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Abstract: Hardware/software (HW/SW) co-design has emerged as a crucial and integral part in the development of various 

embedded applications. Moreover, the increases in the number of embedded multimedia and medical applications make 

streaming throughput an important attribute of Multi-Processor System-on-Chip (MPSoC). As an important development 

step, HW/SW partitioning affects the system performance. This paper formulates the optimization of HW/SW partitioning 

aiming at maximizing streaming throughput with predefined area constraint, targeted for multi-processor system with 

hardware accelerator sharing capability. Software-oriented and hardware-oriented greedy heuristics for HW/SW partitioning 

are proposed, as well as a branch-and-bound algorithm with best-first search that utilizes greedy results as initial best 

solution. Several random graphs and two multimedia applications (JPEG encoder and MP3 decoder) are used for 

performance benchmarking against brute force ground truth. Results show that the proposed greedy algorithms produce fast 

solutions which achieve 87.7% and 84.2% near-optimal solution respectively compared to ground truth result. With the aid 

of greedy result as initial solution, the proposed branch-and-bound algorithm is able to produce ground truth solution up to 

2.4741e+8 times faster in HW/SW partitioning time compared to exhaustive brute force method.  
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1. INTRODUCTION 

System-on-chip (SoC) including hardware/software (HW/SW) co-design has been widely used in numerous embedded 

systems. Moreover, modern Multi-Processor System-on-Chip (MPSoC) allows software parallelism, giving rise to more 

possibility in HW/SW co-design. Thus, efficient HW/SW partitioning technique is required to ensure a high throughput and 

cost-effective embedded system while satisfying the shorter time-to-market. 

Streaming applications in embedded systems are common nowadays such as video or voice related programs. These 

data-intensive streaming applications require high computation throughput to provide good quality-of-service. Moreover, 

emerging technologies such as cloud computing necessitate better quality of stream throughput [1]. Poorly developed 

embedded system will become bottleneck for the advancing of data-intensive technologies. A stream application can be 

represented by pipelined execution of multiple tasks. HW/SW partitioning plays an important role for selecting software 

execution or hardware acceleration for each task. Hardware-executed tasks usually perform faster at a cost of increased 

hardware area and higher power consumption. As tasks with similar function often exist in streaming applications such as 

MP3 decoder [2] and JPEG encoder [3], sharing of hardware accelerator among these tasks could reduce area consumption 

and may not degrade the system throughput if execution time of these tasks is insignificant compared to other tasks. 

This paper formulates the HW/SW partitioning problem to maximize streaming throughput while meeting area 

constraint of a multi-processor system. Two greedy heuristic algorithms are proposed to produce fast near-optimal solutions, 

while branch-and-bound algorithm is proposed to replicate brute force result but with significant lower partitioning time by 

utilizing greedy results as initial best solution. The rest of the paper is organized as follow. Section 2 presents the related 

works in HW/SW partitioning. Section 3 describes the model of streaming application while Section 4 formulates the 

HW/SW partitioning problem. The proposed software-oriented and hardware-oriented greedy heuristic algorithms are 

presented in Section 5 while branch-and-bound algorithm is described in Section 6. Section 7 shows the experimental results 

on two test cases of MP3 decoder and JPEG encoder, as well as the partitioning speed benchmark against ground truth brute 

force algorithm. Section 8 concludes this paper. 

2. RELATED WORKS 

There are several significant researches in HW/SW partitioning automation to improve system performances in different 

aspects due to the increasing complexity of SoC. Traditionally, HW/SW partitioning is carried out manually based on system 
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designer’s experience [4, 5]. Many approaches have been proposed recently to fulfill and optimize different objectives and 

costs. Although there is a wide variety of problem formulation and cost definition, they are highly dependent on targeted 

system architectures.  

The most common problem described in literature, e.g [6–14] is the optimization of execution time, hardware area and 

communication cost, targeted for simple single-software single-hardware system. There are fairly little works conducted for 

throughput optimization compared to overall execution time due to the difficulty of its estimation and formulation. Hence, 

[2, 15–18] have integrated pipeline scheduling of tasks in order to construct throughput formulation together with other co-

design constraints. Apart from that, other works have also incorporated different cost metrics and objectives in HW/SW 

partitioning, including power consumption [3, 19–21], and software memory usage [3, 19, 20], as summarized in Table 1. 

Table 1. Related works in HW/SW partitioning 

Ref. 

Objectives/Costs Features 

Exec. 

time 

Through-

put 

HW 

area 

Comm. SW 

mem. 

Power 

consump. 

Multi

-proc. 

HW 

sharing 

Multi-choices 

HW 

NoC 

[2]           

[6-14]           

[3, 19, 20]           

[15]           

[16, 17]           

[18]           

[21]           

[22]           

[23]           

[24]           

 

Other features such as multi-processor and hardware sharing have also been explored in literatures [2, 16, 17, 21, 23, 24] 

to further enhance the efficiency and optimize HW/SW partitioning for different modern SoC system. References [16, 17, 

21] have proposed the HW/SW partitioning for multi-processor system by considering software parallelism. Reference [23] 

has proposed hardware accelerator sharing (among hardware tasks) to reduce area cost. Multiple hardware architecture 

choices is discussed in [24], allowing tasks to be mapped to different hardware accelerator alternatives with different 

performance and cost. On the other hand, a HW/SW partitioning for Network-on-Chip (NoC) has been proposed in [2], that 

includes the consideration of network router communication costs among tiles. Branch-and-bound algorithm has been 

proposed in [15, 18], although they are not targeted for multi-core with hardware sharing possibility. 

This paper addresses HW/SW partitioning for optimization of throughput subject to a predefined hardware area 

constraint considering software parallelism (multi-processor system) and hardware sharing capability. To the best of our 

knowledge, there are no similar works highlighting the same objectives and features, thus distinguishing this work with 

others in literature. 

3. APPLICATION MAPPING 

Conventionally, HW/SW partitioning algorithm can be defined in the following notations. Task graph of an application can 

be characterized by a Directed Acyclic Graph (DAG), G = (T, E), T = {t1 , t2 , ..., tn } and E = {e1 , e2 , ..., en } where s, h, a : 

T → R + and c : E → R+ as shown in Figure 1. Each task, ti contains a tupple < si, hi, ai > denoting software execution time, 

hardware execution time and hardware area cost, respectively. On the other hand, each edge, ei includes cij which represents 

the communication cost between tasks ti and tj. All tasks are to be bi-partitioned into hardware executable, H or software 

executable, S, satisfying H ∪  S = T and H ∩ S = ∅ . Software processors are assumed to be available in the given system, 

thus their areas are not considered in the model. All software processors are also assumed to be identical where the software 

execution time for each task is similar on any software processor. 

Traditionally, a task graph is bi-partitioned into hardware and software executables, targeting shorter execution time of 

the application. However in most stream applications such as multimedia programs, some tasks are split into several tasks 

with similar functions to increase the system throughput by executing these tasks concurrently using different cores (such as 

MP3 Decoder task in [2] and JPEG Encoder task in [3]). The existence of these similar tasks motivates the necessity of 

hardware cores sharing as an option to utilize area costs, giving rise to a bigger search space in HW/SW partitioning 
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problem. 

 

 

Figure 1. Different types of costs in task graph specify an application 

As this paper focuses on throughput optimization in multi-processor system with hardware sharing capability, HW/SW 

partitioning is aiming to distribute tasks among all available software cores and hardware cores. Any task can be assigned to 

any software core. However, only tasks with similar functionality can share the same hardware cores. For instance, task 

graph in Figure 2 is mapped to a system consisting two software processors (PE7 and PE8). Core PE5 is assigned to execute 

both similar tasks t4 and t5. Tasks that are mapped to software or shared hardware will render their respective hardware cores 

unused and unimplemented, thus at the same time, reducing hardware area cost. 

 

 

Figure 2. HW/SW partitioning in a system consisting two software processors with hardware sharing capability 

System communication cost is highly dependent on the targeted multi-core architecture. Figure 3 summarizes possible 

communications between software and hardware cores. There are local connections and interconnection among software 

cores and hardware cores. In a multi-processor system, data sharing among the software processors include memory sharing, 

message passing interfaces (MPI), as well as packets forwarding through routers in NoC [25]. Most common 

communications between hardware and software are done through data passing from software memory to hardware core via 

system bus with handshaking protocol, rendering HW/SW interconnection the slowest. Hardware-to-hardware local 

connections are usually more efficient due to the possibility to utilize specialized interconnect interface such as dual-port 

RAM or FIFO. 

As different communication interfaces have different latency and throughput, exact HW/SW interconnection delay 

cannot be directly estimated. With the possibility of having high throughput communications in all connections, this paper 

assumes that communication overheads are insignificant compared to task execution time, thus does not incorporate any 

communication costs in HW/SW partitioning problem (similar as [3, 15–22]). 

Assuming all tasks are scheduled and pipelined-executed in the same time step, the overall system throughput is defined 

by the reciprocal of the time step, which is determined by the minimum allowable task processing time (critical time). Figure 

4 illustrates the task executions time-line for a stream application based on task partitioning in Figure 2. Data are streamed 

through hardware (PE1 to PE6) and software cores (PE7 and PE8) according to a certain partitioning order. These data are 

required to be processed in six tasks by different cores at different time steps. PE8 emerges as the slowest core with 

execution of two tasks, t3 and t6 every time step, thus resulting in the slowest task completion time (critical time) in each time 
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step to be s3 + s6 . 

 

Figure 3. Communications among hardware and software tasks in a multi-core architecture 

 

Figure 4. HW/SW pipelining of tasks with core sharing capability 

PE5 is shared by t4 and t5 as they are similar in function with both tasks are executed in serial. Although serial execution 

is slower compare to parallelism in their specialized hardware cores, the reduction in execution speed of these tasks does not 

affect the overall throughput as they are not the slowest (critical time) in the system. Hence, hardware sharing of the tasks is 

purely beneficial in area reduction with no trade-off in throughput. 

4. PROBLEM FORMULATION 

Given a DAG representation of a stream application with Nt tasks and a multi-core system with Ns software processor, 

HW/SW partitioning partitions the tasks to Ns software cores and Nh hardware cores which maximizes the system 

throughput, subject to an area constraint, A. Assuming all tasks have their own specialized hardware cores, therefore the 

number of hardware cores is equal to number of tasks (Nh = Nt). Thus, the number of total cores, Nc for a given problem is 

Nc = Ns + Nt.  

As hardware sharing is possible in this partitioning problem, the allowable task-to-core mapping is defined by all 

available software cores and allowable hardware cores. The allowable task-to-core mapping can be represented in a mask M 

, constructed of a Nc × Nt matrix with column index i and row index j indicate task identifier and core identifier respectively, 

and mij ⊂ M. If mij = 1, then ti are permitted to be assigned to core PEj. For instance, Equation (1) illustrates an example of 

mask M for the tasks graph described in Figure 2, assuming the targeted system contains two software processors. 

The mask M is sorted in increasing row index j from hardware cores to software cores. Since all tasks are assumed to 

have their own specialized hardware cores, for simplicity, these cores are allocated with the core identifiers similar to their 

respective task identifiers (i = j). All software cores are assumed to be able to execute any task. As a result, an identity matrix 

is obtained for 1 ≤ j < Nt while an all-ones matrix for Nt ≤ j < Nc. 
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𝑀 =

𝑃𝐸1

𝑃𝐸2

𝑃𝐸3

𝑃𝐸4

𝑃𝐸5

𝑃𝐸6

𝑃𝐸7

𝑃𝐸8

 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

[
 
 
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 1 1 1
1 1 1 1 1 1]

 
 
 
 
 
 
 

       (1) 

 

On the other hand, similar tasks may have two or more admissible spaces (HW cores) due to the possibility of hardware 

sharing. The feasible way for hardware sharing can be formulated as a combination selection, ∑ ⁿ𝐶𝑟
𝑛−1
𝑟=1 , where n is the 

number of similar tasks and r is the number of shared hardware cores. To reduce the search space by eliminating similar 

hardware sharing selections (as in Equation (1), assigning both t4 and t5 to shared core PE4 or PE5 give similar result), each 

task ti is only assigned to a core PEj whose identifier is greater or equal to the task identifier, j ≥ i. The total possible 

permutation search space can be easily determined from M and is evaluated as ∏ ∑ 𝑚𝑖𝑗
𝑁𝑐
𝑗=1

𝑁𝑡
𝑖=1 . 

In addition, mask M is capable of distinguishing differences in costs for each task t i assigned in different cores PEj. 

Along the increasing j, each task can be mapped to different core, starting from its own specialized hardware core, followed 

by sharing hardware core, and finally on software cores. Thus, it is undeniable that assigning tasks to greater j reduces more 

hardware area cost while increasing its execution time. 

Similarly, HW/SW assignment action can be represented mathematically by a Nc × Nt sized assignment matrix X. xij = 1 

denotes the mapping of ti to core PEj. Since each task can only be assigned to one available core and all tasks must be 

mapped at the end of the P partition, summation of each column in X must equal to one, formulated as ∑ 𝑥𝑖𝑗
𝑁𝑐
𝑗=1 = 1, ∀i =

{1, 2, … Nt}. Equation (2) illustrates an example of assignment matrix X for the mapping in Figure 2. Only one task 

assignment appears in each column while multiple assignments appear in row with software cores (PE8) or shared hardware 

core (PE5). Row without any assignment indicates the unimplemented cores. 

 

𝑋 =

𝑃𝐸1

𝑃𝐸2

𝑃𝐸3

𝑃𝐸4

𝑃𝐸5

𝑃𝐸6

𝑃𝐸7

𝑃𝐸8

 

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

[
 
 
 
 
 
 
 
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 1]

 
 
 
 
 
 
 

       (2) 

 

With the aid of the assignment matrix, X, the partitioning problem discussed in this paper is formulated as a 

minimization problem in Equation (3), aiming to find maximum throughput (minimum critical time) subject to area 

constraint, A. Ht and St denote the execution time of the slowest hardware and software respectively, formulated in Equation 

(4) and Equation (5) respectively. 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 max (𝐻𝑡 , 𝑆𝑡)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ ( max
1≤𝑖≤𝑁𝑡

𝑥𝑖𝑗 . 𝑎𝑖) ≤ 𝐴,
𝑁𝑡
𝑗=1 𝑥𝑖𝑗 ∈ {0,1}

    (3) 

 

𝐻𝑡 = max
1≤𝑖≤𝑁𝑡

(∑ ℎ𝑖 . 𝑥𝑖𝑗
𝑁𝑡
𝑖=1 )      (4) 

 

𝑆𝑡 = max
𝑁𝑡≤𝑗≤𝑁𝑐

(∑ 𝑠𝑖 . 𝑥𝑖𝑗
𝑁𝑡
𝑖=1 )      (5) 

 

Based on Equation (3), the system throughput and hardware area usage for any given mapping can be easily enumerated. 

Critical time is determined by identifying the longest execution time of each core while execution time of each core is total 

execution time of the assigned tasks. Hardware area is computed by summation of all hardware areas except for unused 

cores. 

5. GREEDY ALGORITHM 

Two greedy heuristic algorithms, Alg-greedy1 and Alg-greedy2 are proposed in this paper to optimize HW/SW partitioning 

problem described in Section 4. The former is software-oriented while the latter is hardware-oriented, both aiming to 

maximize throughput (i,e: minimize critical time) for a given area constraint, without exploring all possible partitioning.  
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Similar to conventional greedy algorithm [7], both algorithms exploit the profit-to-cost ratio to make a decision. As the 

proposed greedy algorithms are intended to maximize throughput, different profit-to-cost ratio is proposed. As each task is 

allowed to be assigned to more than two cores with different profit or cost, the profit-to-cost ratio of each task has to be 

calculated specifically based on the execution speed of the tasks on each allowable cores. Assuming that a task t i is pre-

assigned to core PEj, the profit-to-cost ratio, PCR of the task to move to another core PEk is formulated in Equation (6). If the 

task is moved among hardware cores, the PCR is calculated by dividing its hardware speed to area. However, if a software 

core is involved either as a source or a destination core, PCR is calculated as software speed-to-area ratio. 

 

𝑃𝐶𝑅𝑖𝑗𝑘 = {

ℎ𝑖

𝑎𝑖
𝑖𝑓 𝑗 ≤ 𝑁𝑡  𝑎𝑛𝑑 𝑘 ≤ 𝑁𝑡  

𝑠𝑖

𝑎𝑖
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (6) 

 

∀i = {1, 2, … Nt}, {∀i, ∀k} = {1, 2, … Nc}, where PCRijk is profit-to-cost ratio for moving task ti from PEj to PEk. 

5.1 Greedy 1 (Alg-greedy1) 

This algorithm first considers all-software system. Then, tasks are converted to hardware one-by-one to improve throughput 

until no more tasks could be repartitioned or mapped to hardware that preserves the area constraint, as shown in Algorithm 1. 

 

 

It is obvious that tasks can only be moved in upward (-j) direction represented in mask M to gain higher throughput by 

investing area cost. Each task will have a predefined move one step at a time from software to shareable hardware, and 

finally as dedicated hardware core. Thus, by identifying sources and destination cores for each step, PCR can be pre-

generated in a matrix as summarized in Equation (7) based on Equation (6). 

 

𝑃𝐶𝑅 =

𝑗 = 1
⋮
𝑗 = 𝑁𝑡

𝑗 = 𝑁𝑡+1

⋮
𝑗 = 𝑁𝑐

 

𝑖 = 1 … 𝑖 = 𝑁𝑡  

[
 
 
 
 
 

  

ℎ𝑖 𝑎𝑖⁄ … ℎ𝑖 𝑎𝑖⁄
⋮ ⋱ ⋮

ℎ𝑖 𝑎𝑖⁄ … ℎ𝑖 𝑎𝑖⁄

𝑠𝑖 𝑎𝑖⁄ … 𝑠𝑖 𝑎𝑖⁄
⋮ ⋱ ⋮

𝑠𝑖 𝑎𝑖⁄ … 𝑠𝑖 𝑎𝑖⁄

  

]
 
 
 
 
 

.𝑀
     (7) 

 

All tasks are initially distributed among software cores as equal as possible. This is achieved by sorting all tasks based 

on execution time in descending order, followed by assigning them one-by-one to the least utilized core in each step. As 

system throughput is always determined by the slowest core, only tasks assigned in this core will be examined and remapped 

at each step. Based on the obtained PCR matrix, the algorithm iterates and reassigns the highest PCR task upward (-j) with 

the condition that area cost after reassignment does not exceed the predefined area constraint. Termination of the loop occurs 

when there is no further move which could satisfy the area constraint, returning the best mapping as the greedy result. 

5.2 Greedy 2 (Alg-greedy2) 

Alg-greedy2 initializes all tasks as dedicated hardware cores, and reassigns tasks one-by-one to software to reduce area cost 
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by sacrificing throughput until area constraint is satisfied, as illustrated in Algorithm 2. Similarly, a PCR matrix is pre-

generated based on Equation (6) before the tasks reassignments. Starting by assigning all tasks in uppermost location of 

matrix M, the movable task with lowest PCR is mapped downward (+j) in each iteration until area constraint is attained. 

Lastly, all software tasks are distributed as equal as possible for all software cores. 

 

 

6. BRANCH-AND-BOUND 

The branch-and-bound algorithm (Alg-bnb) is utilized to produce optimal HW/SW mapping based on area constraint. As 

mentioned in Section 4, HW/SW partitioning problem involves permutation space where each task has two or more core 

assignment options given an allowable task-to-core mapping. Thus, the entire design space can be specified in a balanced 

search tree constructed based on the mask M. Each node represents an unmapped task and the branches from each node are 

the allowable task-to-core mapping of the represented task, resulting in the depth of tree equals to the number of tasks. For 

instance, Figure 5 illustrates the search tree from the mask M described in Equation (1). 

 

 

Figure 5. Example of a balanced search tree containing entire design space for HW/SW partitioning 
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Similar to conventional branch-and-bound [15, 18], Alg-bnb explores all possible solutions by branching from the top of 

the tree. At each level of search tree, the algorithm decides the mapping of each unassigned task. Several bounding criteria 

are applied to discard sub-tree of any branch that cannot produce any feasible result or all possible solutions from the branch 

will not produce better result than current best solution. Alg-bnb is summarized in Algorithm 3. 

 

 

The Alg-bnb algorithm starts by assigning the best greedy result of Alg-greedy1 and Alg-greedy2 as the initial best 

throughput. Best-first search are applied, traversing down the tree by prioritizing the branches with the best estimated upper 

bound. The maximum throughput (i.e., minimum critical time) node is chosen to spawn its children in each step. Since 

hardware sharing gives better solution in most of the time, branches with hardware sharing are chosen when there are two or 

more branches with the best upper bound value. 

There are three bounding criteria to be checked in the following order where branches are eliminated if any of the 

criteria are met: 

 

1. Current area usage of the partial mapping exceeds the area constraint, A. 

2. Current throughput (lower bound) is lower than the best found throughput. 

3. Maximum attainable throughput (upper bound) is lower than the best found throughput. 

 

As the upper bound check is comparatively time consuming, it is performed after the other two criteria. When reaching a 

solution node, the best throughput is updated if a better solution is achieved. The algorithm terminates after all branches have 

been explored or eliminated. 

6.1 Upper Bound Estimation 

Unlike lower bound which is straight-forward, upper bound requires several changes on the problem model. The upper 

bound at any given branch with different partial-mapped of HW/SW can be solved with the assumption that every 

unassigned tasks can be fragmented to smaller part with smaller area usage and execution time. Based on the assumption, 

several changes have been made in HW/SW partitioning model as follow: 

 

1. The slowest core can distribute its tasks to other core partially until the area constraint is met or no other possible 

core to execute the tasks. 

2. All software tasks are always distributed in perfect equal with each core holding the identical fractions of every 

software tasks. Hence, all software cores are estimated as one combined core which executes task faster. Hence all 

software time are decreased by a factor of the number of software cores, s′i = si Ns⁄ , ∀i = {1, 2, … Nt}, where s′i is 

the combined software time. 

3. Hardware sharing is allowed for fractioned tasks. All equal fractions of similar tasks can use the same hardware 

core with only one fraction of area consumption. This can be estimated by reducing the area usage for shared 

hardware. If several tasks share a (shared) hardware, their area usage is divided by the number of allowable task-to-

core mapping of the hardware core specified in mask M. Thus, the area usage of each task varies when occupying 



APPLICATIONS OF MODELLING AND SIMULATION, 1(1), 2017, 1-14 

9 

different hardware cores which can be formulated in Equation (8), acting as a modified area usage during hardware 

sharing for best case estimation. 

 

a′ij =
𝑎𝑖

∑ mij
Nt
𝑖=1

       (8) 

 

∀i = {1, 2, … Nt}, and ∀j = {1, 2, … Nt}, where a′ij is the area usage of task ti occupying hardware core, PEj. The 

overall area used for all fractionally-mapped tasks can be estimated as ∑ ∑ a′ij. x′ij
𝑁𝑡
𝑗=1

𝑁𝑡
𝑖=1 , with x′ij is the fractioned 

assignment of task ti on core PEj. 

 

By establishing these changes, the upper bound can be computed in software-oriented way similar to Alg-greedy1. The 

algorithm starts with initialization of all unmapped tasks, t′i to the combined software core. t′i is then distributed into 

hardware core (in -j direction of mask M ) fractionally prioritizing highest modified profit-to-cost ratio, PCR′. This modified 

PCR’ is calculated based on the modified software time, s′i and area usage, a′ij as formulated in Equation (9). This approach 

will increase the throughput (decrease critical time) at the best rate for each unit area spent. 

 

𝑃𝐶𝑅′𝑖𝑗𝑘 = {

ℎ𝑖

𝑎′𝑖𝑘
𝑖𝑓 1 ≤ 𝑗 < 𝑁𝑡

𝑠𝑖

𝑎′𝑖𝑘
𝑖𝑓 𝑁𝑡 ≤ 𝑗 < 𝑁𝑐

      (9) 

 

∀i = {1, 2, … Nt}, and ∀j = {1, 2, … Nc}, where PCR′ij is profit-to-cost ratio for moving task ti from PEj to PEk. 

 

The upper bound estimation algorithm is summarized in Algorithm 4. In each iteration of the algorithm, fractions of 

tasks are distributed from software to hardware to increase speed by utilizing hardware area. During task distribution, the 

software cores are always kept as the slowest (in critical time) among all cores. Hence, if the software execution time 

decreases until it reaches any of the hardware execution time, all of these slow cores (i.e, cores with execution time equals to 

critical time) will distribute their highest PCR′ tasks fractionally to other allowable cores at the same decreasing rate in 

execution time, therefore ensuring the increase of system throughput (i.e., decrease of critical time) by maintaining equality 

of execution time in all slow cores. 

 

 

As the granularity of the fractions in each iteration will affect the algorithm time consumption, fractions are determined 

based on current execution times for all cores and residual area (different between area constraint and mapped area). It is 

obvious that the same tasks (in slow cores) have to be distributed until the following conditions are met: 

 

1. The critical time reaches the next slowest execution time among non-slow core. 

2. Any of the distributing task has reached its minimum possible execution time (maximum speed). 

3. The residual area has depleted. 
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The critical time decrease gradually as the distribution of the tasks in all slow cores. If the area allows, the critical time 

would eventually equals to the execution time of the slowest non-slow core (condition 1), making this core as a new member 

to the slow cores. Any additional area will be used to distribute the tasks in the newly updated slow cores. The critical time 

cannot be decreased any further if any of the tasks (in slow cores) has reached its maximum speed (condition 2) or the area 

constraints are met (condition 3). 

Hence, the fraction of execution time (area) to be distributed at each step is the minimum time (area) gap for these 

conditions to happen, min(G1, G2, G3), where G1, G2 and G3 are the time (area) gaps to satisfy condition 1, 2 and 3 

respectively. The iteration also terminates when the area constraint is met (condition 2) or any of the slowest cores cannot 

distribute its tasks any more to other cores (condition 3), producing the upper bound throughput as an estimation of best 

attainable throughput for any partial mapping. 

7. NUMERICAL EXPERIMENTATION 

7.1 Test Cases: MP3 decoder and JPEG encoder 

The proposed greedy algorithms are coded in Matlab environment. Two common data intensive streaming multimedia 

applications: MP3 decoder (see [2]) and JPEG encoder (see [3]) are selected as test cases. MP3 decoder is tested for HW/SW 

partitioning of two software cores and three software cores systems while JPEG encoder is only tested for two software cores 

system. These experiments have been conducted using both proposed algorithms to maximize system throughput (minimize 

critical time) for different area constraints. 

The task graph describing the specifications of MP3 decoder is illustrated in Figure 6. On the other hand, task graph of 

JPEG encoder is illustrated in Figure 7. The specifications of tasks area are shown in Table 2. There are several similar tasks 

in both MP3 decoder and JPEG encoder applications, providing hardware sharing possibility which can be easily specified in 

mask M.  

 

 

Figure 6. MP3 decoder application graph in [2] 

The results of critical time-to-area constraints of greedy algorithms are shown in Figure 8. Alg-bnb produces optimal 

throughput for any area constraint, it emerges as the ground truth solution for all test cases. When area constraint is too low 

to be occupied by any of the hardware cores, the system throughput is determined by equal distribution of total software 

execution time to the number of software cores. As area constraint increases, the proposed algorithms attempt to utilize the 

available resources effectively. This improves throughput by choosing the correct tasks for hardware execution as well as 

hardware sharing. Hence, even with infinite area constraints, all tasks do not necessary consume hardware area. Several tasks 

can still be performed in software or in shared hardware, resulting in the maximum achievable throughput (minimum 

possible critical time) attained without the need for full hardware acceleration.  
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Figure 7. JPEG encoder application graph in [3] 

Table 2. Task specifications for JPEG encoder [3] 

Task Module 
Execution time HW area, ai 

(x 10-3) hi (ns) si (µs) 

t1 Level offset 155.264 9.38 7.31 

t2 DCT 1844.822 20000 378 

t3 DCT 1844.822 20000 378 

t4 DCT 1844.822 20000 378 

t5 Quantization 3512.32 34.7 11 

t6 Quantization 3512.32 33.44 9.64 

t7 Quantization 3512.32 33.44 9.64 

t8 DCPM 5.334 0.94 2.191 

t9 ZigZag 399.104 13.12 35 

t10 DCPM 5.334 0.94 2.191 

t11 ZigZag 399.104 13.12 35 

t12 DCPM 5.334 0.94 2.191 

t13 ZigZag 399.104 13.12 35 

t14 VLC 2054.748 2.8 7.74 

t15 RLE 1148.538 43.12 2.56 

t16 VLC 2197.632 2.8 8.62 

t17 RLE 1148.538 43.12 2.56 

t18 VLC 2197.632 2.8 8.62 

t19 RLE 1148.538 43.12 2.56 

t20 VLC 2668.288 51.26 1.91 

t21 VLC 2668.288 50 1.91 

t22 VLC 2668.288 50 1.91 

 

7.2 Optimality of Greedy Algorithms 

Solutions from the greedy algorithms are compared with ground truth result to obtain their optimality. Optimality is defined 

as the average ratio of ground truth result to the obtained greedy result for all DAGs, and is illustrated in Equation (10). An 

obtained result is 100% optimal if it is identical with ground truth result. 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 = 100 × average
𝑎𝑙𝑙 𝐷𝐴𝐺

(
𝑅𝑡

𝑅𝑔
)     (10) 

where Rg and Rt are critical time results from greedy and brute force ground truth respectively. 
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(a) Two SW cores for MP3 decoder 

 

 (b) Three SW cores for MP3 decoder 

 

(c) Two SW cores for JPEG encoder 

Figure 8. Critical time-to-area constraint result of MP3 and JPEG streaming applications 

Apart from the applications in test cases, random task graphs with different sizes are also utilized to determine the 

performance for each algorithm. Random graphs are generated using TGFF [26], with 100±90 hardware speed, 1000±900 

software speed and 100±50 hardware area with 2 and 3 software processors. The optimality of the proposed greedy 

heuristics are shown in Table 3. Both Alg-greedy1 and Alg-greedy2 results are near-optimal with an average of 87.7% and 

84.2% from ground truth solution respectively. However, the optimality for both greedy algorithms differ for each DAG. 

 

7.3 Partitioning Speed Benchmark 

The partitioning time of the proposed greedy heuristics and branch-and-bound algorithms are benchmarked using the test 

applications and random graphs. Estimated partitioning time for brute force method is also considered in the comparison 

where the estimation can be done by extrapolating the time taken from a fraction of solutions to total possible permutations. 

The partitioning time to permutation size for all algorithms is shown in Figure 9. 
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Table 3. Optimality of proposed greedy algorithms. 

Test Case No. of Tasks 
No. of SW 

Cores 

Optimality (%) 

Alg-greedy1 Alg-greedy2 

MP3 16 2 94.2 77.1 

MP3 16 3 92.1 84.1 

JPEG 22 2 95.0 90.9 

Random1 14 2 93.2 90.3 

Random1 14 3 87.3 93.0 

Random2 7 2 81.7 84.7 

Random2 7 3 85.2 91.9 

Random3 10 2 91.7 76.9 

Random3 10 3 89.0 82.1 

Random4 7 2 88.2 77.7 

Random4 7 3 92.0 87.4 

Random5 13 2 76.7 79.4 

Random5 13 3 83.6 81.3 

Random6 9 2 89.6 76.5 

Random6 9 3 76.5 89.7 

 

 

Figure 9. Critical time-to-area constraint result of MP3 and JPEG streaming applications 

Both greedy algorithms have almost similar performances averaging with 2.6790e+13 and 3.0384e+13 times faster for 

Alg-greedy1 and Alg-greedy2 respectively, compared to brute force algorithm. Alg-bnb performs up to of 2.4741e+8 times 

faster than brute force for the largest permutation size, proven to be a more practical choice for generating optimal solution. 

The partitioning speeds with respect to exhaustive brute force method of all proposed algorithms increase exponentially with 

permutation size. 

8. CONCLUSION 

Efficient partitioning of HW/SW tasks produces cost-effective solution in throughput-to-area trade off. This paper 

formulated the optimization problem of streaming throughput in MPSoC with hardware sharing capability given a 

predefined constraint of hardware area cost. Software-oriented and hardware-oriented greedy heuristic algorithms were 

proposed to maximize application throughput without performing full search. Branch-and-bound algorithm with best-first 

traversing technique was also proposed to produce the optimal HW/SW partitioning result in faster partitioning time 

compared to exhaustive brute force. 

These algorithms were empirically tested on MP3 decoder and JPEG encoder test cases that are two well-known 

streaming multimedia applications. Results show that these greedy heuristics compute 13 order of magnitude faster than the 

ground truth brute force method while give a near-optimal solution with 87.7% and 84.2% for Alg-greedy1 and Alg-greedy2 

respectively. With the aid of both greedy algorithms to provide the initial best solution, proposed branch-and-bound 

algorithm is able to produce ground truth result up to 8th order of magnitude faster than the ground truth brute force method. 

The proposed approach may be potentiality extended to more specific architecture with formulated communication costs, 

thus resulting in more sophisticated HW/SW partitioning. 
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