3 research outputs found

    Scalable, reliable, power-efficient communication for hardware transactional memory

    Get PDF
    Journal ArticleIn a hardware transactional memory system with lazy versioning and lazy conflict detection, the process of transaction commit can emerge as a bottleneck. This is especially true for a large-scale distributed memory system where multiple transactions may attempt to commit simultaneously and co-ordination is required before allowing commits to proceed in parallel. In this paper, we propose novel algorithms to implement commit that are more scalable (in terms of delay and energy) and are free of deadlocks/livelocks. We show that these algorithms have similarities with the token cache coherence concept and leverage these similarities to extend the algorithms to handle message loss and starvation scenarios. The proposed algorithms improve upon the state-of-the-art by yielding up to a 7X reduction in commit delay and up to a 48X reduction in network messages. These translate into overall performance improvements of up to 66% (for synthetic workloads with average transaction length of 200 cycles), 35% (for average transaction length of 1000 cycles), 8% (for average transaction length of 4000 cycles), and 41% (for a collection of SPLASH-2 programs)

    Efficient and scalable starvation prevention mechanism for token coherence

    Full text link
    [EN] Token Coherence is a cache coherence protocol that simultaneously captures the best attributes of the traditional approximations to coherence: direct communication between processors (like snooping-based protocols) and no reliance on bus-like interconnects (like directory-based protocols). This is possible thanks to a class of unordered requests that usually succeed in resolving the cache misses. The problem of the unordered requests is that they can cause protocol races, which prevent some misses from being resolved. To eliminate races and ensure the completion of the unresolved misses, Token Coherence uses a starvation prevention mechanism named persistent requests. This mechanism is extremely inefficient and, besides, it endangers the scalability of Token Coherence since it requires storage structures (at each node) whose size grows proportionally to the system size. While multiprocessors continue including an increasingly number of nodes, both the performance and scalability of cache coherence protocols will continue to be key aspects. In this work, we propose an alternative starvation prevention mechanism, named priority requests, that outperforms the persistent request one. This mechanism is able to reduce the application runtime more than 20 percent (on average) in a 64-processor system. Furthermore, thanks to the flexibility shown by priority requests, it is possible to drastically minimize its storage requirements, thereby improving the whole scalability of Token Coherence. Although this is achieved at the expense of a slight performance degradation, priority requests still outperform persistent requests significantly.This work was partially supported by the Spanish MEC and MICINN, as well as European Commission FEDER funds, under Grants CSD2006-00046 and TIN2009-14475-C04-01. Antonio Robles is taking a sabbatical granted by the Universidad Politecnica de Valencia for updating his teaching and research activities.Cuesta Sáez, BA.; Robles Martínez, A.; Duato Marín, JF. (2011). Efficient and scalable starvation prevention mechanism for token coherence. IEEE Transactions on Parallel and Distributed Systems. 22(10):1610-1623. doi:10.1109/TPDS.2011.30S16101623221

    Efficient techniques to provide scalability for token-based cache coherence protocols

    Full text link
    Cache coherence protocols based on tokens can provide low latency without relying on non-scalable interconnects thanks to the use of efficient requests that are unordered. However, when these unordered requests contend for the same memory block, they may cause protocols races. To resolve the races and ensure the completion of all the cache misses, token protocols use a starvation prevention mechanism that is inefficient and non-scalable in terms of required storage structures and generated traffic. Besides, token protocols use non-silent invalidations which increase the latency of write misses proportionally to the system size. All these problems make token protocols non-scalable. To overcome the main problems of token protocols and increase their scalability, we propose a new starvation prevention mechanism named Priority Requests. This mechanism resolves contention by an efficient, elegant, and flexible method based on ordered requests. Furthermore, thanks to Priority Requests, efficient techniques can be applied to limit the storage requirements of the starvation prevention mechanism, to reduce the total traffic generated for managing protocol races, and to reduce the latency of write misses. Thus, the main problems of token protocols can be solved, which, in turn, contributes to wide their efficiency and scalability.Cuesta Sáez, BA. (2009). Efficient techniques to provide scalability for token-based cache coherence protocols [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/6024Palanci
    corecore