5 research outputs found

    Intelligent Modeling and Verification (Editorial)

    Get PDF
    published_or_final_versio

    Uncertainty Theory Based Reliability-Centric Cyber-Physical System Design

    Get PDF
    Cyber-physical systems (CPSs) are built from, and depend upon, the seamless integration of software and hardware components. The most important challenge in CPS design and verification is to design CPS to be reliable in a variety of uncertainties, i.e., unanticipated and rapidly evolving environments and disturbances. The costs, delays and reliability of the designed CPS are highly dependent on software-hardware partitioning in the design. The key challenges in partitioning CPSs is that it is difficult to formalize reliability characterization in the same way as the uncertain cost and time delay. In this paper, we propose a new CPS design paradigm for reliability assurance while coping with uncertainty. To be specific, we develop an uncertain programming model for partitioning based on the uncertainty theory, to support the assured reliability. The uncertainty effect of the cost and delay time of components to be implemented can be modeled by the uncertainty variables with uncertainty distributions, and the reliability characterization is recursively derived. We convert the uncertain programming model and customize an improved heuristic to solve the converted model. Experiment results on some benchmarks and random graphs show that the uncertain method produces the design with higher reliability. Besides, in order to demonstrate the effectiveness of our model for in coping with uncertainty in design stage, we apply this uncertain framework and existing deterministic models in the design process of a sub-system that is used in real world subway control. The system implemented based on the uncertain model works better than the result of deterministic models. The proposed design paradigm has the potential to be generalized to the design of CPSs for greater assurances of safety and security under a variety of uncertainties

    Hardware/software partitioning of streaming applications for multi-processor system-on-chip

    Get PDF
    Hardware/software (HW/SW) co-design has emerged as a crucial and integral part in the development of various embedded applications. Moreover, the increases in the number of embedded multimedia and medical applications make streaming throughput an important attribute of Multi-Processor System-on-Chip (MPSoC). As an important development step, HW/SW partitioning affects the system performance. This paper formulates the optimization of HW/SW partitioning aiming at maximizing streaming throughput with predefined area constraint, targeted for multi-processor system with hardware accelerator sharing capability. Software-oriented and hardware-oriented greedy heuristics for HW/SW partitioning are proposed, as well as a branch-and-bound algorithm with best-first search that utilizes greedy results as initial best solution. Several random graphs and two multimedia applications (JPEG encoder and MP3 decoder) are used for performance benchmarking against brute force ground truth. Results show that the proposed greedy algorithms produce fast solutions which achieve 87.7% and 84.2% near-optimal solution respectively compared to ground truth result. With the aid of greedy result as initial solution, the proposed branch-and-bound algorithm is able to produce ground truth solution up to 2.4741e+8 times faster in HW/SW partitioning time compared to exhaustive brute force method

    An Effective Heuristic-Based Approach for Partitioning

    Get PDF
    As being one of the most crucial steps in the design of embedded systems, hardware/software partitioning has received more concern than ever. The performance of a system design will strongly depend on the efficiency of the partitioning. In this paper, we construct a communication graph for embedded system and describe the delay-related constraints and the cost-related objective based on the graph structure. Then, we propose a heuristic based on genetic algorithm and simulated annealing to solve the problem near optimally. We note that the genetic algorithm has a strong global search capability, while the simulated annealing algorithm will fail in a local optimal solution easily. Hence, we can incorporate simulated annealing algorithm in genetic algorithm. The combined algorithm will provide more accurate near-optimal solution with faster speed. Experiment results show that the proposed algorithm produce more accurate partitions than the original genetic algorithm
    corecore