
S c a l a b l e , R e l i a b l e , P o w e r - E f f i c i e n t

C o m m u n i c a t i o n f o r H a r d w a r e

T r a n s a c t i o n a l M e m o r y

S e t h H . P u g s l e y , M a n u A w a s t h i , N i t i M a d a n ,

N a v e e n M u r a l i m a n o h a r , R a j e e v

B a l a s u b r a m o n i a n

U U C S - 0 8 - 0 0 1

School of Computing
University of Utah

Salt Lake City, UT 84112 USA

January 25, 2008

A b s t r a c t

In a hardware transactional memory system with lazy versioning and lazy conflict detec
tion, the process of transaction commit can emerge as a bottleneck. This is especially true
for a large-scale distributed memory system where multiple transactions may attempt to
commit simultaneously and co-ordination is required before allowing commits to proceed
in parallel. In this paper, we propose novel algorithms to implement commit that are more
scalable (in terms of delay and energy) and are free of deadlocks/livelocks. We show that
these algorithms have similarities with the token cache coherence concept and leverage
these similarities to extend the algorithms to handle message loss and starvation scenarios.
The proposed algorithms improve upon the state-of-the-art by yielding up to a 7X reduc
tion in commit delay and up to a 48X reduction in network messages. These translate into
overall performance improvements of up to 66% (for synthetic workloads with average
transaction length of 200 cycles), 35% (for average transaction length of 1000 cycles), 8%
(for average transaction length of 4000 cycles), and 41% (for a collection of SPLASH-2
programs).

1 I n t r o d u c t i o n

Transactional Memory (TM) [23] is viewed as a promising approach to simplify the task of
parallel programming. In a TM system, critical sections are encapsulated within transac
tions and either the software or hardware provides the illusion that the transaction executes
atomically and in isolation. Many recent papers [2, 9, 29, 35] have argued that the imple
mentation of transactional semantics in hardware is feasible. Most of these studies have
considered small-scale multiprocessor systems (fewer than 16 processors) and have shown
that hardware transactional memory (HTM) imposes tolerable overheads in terms of per
formance, power, and area. However, it is expected that the number of cores on a chip will
scale with Moore's Law. Further, transactional parallel programs will also be executed on
multi-processors composed of many multi-core chips. If HTM is to be widely adopted for
parallel programming, it is necessary that the implementation scale beyond hundreds of
cores. The HTM community is just starting to explore such scalable designs.

An HTM system is typically classified by its choice of versioning and conflict detection
mechanisms. For example, the Wisconsin LogTM implementation [29] employs eager ver
sioning and eager conflict detection. The implementation is expected to have the same scal
ability properties as a directory-based cache coherence protocol. A salient dis-advantage of
this approach is that it can lead to deadlocks/livelocks and requires a contention manager.
A second approach, employed by the Stanford TCC project [9], adopts lazy versioning and
lazy conflict detection. While this approach is deadlock-free, it is inherently less scalable.
A recent paper attempts to extend the TCC implementation to improve its scalability [9], but
leaves much room for improvement (explained in Section 2). Given the above advantages
and disadvantages of each implementation, there is no consensus within the community
on the most promising approach for HTM. In fact, a recent paper [3] describes how either
system (and other flavors of HTM) can lead to performance pathologies for various code
patterns.

Prior studies have shown that for most benchmark suites, more than half the transactions
contain fewer than 200 instructions [10]. The state-of-the-art commit process in TCC [9] re
quires at least four (mostly serialized) round-trip messages and on a communication-bound
system, this delay can represent a sizeable fraction of the total transaction execution time
(20-35% for benchmarks with short transactions [9]). Since the Stanford TCC approach to
HTM is among the front-runners and since commit scalability is one of the bottlenecks for
that system, this paper focuses on improving the scalability of the commit process for that
design.

We propose novel algorithms that significantly reduce delay, are free of deadlocks/livelocks,
do not employ a centralized agent, do not produce new starvation scenarios, and signif
icantly reduce the number of network messages (and associated power), relative to the

1

Scalable-TCC implementation. These algorithms are more scalable because the message
requirement is not a function of the number of nodes in the system. We design a basic
simple algorithm that requires very few network messages and then propose a few perfor
mance optimizations. We also show that the basic algorithm has strong similarities with
the token cache coherence concept [25], allowing us to leverage existing mechanisms to
handle starvation and message loss.

In Section 2, we provide details on the state-of-the-art Scalable-TCC implementation and
identify inefficiencies in its commit algorithm. Sections 3 and 4 describe our proposed
algorithms and their reliable versions. Evaluation results are discussed in Section 5, related
work in Section 6, and conclusions in Section 7.

2 B a c k g r o u n d

In an HTM system, the hardware provides the illusion that each transaction executes atom
ically and in isolation. In reality, each thread of the application can start executing a trans
action in parallel. The hardware keeps track of the cache lines that are read and written by
the transaction (referred to as the read-set and write-set). In a lazy versioning system such
as Stanford-TCC, writes are not propagated beyond the private cache. If the transaction
reaches the end without being aborted, it commits by making all of its writes visible to the
rest of the system. The cache coherence protocol ensures that other shared copies of these
cache lines are invalidated. At this time, other in-progress transactions that may have read
these cache lines abort and re-start. In this lazy versioning system, a number of steps are
taken during the commit process, possibly making it a bottleneck in a large-scale system.
The algorithm for commit can be made quite simple if only one transaction is allowed to
commit at a time. However, this is clearly not acceptable for a system with more than a
hundred processors.

In a recent paper, Chafi et al. [9] attempt to provide scalable parallel commits in a large-
scale multiprocessor system. The following baseline platform is assumed in that work.
Numerous processors (possibly many multi-cores) are connected with a scalable grid net
work that allows message re-ordering. Distributed shared-memory is employed along with
a directory-based cache coherence protocol. Since memory is distributed, the directory as
sociated with each memory block is also distributed1. The problem with allowing multiple

1A similar platform is also meaningful for a single multi-core processor. In such a multi-core, each core
has a private L1, and the large shared L2 maintains a directory to ensure coherence among L1s. The large
L2 may be banked and distributed across the chip, so each core has one L2 bank in close proximity and
L2 requests are routed to the appropriate bank based on the index bits (just as requests are routed to the
appropriate memory and directory based on the address in a distributed shared-memory multiprocessor).

2

parallel transaction commits is that a subset of these transactions may conflict with each
other. The discovery of these conflicts mid-way through the commit process must be han
dled elegantly. As a solution, Chafi et al. propose the following Scalable-TCC algorithm
that is invoked by a transaction when it is ready to commit:

1. Obtain TID: A centralized agent is contacted to obtain a transaction ID (TID). The
TIDs enforce an ordering on transaction commits. The hardware goes on to ensure that the
program behaves as if transactions execute atomically in the order of their TIDs.

2. Probe write-set directories: For every directory in the transaction’s write-set, a probe
message is sent to check if earlier transactions (those with smaller TIDs) have already sent
their writes to that directory. If this condition is not true, probes are sent periodically until
the condition is true. For every directory that is not part of the transaction’s write-set, a skip
message is sent so that directory knows not to expect any writes from this transaction.

3. Send mark messages: For all the cache lines in the transaction’s write-set, mark mes
sages are sent to the corresponding directories. This lets the directories know that these
cache lines will soon transition to an Owned state as soon as the final commit message is
received from the transaction.

4. Probe read-set directories: For every directory in the transaction’s read-set, another
probe message is sent to check if those directories have already seen writes from earlier
transactions. If this check succeeds, the transaction can be sure that it will not be forced to
abort because of an earlier transaction’s write. Probes are sent periodically until the check
succeeds.

5. Send commit messages: A commit message is sent to every directory in the transac
tion’s write-set. The corresponding cache lines transition to Owned state (with the corre
sponding transaction’s core as owner) and send out invalidates to other caches that may
share those cache lines. These invalidates may cause a younger transaction to abort if the
lines are part of the younger transaction’s read-set. The directory can service the next TID
after receiving ACKs for all the invalidates.

To summarize, the above algorithm first employs a centralized agent to impart an ordering
on the transactions. Two transactions can proceed with some of the steps of the commit
algorithm in parallel as long as their read-set and write-set directories are distinct. If two
transactions have to access the same directory, the process is serialized based on the TIDs
of the two transactions. In other words, each directory allows only a single transaction
to commit at a time, but assuming that transactions access different directories, there is a
high degree of commit parallelism. The algorithm is deadlock- and livelock-free because

3

transactions are assigned increasing TIDs when they contact the centralized agent and a
transaction is never forced to wait upon a transaction with a higher TID.

The total number of messages required per commit (not including the invalidates and ACKs
sent by the cache coherence protocol) equals

2 + 2 w + (N - w) + W + 2r + w + P R = N + 2w + W + 2r + P R + 2,
where represents the number of directories, represents the number of directories in
the write-set, represents the number of cache lines in the write-set, represents the
number of directories in the read-set, and P R equals the number of probe re-tries. It must
be pointed out that w;, W , and r are typically small [9] and may not scale up with Ar if the
application has good locality.

There are many inefficiencies in this algorithm. Firstly, a centralized agent hands out TIDs,
a feature that is inherently non-scalable (although, the argument can be made that the data
bandwidth requirements in and out of this centralized agent are modest). Secondly, all of
the directories must be contacted in Step 2 above, an operation that clearly scales poorly as
the number of cores is increased. It is well-known that on-chip communication is a huge
bottleneck for performance and power, especially when packet-switched grid networks with
bulky routers are required to support high-bandwidth communication [13, 20]. Thirdly, if
the initial probes in steps 2 and 4 fail, the probes must be periodically re-tried.

In this paper, we attempt to address all of the above inefficiencies: our algorithms employ
no centralized agent and significantly reduce the number of required messages (by avoiding
re-tries and communication with every directory).

A simple analysis shows that for the Scalable-TCC algorithm, even under the best condi
tions, a single transaction commit must endure four (mostly) sequential round-trip mes
sages on the network (not counting the invalidation and acknowledgment messages orig
inating from the written cache lines). If the application has high locality, three of these
round-trips (write-probe, read-probe, and commit) need not travel far (optimistically as
suming that skip messages to distant nodes are not on the critical path and there are no
re-tries), while one of the round-trips (obtaining the TID) must travel half-way across the
network on average. Projections show that such on-chip delays can exceed 50 cycles at
future technologies [31, 38]. If the multiprocessor system is composed of multiple multi
core chips, contacting the centralized TID vendor may require off-chip access and po
tentially many hundreds of cycles. Thus, the commit process on average can take of the
order of 100 cycles (our detailed simulation results show that this number is in the range
of 57-671 cycles). This is a huge overhead, given that 50% of all transactions are less
than 200 instructions long in many benchmark suites [10]. The latency and power cost of
the commit process is less of a bottleneck if applications employ large transactions. As
shown in [9], the Scalable-TCC commit algorithm imposes low performance overheads for

4

most benchmarks with large transactions, but accounts for 20-35% of 64-node execution
time for applications with smaller transaction sizes (volrend, equake, Cluster GA). It is
hard to predict if future transactional workloads will be dominated by short transactions
(and if the commit process will correspondingly represent a huge bottleneck), but analyses
of existing multi-threaded applications indicate that most transactions are short [10]. We
therefore believe that the commit problem in large-scale multiprocessors employing lazy
versioning/conflict-detection is worth closer attention. To better understand the relationship
with transaction size, our analyses of synthetic workloads in Section 5 show behaviors for
a range of average transaction lengths. Further, with interconnect/router power emerging
as a major bottleneck [13], it is important to improve upon algorithms with O(N) message
requirements.

3 S c a l a b l e C o m m i t A l g o r i t h m s

We next propose commit algorithms that avoid a centralized resource and have message
requirements that do not directly scale up with the number of nodes. Note that we are
preserving most of the Scalable-TCC architecture except the algorithm (Steps 1-5 in the
previous Section) that determines when a transaction can make its writes permanent. We
begin with a conceptually simple algorithm and then add a modest amount of complexity
to accelerate its execution time. Similar to the work by Chafi et al. [9], we assume a
distributed shared memory system with a directory-based cache coherence protocol. To
keep the discussion simple, we assume that the number of processors equals the number of
directories.

3 .1 B a s i c A l g o r i t h m : S e q u e n t i a l C o m m i t (S E Q)

We introduce an “Occupied” bit in each directory that indicates that a transaction dealing
with this directory is in the middle of its commit phase. In this first algorithm, a transaction
sequentially proceeds to “occupy” every directory in its read- and write-set in ascending
numerical order (Step 1) (the transaction must wait for an acknowledgment from a directory
before proceeding to occupy the next directory). A directory is not allowed to be occupied
by multiple transactions, so another transaction that wishes to access one of the above
directories will have to wait for the first transaction to commit. After Step 1, the first
transaction knows it will no longer be forced to abort by another transaction and it proceeds
with sending information about its write-set to the corresponding directories (Step 2); these
cache lines will be marked as Owned in the directory and invalidations are sent to other
sharers of these lines. After the directory receives all ACKs for its invalidations, it re-sets
its Occupied bit. As part of Step 2, the transaction also sends Occupancy Release messages

5

to directories in its read-set.

If a transaction attempts to occupy a directory that is already occupied, the request is
buffered at the directory. If the buffer is full, a NACK is sent back and the transaction
is forced to re-try its request. In our experiments, we observe that re-tries are uncommon
for reasonable buffer sizes. The buffered request will eventually be handled when the ear
lier transaction commits. There is no possibility of a deadlock because transactions occupy
directories in numerically ascending order and there can be no cycle of dependences. As
sume transaction A is waiting for transaction B at directory i. Since transaction B has
already occupied directory , it can only stall when attempting to occupy directory , where
j > i. Thus, a stalled transaction can only be waiting for a transaction that is stalled at a
higher numbered directory, eliminating the possibility for a cycle of resource dependences.
This algorithm imposes an ordering on conflicting transactions without the use of a cen
tralized agent: the transaction to first occupy the smallest-numbered directory that is in the
read/write-sets of both transactions, will end up committing first.

The total number of messages with this algorithm equals
2 (w + r) + W + r + P R ! = W + 2 w + 3 r + P R ' ,

where P R ' equals the number of re-tries because of lack of buffer space.

The SEQ algorithm can suffer from transaction starvation. If two transactions conflict, it
is possible that one of them always occupies the smallest-numbered conflicting directory
first (because of proximity to the directory or because it is simply a shorter-running trans
action) and aborts the other. These problems can arise in any lazy HTM system, especially
if frequent short transactions repeatedly conflict with a large transaction (referred to as the
Starving Elder pathology in [3]). Even in Scalable-TCC, a transaction, that consistently
beats another transaction to the centralized vendor, will end up starving the latter. The
probability of starvation should be similar in both algorithms as starvation in both cases is
determined by the consistent outcome of a single race: who reaches the lowest-numbered
common directory (SEQ), or who reaches the centralized vendor (Scalable-TCC). Addi
tional mechanisms are required to handle such situations. Typically, an aborted transaction
must release the directories that it has occupied and it must take itself out of the buffer of
the directory it is currently waiting upon (just as an aborted transaction in Scalable-TCC re
linquishes its TID). If a transaction realizes that it has aborted S' successive times, it signals
starvation and does not relinquish its position in the directories and buffers. It will even
tually occupy all of its directories and succeed. This has the same effect as the starvation
mechanism in the Scalable-TCC algorithm, where a starved transaction does not relinquish
its TID on an abort and eventually becomes the oldest transaction.

It is worth reiterating that we are making no other changes to the Scalable-TCC architecture
apart from the algorithm for commit. Checks for data conflicts between transactions are

6

not being negatively impacted: in fact, if transactions can proceed sooner with propagating
their writes, conflicts will be detected sooner and the aborted transaction wastes less power
and cycles.

3 .2 O p t i m i z a t i o n s t o t h e B a s i c A l g o r i t h m

There are a few inefficiencies in the basic SEQ algorithm that we attempt to address in this
sub-section.

3.2.1 Parallel Reader Optimization - SEQ-PRO

The simple SEQ algorithm does not make a distinction between directories in the read and
write sets. Each directory must be occupied sequentially, with no commit parallelism at a
given directory. However, if two transactions only have reads to a given directory, there
is no possibility of a conflict at this directory. These two transactions can simultaneously
occupy the directory and safely proceed with the rest of their commit process. In other
words, we can allow multiple transactions to simultaneously occupy a directory as long
as none of these transactions write to this directory. Note that this optimization is also
deadlock-free as all transactions proceed to occupy directories in a sequential order.

This optimization (SEQ-PRO) entails minor overheads. It does not entail any additional
messages, but we now need separate Read Occupied and Write Occupied bits with their
own buffers. We must make sure there is only one write bit occupier or any number of
read bit occupiers (and each of the occupiers must be tracked). We also need policies
to handle new requests. New read-occupancy requests are always granted if the Write
Occupied bit is not set and there are no waiting writers, else buffered (this prevents writers
from being starved). New write-occupancy requests must be buffered if either of the bits
is set, else granted. When a Read or Write Occupied bit is released and there are waiting
readers and writers, we give priority to the writers unless the number of waiting readers
exceeds a threshold. We observed that our results are not very sensitive to the choice of
policy/thresholds.

3.2.2 Occupancy Stealing with Timestamps - SEQ-TS

While the SEQ algorithm helps reduce the total number of required messages, the de
lay may be higher than that of the scalable-TCC algorithm because each of the directories
must be occupied in sequential order. To remove the dependence on this sequential process,
we propose the following timestamp-based commit algorithm (SEQ-TS). Transactions at

7

tempt to occupy directories in parallel and a transaction is allowed to steal a directory from
another transaction if it is deemed to have higher priority. Priority is determined by age:
every occupancy request is accompanied by the timestamp of when the transaction began
its commit process. For such an algorithm to work, we need every core to participate in
a distributed clock algorithm [22] so they have an approximate notion of relative time2.
Low-overhead forms of such distributed clocks are also employed for conflict resolution in
other flavors of HTM [29, 34] and for fault-detection [28].

In this algorithm, transaction T1 sends out parallel requests to occupy directories in its read-
and write-sets. If a directory is occupied by a transaction (T2) with a younger timestamp
(the core number is used as a tie-breaker), the new request is forwarded to the transaction
(T2) that currently occupies that directory (else, the new request is buffered). If T2 has
already occupied all of its directories and moved on to Step 2 (of the SEQ algorithm),
it sends a NACK to T1 and T1 tries again later. If T2 is still trying to occupy its set of
directories, it will hand off occupancy of the directory to T1. T2 sends a message to the
directory to update that T1 is the current occupier and to place T2 at the head of the buffer,
and sends an ACK to T1 to indicate its occupancy of the directory.

Such a mechanism always guarantees forward progress for the oldest transaction. Even
though directories are being occupied out of order, deadlocks cannot happen. A transaction
can only be waiting on an older transaction or on a transaction that has already moved to
Step 2, eliminating the possibility for a cycle of dependences. Starvation may still occur:
the oldest transaction may be unable to steal directory occupancy from a short transaction
that quickly occupies its directories and moves on to Step 2. If this happens frequently
enough, T1 can signal starvation and issue a request that places it at the head of the buffer.

While more complex, an important feature of this algorithm is that attempts to occupy the
directories happen in parallel. As we show in the next section, the correspondence with the
token coherence concept implies that complex algorithms can be correctly built without
worrying about various corner cases, as long as specific invariants are preserved.

3.2.3 Other Optimizations

We also experimented with two other variants of the SEQ algorithm. In the first variant, a
transaction optimistically sends out occupancy requests in parallel. If any of these requests
fail to occupy a directory, the transaction falls back upon the sequential process (while re
linquishing any directories that it may have occupied out-of-order). In the second variant,

2In short, every message send/receive increments the local clock, the clock value is piggy-backed on
outgoing messages, and the local clock is set to the clock value received in a message if it is higher than the
local clock value [22].

8

we use the notion of “momentum” instead of the timestamp - priorities are given to trans
actions that have occupied more directories (a transaction’s momentum). It is also possible
to construct other algorithm variants similar to the analysis by Scherer and Scott for soft
ware TM contention managers [37]. Both of the above variants did not yield good results
because they either frequently fall back upon the sequential process (variant 1) or because
they result in directory occupancies frequently changing hands (variant 2). We also do not
attempt optimizations similar to the MARK messages in the scalable-TCC algorithm. In
our basic SEQ algorithm, write addresses are sent to each directory only after all directo
ries are occupied. Instead, we can send write addresses to a directory right after it has been
occupied so that the final commit message is short. In our initial experiments, we observed
that this results in minor savings, while increasing buffering complexity, especially for the
optimized algorithms. Hence, we do not discuss the above variants any further in this paper.

There are also ways to start with the Scalable-TCC algorithm and alternatively reduce the
number of required messages and complexity. For example, in Step 1 of Scalable-TCC,
when the centralized agent is contacted to obtain the TID, the transaction can also commu
nicate its read and write sets to this agent. The agent keeps track of the read and write sets
for all transactions that have not finished their commit process. If the agent can confirm
that a new transaction has no conflicts with these outstanding transactions, it allows the
new transaction to proceed with its commit. The new transaction can now freely propagate
its writes and finally inform the centralized agent when it’s done. This approach increases
the bandwidth requirements in and out of the centralized agent. Similar to the approach
outlined for the BulkSC system [8], it may be possible to reduce this requirement with the
use of partial addresses or signatures that approximate the read and write sets. However,
we believe that a centralized resource is an inelegant choice for a scalable algorithm and
the single biggest source of long delays in the commit process - therefore, we do not fur
ther consider this option. As suggested in [9], a multicast network will help reduce the
overheads of having to send skip messages to every node in Scalable-TCC. Multicast can
cause the energy requirement3 to reduce from to (still a function of), but
the latency requirement remains .

4 D e s i g n i n g R e l i a b l e P r o t o c o l s

Due to shrinking transistor sizes and lower supply voltages, soft error rates in computer
systems are rising [30, 39]. Detection of such an error within the processing logic in a
router may result in a packet being dropped. The error rates in wire transmission are also
increasing because wire dimensions and wire spacing are shrinking as well, making them

3These analyses apply to a ring. For a grid, the multicast complexity is O (N) and O i \ / N) for energy and
delay, respectively.

9

Message lost Effect Solution

Directory Occupy Request Stalls the requesting transaction Transaction timeout and retry
Directory Grant Response Stalls every transaction dealing with that directory Transaction timeout and retry:

create a new occupancy bit with incremented counter
Directory Release Stalls every transaction dealing with that directory Directory timeout and probe:

create a new occupancy bit with incremented counter
NACK Stalls the requesting transaction Transaction timeout and retry

Table 1: Problems caused by message loss in the Sequential commit algorithm.

increasingly susceptible to high energy particles, noise, and interference from neighboring
channels [1, 14, 17, 18, 42]. Traditionally, communication buses have employed some
form of redundancy such as ECC to detect and recover from errors. However, due to the
proximity of wires within a communication channel, multiple bits can be simultaneously
corrupted and even ECC cannot aid in recovery from many such multiple-bit errors. When
such an error is detected, the received packet must be dropped4. Examples of recent efforts
to address these problems include [15, 19, 32].

Within a cache coherence protocol, message losses can be catastrophic, resulting in dead
locks and even permanent data loss (for example, when the packet contains a dirty cache
line that is undergoing writeback). Therefore, it is important that on-chip communication
protocols also be designed to handle message loss. This is a problem that is starting to gain
prominence [6, 16, 28, 40].

HTM protocols such as the ones described in previous sections, have two layers of mes
sages: the first layer that determines when a transaction can proceed with making its writes
visible and the second layer that relies on the cache coherence protocol to actually make
the writes visible. In this work, we do not worry about error resilience within the cache
coherence protocol - that issue is orthogonal to the problem of error resilience within the
HTM commit algorithms. Techniques to make the cache coherence protocol error-resilient
can be based on the work in [16, 28].

4 .1 A u g m e n t i n g t h e P r o t o c o l t o H a n d l e M e s s a g e L o s s

Message losses are equally problematic in the Scalable-TCC and Sequential commit algo
rithms. In this section, we simply focus on problems created in the Sequential algorithm
and how they can be addressed. We later show how variants of the Sequential algorithm
are especially amenable to error resiliency.

Alternatively, the sender can buffer every outgoing packet and re-send the packet if the receiver detects
an error and sends a NACK. This would require an ACK for every valid packet transfer so that the buffers
at the sender can be freed. We expect this approach (buffering and ACKing every packet) to have inordinate
power overheads.

10

Table 1 lists the problems caused by message loss as well as the proposed solutions to these
problems. We start by addressing the basic SEQ algorithm with no optimizations. We also
assume for now that only a single message loss happens at a time (addressing multiple
simultaneous message losses is left as future work).

The first message in the protocol (Table 1) is a request to occupy a directory. If this is lost,
the requesting transaction does not make forward progress. The transaction will escape
such a stall if it gets aborted. To avoid stalling indefinitely, the transaction must time-out
and re-try its directory occupy request if the request is not serviced soon enough. If there
was no message loss and the delays are being caused by long transactions, the directory
simply drops any redundant occupancy requests issued by transactions. If the occupancy
request message was not lost, but shows up much later because of traffic congestion, the
directory may believe that the transaction has made two separate occupancy requests and
may service both of them. If the transaction receives occupancy when it was not expecting
it, it simply returns the occupancy back to the directory (with the Directory Release mes
sage). The timeout window can be periodically adjusted to be much larger than average
occupancy wait times, as measured by the directories.

If a Directory Grant Response is lost, the requesting transaction does not make forward
progress and prevents forward progress for every other transaction that deals with that
directory. The same timeout mechanism as above can be adopted by the requesting trans
action. If the directory receives a request for occupancy from a transaction that it already
believes is the occupier, it can be concluded that the grant response was either lost or stuck
in the network. The directory can respond again with occupancy permissions. However,
this can lead to a problem if the initial response was simply stuck in the network and
is eventually delivered to the requester. This may lead to a situation where two differ
ent transactions believe they have occupancy of the directory. This must not be allowed.
Hence, the directory occupancy bit must have an associated counter (even a one-bit toggle
counter may suffice for low error rates) to indicate how many times the directory believes
the bit was lost. This counter is shipped with every grant response and all cores must be
informed when the counter is incremented. This enables a transaction to drop an earlier
grant response that may have been stuck in the network. This process is very similar to
the token re-creation process in the reliable token cache coherence protocol described in
[16] and we expand more on that analogy in the next sub-section. We do not reproduce the
minor implementation details [16] of that process here for space reasons.

The other important message in the most basic sequential protocol is the Directory Release
message sent by the transaction after it has occupied all directories in its commit set. If the
Directory Release message is lost, it stalls every subsequent transaction dealing with that
directory. This can be solved with a process similar for lost Directory Grant Responses. The
directory times out and sends a probe to the transaction that it believes is the occupier. The

11

transaction will possibly detect an inconsistency (it is either waiting to occupy that directory
or does not deal with that directory at all) and respond to the directory. At this point, the
directory will re-create an occupancy bit with an incremented counter and proceed. If
the initial Directory Release message was simply stuck in the network and is eventually
delivered, the directory drops the message because of the inconsistent counter.

The only other message introduced by the basic sequential protocol is the NACK sent by
the directory if the buffer is too full to accommodate a directory occupancy request. If this
message is lost, the behavior is exactly as if the directory occupancy request is lost.

Note that we have not discussed the other messages required for a transaction’s commit: the
messages that carry the written addresses/data and the invalidations and acknowledgements
corresponding to these blocks. These messages are part of the baseline cache coherence
protocol. A separate solution (such as those described in [16, 28]) is required to handle
message loss in the cache coherence protocol and is orthogonal to the focus of this paper
(the algorithm to determine when a transaction can proceed with propagating its updates)5.

The above changes to the protocol do not introduce any additional traffic when there is
no message loss (assuming that the timeout window is long enough and there are few
false alarms). The only performance degradation introduced is the time taken to detect
message loss and messages arising out of false alarms (these are both functions of the
timeout window). If we incorporate an adjustable timeout window, additional messages are
required to communicate the new timeout value to the cores: this is not a critical message
and will not lead to correctness issues if lost.

4 .2 A n a l o g y w i t h T o k e n C o h e r e n c e

The concept of token coherence was introduced by Martin et al. [25] as an abstraction to
build reliable and high-performance cache coherence protocols. In [25], the authors show
that a cache coherence protocol is correct if it fulfils a few basic invariants:

5The only caveat is that a transaction does not wait for ACKs for its writes before moving on to the next

transaction: this is not a violation of the sequential consistency model because any transaction that reads

a stale copy of the line will anyway abort. If the write notifi cation messages are lost, the transaction may

clear its write bits without realizing this. Thus, an error-resilient cache coherence protocol for a transactional

system may impose greater overheads (an ACK from the directory to the transaction after commit), but this

overhead is entailed regardless of the commit algorithm (Scalable-TCC or SEQ).

12

• Each block has T tokens in the system (T > number of processors).
• A processor can write a block only if it holds all T tokens for that block.
• A processor can read a block only if it holds at least one token for that block.
• If a coherence message contains one or more tokens, it must contain data.

Complex protocols can be built upon these basic invariants to improve performance. In
other words, processors can employ all kinds of complex algorithms to quickly acquire the
tokens they require. These algorithms need not be provably correct (meaning, some of the
messages of that algorithm can even be lost as long as they do not contain tokens), but
the protocol will still behave correctly if the invariants are satisfied. To avoid starvation,
the authors also describe the use of Persistent Requests to acquire tokens. The work in
[16, 28] assumes a baseline token cache coherence protocol and then designs the most basic
mechanisms required to handle loss of messages containing tokens. This abstraction allows
the authors to determine the minimum protocol changes required for error resiliency in a
cache coherence protocol: all other messages in a cache coherence protocol not involving
tokens can be viewed as the “performance substrate” that need not always be correct.

A neat side-effect of the transactional commit algorithms designed in this paper is its corre
spondence with the token coherence concept. This gives us the option to leverage existing
results on token coherence [4, 5, 12, 16, 26, 27, 28] in interesting ways. While the token
cache coherence abstraction has these many nice properties, there are some road-blocks to
its direct implementation in hardware. For example, a clean block cannot be silently evicted
from a cache (as is commonly done in modern protocols) - the tokens for that block must
be sent back to the directory. Luckily, these negative features are not present when this
abstraction is applied to the transaction commit problem.

Consider the following description of the basic sequential commit algorithm using tokens.
Each directory has a single token. If a transaction has C* directories in its commit set, it can
proceed with propagating its writes only after it has acquired the tokens corresponding
to these directories. These are the basic invariants required for correct operation. Upon this
basic framework, we can include persistent requests so transactions do not starve. We can
add other mechanisms (such as the timestamp and momentum-based approaches described
in the previous section) to accelerate the collection of tokens. We can leverage the the
ory developed in [16] to determine the minimum mechanisms required to handle message
loss. In essence, messages involving token loss need careful re-creation of tokens with
incremented counters, while other message losses can be typically handled with timeouts
and re-tries. This corresponds very closely with the solutions developed in the previous
sub-section: only the Directory Grant Response (that transfers a token from directory to
transaction) and the Directory Release message (that transfers a token from transaction to
directory) need careful handling in case of message loss. That work also addresses loss of
persistent requests.

13

In this paper, we do not discuss error resilience for the other optimized algorithms de
scribed in Section 3. But the work in [16] and the similarities with token cache coherence
make us believe that similar solutions exist. The multiple-reader, single-writer optimiza
tion described in Section 3 is even more in tune with the token coherence concept. The
timestamp-based stealing of occupancies has a process similar to handing off write own
ership to a cache line in a cache coherence protocol. We expect this synergy with token
coherence to lead to interesting future results. It is especially noteworthy that the token ab
straction does not introduce additional messages for the commit process (unlike the token
cache coherence case where additional messages are required when evicting clean cache
blocks). The overheads of token handling are much lower as well: only one token per
directory (instead of one per cache line as in the token cache coherence case). Such a cor
respondence with token coherence does not exist for the Scalable TCC algorithm because
of its reliance on Transaction IDs.

5 R e s u l t s

5 .1 S y n t h e t i c W o r k l o a d s

Methodology

In our evaluations in this sub-section, we focus on synthetically generated commit requests.
The N nodes in the system (each node has a processor and directory) are organized as a grid.
We are primarily concerned with the network delays imposed by each commit algorithm.
For the evaluation in this sub-section, we do not model the cache coherence operations of
sending invalidations to sharers of a cache line (these should be similar for all the algo
rithms considered in this paper). We also do not model data conflicts and aborts: note that
the commit algorithms themselves should not impact the probability of data conflicts (and
this probability is small anyway). In fact, aborts are handled quicker if the commit process
is shortened, so this approximation marginally penalizes the faster algorithms. The net
work delays are measured with a locally developed network simulator that models a grid
topology with an adaptive routing mechanism and virtual channel flow control. To reflect a
modern on-chip network, we assume that every uncontended hop on the network takes two
cycles of link delay and three cycles of router pipeline delay [31]. We also show results
with other delay assumptions. Each of the routers employs 3 virtual channels per physical
channel. When modeling the Scalable-TCC algorithm, we assume that the centralized TID
vendor is co-located with a node that is in the middle of the grid.

14

The synthetic workload is generated as follows. Each of the nodes is ready to commit a
transaction after executing for a number of cycles that is randomly between and
1.5 x T L , where T L is the average transaction length. The transaction has a read-set of
fixed size and a write-set of fixed size memory blocks (cache lines). The directories
corresponding to these memory blocks are chosen based on the following probabilities that
attempt to mimic locality. A memory block is part of the local node with a probability
(varied between 90 and 95% in our experiments6); it is part of a neighboring node with
a probability PN (varied between 4 and 9%); the memory block is part of a remote non
neighbor node with a probability (1%). In each simulation, measurements are made
over one million cycles and we report averages across three runs with different random
number seeds.

In the next sub-section, we show results for a more complete simulation with cache co
herence, data conflicts, and real benchmark traces, but we believe that synthetic workloads
provide more insight and a more direct comparison between the commit algorithms. The
synthetic workloads allow us to easily change parameters (locality, transaction size, com
mit set size, number of nodes) and understand the factors influencing behavior. This is
especially relevant because most available benchmark applications have not been designed
or tuned to run on 64-256 nodes and the landscape of transactional workloads of the future
is not clear. Also, the locality behavior of real applications will likely be a strong func
tion of page mapping policies7. In spite of these problems, simulations of real workloads
are also admittedly useful because they provide samples of behavior in existing programs.
We have also augmented our simulator to model cache coherence, data conflicts, aborts,
and the simulator reads in traces of SPLASH-2 programs generated with SIMICS. For the
SPLASH-2 programs analyzed, average transaction lengths vary between 12 and 606. Our
experiments with synthetic workloads therefore focus on transaction lengths in this range
and the probability numbers above (, ,) generate commit sets that closely match
the averages in these examined workloads.

Results

Figure 1(a) shows average commit latency per transaction for the three proposed algorithms
and the baseline Scalable-TCC algorithm as a function of the number of nodes and
locality. In these experiments, locality is varied from high (and) to
low (PL = 90% and PN = 9%) and N is varied from 16 to 256. This experiment assumes

6These probability ranges yield commit set sizes similar to those shown for the workloads in [9].
7First-touch page mapping policies often exhibit high locality for short simulation studies, but may not be

representative of long-running applications where threads can migrate, working sets per thread can change,

etc.

15

PN=4;
N=16

PN=7;
N=16

PN=9;
N=16

PN=4;
N=64

PN=7;
N=64

PN=9;
N=64

PN=4; PN=7; PN=9;
N=256 N=256 N=256

PN=4;
N=16

PN=7;
N=16

PN=9;
N=16

PN=4;
N=64

PN=7;
N=64

PN=9;
N=64

PN=4; PN=7; PN=9;
N=256 N=256 N=256

Number of nodes and locality

(b) Average number of messages per transaction
Number of nodes and locality

(a) Average number of cycles per transaction

Figure 1: Average number of cycles and messages per transaction commit for various al
gorithms as a function of AT and locality.

that TL is 200, i? is 16, W is 4, and PR is 1%. Figure 1(b) models the same experiment as
above, but reports the average number of required messages per transaction.

It is quickly evident from Figure 1(b) that the message requirement for the Scalable-TCC
algorithm scales up linearly with N because of the need to send skip messages to every
node. Even with multicast support, the energy requirements of the skip operation would
increase linearly with iV. All three proposed algorithms have message requirements that
remain constant as is varied, hence the claim of better energy scalability than TCC.
As locality is reduced, the number of messages for each algorithm increases slightly. The
average message requirement of SEQ-TS is about one more per commit than the message
requirements of SEQ and SEQ-PRO.

The latency results in Figure 1(a) show the poor delay scalability of Scalable-TCC, primar
ily because of the longer delays to access a centralized agent and because a directory cannot
advance to subsequent transactions unless it receives skip messages from (frequently) dis
tant cores. As expected, the commit delay roughly doubles when the number of nodes is
quadrupled (average distances on a grid are a function of \ fN) . The SEQ algorithm per
forms much better than Scalable-TCC when locality is high. As is increased from 16
to 64 to 256, the delay increases from 35 to 53 to 123 cycles. While the delays are much
less than Scalable-TCC and even though the message requirement does not scale up with
N , the delays for SEQ also appear to scale as square-root of iV. Unlike Scalable-TCC,
SEQ serializes transactions even when they only have read conflicts at a directory. Hence,
the probability of conflicts and waiting delays increase as the number of transactions in
creases. The problem is exacerbated by the fact that transactions are only 200 cycles long
on average. If we increase average transaction length to 4000 cycles (discussed subse-

16

Number of nodes and transaction length

Figure 2: Average number of cycles per transaction commit for various algorithms as a
function of TV and transaction length TL (PL=92% ; P v=7% ; Pr=1%).

quently), the commit delay for SEQ increases from 33 cycles (16 nodes) to 42 (64 nodes)
to 43 cycles (256 nodes). This is a much slower rate of increase than the corresponding
numbers for Scalable-TCC (57 to 106 to 354 cycles), indicating better delay scalability for
SEQ. However, SEQ degrades less gracefully when locality worsens (as can be seen by
comparing the slopes of the curve segments). This is again related to SEQ’s inability to
handle read conflicts at a directory in parallel and the fact that multiple directories must be
occupied sequentially. These problems are fixed by SEQ-PRO that allows parallel readers
at a directory and by SEQ-TS that allows parallel requests for directory occupancies. Both
of these algorithms result in large improvements, especially when locality is poor. These al
gorithms also scale better than Scalable-TCC, even for small transaction sizes (SEQ-PRO’s
delay increases from 32 to 44 to 76 cycles as Af goes from 16 to 64 to 256).

For the mid-locality case and 64 nodes, SEQ, SEQ-PRO, and SEQ-TS reduce the commit
delay by 46%, 70%, and 78%, respectively. If the transaction length is only 200 cycles,
Scalable-TCC requires as many as 245 cycles for commit (a huge overhead). Hence, SEQ-
TS’s 78% improvement in commit delay translates to an impressive 43% improvement in
overall performance. As transaction lengths are increased, the commit delays contribute
less to overall performance (Amdahl’s Law and fewer simultaneously competing transac
tions). This is reflected in Figure 2, where we show delays for commit for the mid-locality
case as and are increased8. For the mid-locality case and 64 nodes and an average
transaction length of 4000 cycles, the impressive commit delay improvements for the pro
posed algorithms only translate into at most 2% overall performance improvements. For the
256-node case and a transaction length of 4000 cycles, the best proposed algorithm yields

8We also increased the commit set size in tandem with transaction length. The results were not very

sensitive to commit set size.

17

ata
(Aa
o>o
atrora
at
<C

PL = 90% PL = 75% PL = 50% PL=75%; PL=50%;
Multiple Multiple

Locality Occupancy Occupancy
bits bits

Figure 3: Average number of cycles per transaction commit for various algorithms as a
function of locality Pl for a 64-node system and transaction length TL = 200.

a maximum overall improvement of 8%. This number is 35% for an average transaction
length of 1000 cycles9. Note that irrespective of transaction length, the SEQ algorithm
continues to reduce the message requirement by 48X for the 256-node cases.

While the number of messages is a useful comparison metric, the network energy require
ments are dictated by the number of messages and the distance they travel. Since Scalable-
TCC requires sending skip messages to every node, its messages travel much further than
those of the SEQ algorithm. Therefore, network energy requirements of the proposed al
gorithms will be reduced by a factor much greater than 48X.

Sensitivity Analysis:

As a sensitivity analysis, we also evaluate the impact of network delays on overall per
formance. For the 64-node mid-locality case with , the overall performance
improvement of SEQ-TS over Scalable-TCC is 45%, 43%, and 31%, for network hop de
lays of three, five, and ten cycles, respectively.

Locality plays an important role in the behavior of commit algorithms and in the behav
ior of any multi-threaded application. Poor locality can impact our results in two ways.
First, it increases the likelihood of conflicts at a directory. This issue can be alleviated by
maintaining occupancy at a finer granularity (while incurring a cost in directory storage
overhead). Second, directories in the commit set may be further away and that increases

9These numbers roughly agree with the results in [9], where benchmarks with 90% of transactions under

1100 instructions spent 20-35% of their execution time in the commit phase.

18

communication delays. To evaluate the effects of poor locality, Figure 3 shows average
cycles per transaction commit as is reduced from 90% to 75% to 50% (while also vary
ing PN from 9% to 13% to 25%). These results are for a 64-node system with T L of 200
cycles. To understand the contributions of the two effects listed above, we also carried out
experiments with more occupancy bits per directory such that the probability of a conflict
is the same as in the experiment with of 90%. The SEQ-TS algorithm continues to
out-perform Scalable-TCC by 19% for PL = 50%. By having more occupancy bits per
directory, the SEQ-TS algorithm degrades more gracefully as locality is worsened. How
ever, it is clear that applications in a lazy HTM system will benefit greatly from smart page
mapping policies that improve locality and this continues to be an important research area
for the future.

5 .2 R e a l W o r k l o a d s

Methodology

For the experiments in this sub-section, we augment the simulator to model MSI based
cache coherence, data conflicts, and aborts. We consider a subset of SPLASH-2 bench
marks that exhibit significant synchronization overhead [3]. The details of the benchmarks
and their corresponding input sets are listed in Table 2. The Simics full system simulator
running Linux on SPARC ISA is used to generate traces of the benchmarks [24]. Locks and
unlocks in these programs are replaced with transaction begin and end statements. Other
synchronization primitives are left untouched. We remove the overhead of locks and un
locks in the traces since a transactional workload need not wait for entering the critical sec
tion. A CPI of one is assumed for non-memory instructions and for memory instructions,
delays within the cache hierarchy are modeled in detail. We continue to model network
behavior for the commit algorithms in a cycle-accurate manner. We assume that each core
has a 32 KB L1 cache and the 32 MB shared L2 cache is physically distributed among the
cores. The programs were run to completion on 16 and 32 node systems.

Results

Table 2 summarizes the characteristics of the benchmark programs and their behaviors
for the various algorithms. The abort percentage is less than 1% for all benchmarks. All
benchmarks have average transaction lengths under 606 cycles and commit sets of average
size less than 5. For a 16-core processor, SEQ performs worse than Scalable TCC by
34% whereas SEQ-PRO and SEQ-TS yield performance improvement of 26% and 40%
respectively. The corresponding numbers for a 32-core processor are 39%, 26%, and 41%.
While 32-node simulations are not enough to demonstrate scalability, they help validate the

19

models chosen for the synthetically generated workloads.

Characteristic Barnes Ocean-Cont Radiosity Water-nsquared FFT
Input size 16384

bodies
258 batch 512 mol 4096

points
Avg. Transaction length (cycles) 606 1 2 506 498 27

Avg. directories read 3 3 3 5 1

Avg. directories written 3 0 . 2 2 2 2

Avg. transaction execution time (cycles) for a 16-core processor
Scalable-TCC 1721 425 1607 1288 419

SEQ 1862 1256 1139 2876 205
SEQ-PRO 1733 146 1081 8 8 8 205
SEQ-TS 844 681 691 894 150

Avg. commit messages per transaction for a 16-core processor
Scalable-TCC 89 45 70 67 33

SEQ 13 9 1 0 15 5
SEQ-PRO 13 9 1 0 15 5
SEQ-TS 14 9 1 0 15 6

Avg. transaction execution time (cycles) for a 32-core processor
Scalable-TCC 3052 806 1696 1761 2197

SEQ 4146 2584 1506 4276 713
SEQ-PRO 3322 290 1443 1257 713
SEQ-TS 1285 1429 795 1450 631

Avg. commit messages per transaction for a 32-core processor
Scalable-TCC 179 55 80 91 115

SEQ 15 9 1 0 16 6

SEQ-PRO 15 9 1 0 16 6

SEQ-TS 15 9 1 1 16 8

Table 2: Characteristics for SPLASH-2 programs.

6 R e l a t e d W o r k

While there is a vast body of recent work on hardware transactional memory, there is
limited work that examines scalability aspects in a large-scale lazy versioning/conflict-
detection HTM system. The prior work by Chafi et al. [9] is strongly based on the opti
mistic concurrency control algorithms proposed by Kung et al. for database systems [21].
The Bulk Disambiguation work by Ceze et al. [7, 8] attempts to reduce the overheads for
conflict detection by compressing the read and write sets into signatures and either broad
casting them or sending them to a central arbiter. That work [8] also proposes a distributed
arbiter mechanism (similar to the use of multiple directories in our work), but still relies
on a central arbiter to aggregate information if a transaction (or chunk) deals with multiple
arbiters. The solutions proposed here can be augmented with the signature mechanisms of
Bulk to reduce the overheads of write propagation at commit time.

20

There are several other variants of HTM. Those that rely on eager conflict detection have
better scalability because they overlap each individual check for conflicts with other com
putation [29, 34]. Lazy conflict detection implementations are stalled waiting for commit
while these checks are collectively performed at the end of the transaction. But as is shown
in [3], each HTM variant has its pitfalls. The work here addresses one of the pathologies
for lazy systems (Serialized Commit) listed in that paper.

Thread-Level Speculation (TLS) has many architectural similarities with HTM, but deals
with the speculative parallelization of a sequential program. As a result, there is an order
ing enforced upon the threads. There have been efforts [11, 33, 41] to make these designs
scalable, but the mechanisms are very different. Each thread is assigned a TaskID and
constant-time commit mechanisms typically increment a last-commit shared variable [33].
As a result, conflict checks (that are not done at commit time) may incur higher overheads
to identify the most recent versions of data. Renau et al. [36] have also explored microar
chitectural optimizations to reduce the traffic and checking overheads in TLS.

7 C o n c l u s i o n s

This paper introduces novel algorithms to commit transactions in a scalable manner in a
lazy versioning/conflict-detection HTM. The proposed algorithms are deadlock-free and
do not employ any centralized resource. The message requirements of these algorithms do
not vary with the number of nodes . The delay for these algorithms does increase with
N , but at a slower rate than the Scalable-TCC algorithm. We show that the algorithms have
a flavor very similar to that of token cache coherence and previously published approaches
for token coherence can be leveraged to prove correctness and handle starvation or message
loss.

The proposed algorithms yield up to 48X reductions in message requirements for commit,
relative to Scalable-TCC. The delay for the commit process can be reduced by up to 7X.
The impact of this on overall performance is a strong function of transaction length. Over
all performance can be improved by up to 66% for an average transaction length of 200
cycles, up to 35% for 1000 cycles and by an average of 41% for a collection of SPLASH-2
programs. For future work, we plan to continue improving the behavior of these algo
rithms (especially for many-core designs and applications with low locality) and to explore
on-chip network power optimization strategies (for example, circuit switching to handle
bulk transfers at the end of a transaction).

21

R e f e r e n c e s

[1] K. Agarwal, D. Sylvester, and D. Blaauw. Modeling and Analysis of Crosstalk Noise
in Coupled RLC Interconnects. IEEE Transactions on Computer-Aided Design o f
Integrated Circuits and Systems, 25(5), May 2006.

[2] C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie. Unbounded Trans
actional Memory. In Proceedings ofH PCA-11, February 2005.

[3] J. Bobba, K. Moore, H. Volos, L. Yen, M. Hill, M. Swift, and D. Wood. Performance
Pathologies in Hardware Transactional Memory. In Proceedings o f ISCA-34, June
2007.

[4] J. Brown, R. Kumar, and D. Tullsen. Proximity-Aware Directory-based Coherence
for Multi-core Processor Architectures. In Proceedings o f SPAA-19, June 2007.

[5] S. Burckhardt, R. Alur, and M. Martin. Verifying Safety of a Token Coherence Im
plementation by Parametric Compositional Refinement. In Proceedings o f VM CAI,
January 2005.

[6] J. Cantin, M. Lipasti, and J. Smith. Dynamic Verification of Cache Coherence Proto
cols. In Proceedings o fW M PI, June 2001.

[7] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk Disambiguation of Speculative
Threads in Multiprocessors. In Proceedings o f ISCA-33, June 2006.

[8] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement of
Sequential Consistency. In Proceedings o f ISCA-34, June 2007.

[9] H. Chafi, J. Casper, B. Carlstrom, A. McDonald, C. Minh, W. Baek, C. Kozyrakis,
and K. Olukotun. A Scalable Non-Blocking Approach to Transactional Memory. In
Proceedings ofH PCA-13, February 2007.

[10] J. Chung, H. Chafi, A. McDonald, C. Minh, B. Carlstrom, C. Kozyrakis, and
K. Olukotun. The Common Case Transactional Behavior of Multithreaded Programs.
In Proceedings ofH PCA-12, February 2006.

[11] M. Cintra, J. Martinez, and J. Torrellas. Architectural Support for Scalable Specula
tive Parallelization in Shared-Memory Multiprocessors. In Proceedings o f ISCA-27,
June 2000.

[12] B. Cuesta, A. Robles, and J. Duato. An Effective Starvation Avoidance Mechanism
to Enhance the Token Coherence Protocol. In Proceedings ofPD P-15, 2007.

22

[13] W. Dally. Workshop on On- and Off-Chip Interconnection Networks
for Multicore Systems (OCIN), 2006. Workshop program and report at
h t t p : / / w w w . e c e . u c d a v i s . e d u / ~ o c i n 0 6 / .

[14] A. Deutsch. The Importance of Inductance and Inductive Coupling for On-chip
Wiring. In Proceedings o f IEEE 6th Topical Meeting on Electrical Performance o f
Electronic Packaging, October 1997.

[15] T. Dumitras, S. Kerner, and R. Marculescu. Towards On-Chip Fault-Tolerant Com
munication. In Proceedings ofASP-DAC, January 2003.

[16] R. Fernandez-Pascual, J. Garcia, M. Acacio, and J. Duato. A Low Overhead Fault
Tolerant Coherence Protocol for CMP Architectures. In Proceedings o f HPCA-13,
February 2007.

[17] R. Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford University,
August 2003.

[18] Y. Ismail and E. Friedman. On-Chip Inductance in High Speed Integrated Circuits.
Kluwer Publishers, 2001.

[19] J. Kim, D. Park, C. Nicopoulos, N. Vijaykrishnan, and C. Das. Design and Analysis
of an NoC Architecture from Performance, Reliability, and Energy Perspective. In
Proceedings o f ANCS, 2005.

[20] P. Kundu. On-Die Interconnects for Next Generation CMPs. In Workshop on On- and
Off-Chip Interconnection Networks fo r Multicore Systems (OCIN), December 2006.

[21] H. Kung and J. Robinson. On Optimistic Methods for Concurrency Control. ACM
Transactions on Database Systems, 6(2), June 1981.

[22] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com
munications o f the ACM, 21:558-565, 1978.

[23] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2006.

[24] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt, and B. Werner. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50-58, February 2002.

[25] M. Martin, M. Hill, and D. Wood. Token Coherence: Decoupling Performance and
Correctness. In Proceedings ofISC A-30, June 2003.

[26] M. Marty, J. Bingham, M. Hill, A. Hu, M. Martin, and D. Wood. Improving Multiple-
CMP Systems Using Token Coherence. In Proceedings ofH PCA-11, February 2005.

23

http://www.ece.ucdavis.edu/~ocin06/

[27] M. Marty and M. Hill. Coherence Ordering for Ring-based Chip Multiprocessors. In
Proceedings o f MICRO-39, December 2006.

[28] A. Meixner and D. Sorin. Error Detection via Online Checking of Cache Coherence
with Token Coherence Signatures. In Proceedings ofH PCA-13, February 2007.

[29] K. Moore, J. Bobba, M. Moravan, M. Hill, and D. Wood. LogTM: Log-Based Trans
actional Memory. In Proceedings ofH PCA-12, February 2006.

[30] S. Mukherjee, J. Emer, and S. Reinhardt. The Soft Error Problem: An Architectural
Perspective. In Proceedings o f HPCA-11 (Industrial Session), February 2005.

[31] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA Organi
zations and Wiring Alternatives for Large Caches with CACTI 6.0. In Proceedings
o f the 40th International Symposium on Microarchitecture (MICRO-40), December
2007.

[32] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. Das. Exploring Fault-
Tolerant Network-on-Chip Architectures. In Proceedings o f D SN , 2006.

[33] M. Prvulovic, M. Garzaran, L. Rauchwerger, and J. Torrellas. Removing Architectural
Bottlenecks to the Scalability of Speculative Parallelization. In Proceedings ofISC A -
28, June 2001.

[34] R. Rajwar and J. Goodman. Transactional Lock-Free Execution of Lock-Based Pro
grams. In Proceedings o f ASPLOS-X, October 2002.

[35] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proceed
ings o f ISCA-32, June 2005.

[36] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and J. Torrellas. Thread-
Level Speculation on a CMP Can Be Energy Efficient. In Proceedings o f ICS, June
2005.

[37] W. Scherer and M. Scott. Advanced Contention Management for Dynamic Software
Transactional Memory. In Proceedings ofPO D C , 2005.

[38] Semiconductor Industry Association. Interna
tional Technology Roadmap for Semiconductors 2005.
h t t p : / / w w w . i t r s . n e t / L i n k s / 2 0 0 5 I T R S / H o me 2 0 0 5 . htm.

[39] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling the Effect
of Technology Trends on the Soft Error Rate of Combinatorial Logic. In Proceedings
o f D SN , June 2002.

24

http://www.itrs.net/Links/2

[40] D. Sorin, M. Hill, and D. Wood. Dynamic Verification of End-to-End Multiprocessor
Invariants. In Proceedings o f DSN, June 2003.

[41] J. Steffan, C. Colohan, A. Zhai, and T. Mowry. A Scalable Approach to Thread-Level
Speculation. In Proceedings o f ISCA-27, June 2000.

[42] S. Vrudhula, D. Blaauw, and S. Sirichotiyakul. Estimation of the Likelihood of Ca
pacitive Coupling Noise. In Proceedings ofD AC , 2002.

25

