmarks through detailed network simulation. Our framework can be used to produce application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof

    Circuit design and analysis for on-FPGA communication systems

    No full text
    On-chip communication system has emerged as a prominently important subject in Very-Large- Scale-Integration (VLSI) design, as the trend of technology scaling favours logics more than interconnects. Interconnects often dictates the system performance, and, therefore, research for new methodologies and system architectures that deliver high-performance communication services across the chip is mandatory. The interconnect challenge is exacerbated in Field-Programmable Gate Array (FPGA), as a type of ASIC where the hardware can be programmed post-fabrication. Communication across an FPGA will be deteriorating as a result of interconnect scaling. The programmable fabrics, switches and the specific routing architecture also introduce additional latency and bandwidth degradation further hindering intra-chip communication performance. Past research efforts mainly focused on optimizing logic elements and functional units in FPGAs. Communication with programmable interconnect received little attention and is inadequately understood. This thesis is among the first to research on-chip communication systems that are built on top of programmable fabrics and proposes methodologies to maximize the interconnect throughput performance. There are three major contributions in this thesis: (i) an analysis of on-chip interconnect fringing, which degrades the bandwidth of communication channels due to routing congestions in reconfigurable architectures; (ii) a new analogue wave signalling scheme that significantly improves the interconnect throughput by exploiting the fundamental electrical characteristics of the reconfigurable interconnect structures. This new scheme can potentially mitigate the interconnect scaling challenges. (iii) a novel Dynamic Programming (DP)-network to provide adaptive routing in network-on-chip (NoC) systems. The DP-network architecture performs runtime optimization for route planning and dynamic routing which, effectively utilizes the in-silicon bandwidth. This thesis explores a new horizon in reconfigurable system design, in which new methodologies and concepts are proposed to enhance the on-FPGA communication throughput performance that is of vital importance in new technology processes
    • …
    corecore