9,283 research outputs found

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Medical Image Modality Classification using Feature Weighted Clustering Approach.

    Get PDF
    Sistem Dapat Semula Imej Perubatan merupakan satu bidang yang amat penting bagi pembekal penjagaan kesihatan. Medical Image Retrieval System is an area of great importance to the healthcare providers

    FUZZY BINARY PATTERNS FOR UNCERTAINTY-AWARE TEXTURE REPRESENTATION

    Get PDF
    The Local Binary Pattern (LBP) representation of textures has been proved useful for a wide range of pattern recognition applications, including texture segmentation, face detection, and biomedical image analysis. The interest of the research community in the LBP texture representation gave rise to plenty of LBP and other binary pattern (BP)-based variations. However, noise sensitivity is still a major concern to their applicability on the analysis of real world images. To cope with this problem we propose a generic, uncertainty-aware methodology for the derivation of Fuzzy BP (FBP) texture models. The proposed methodology assumes that a local neighbourhood can be partially characterized by more than one binary patterns due to noise-originated uncertainty in the pixel values. The texture discrimination capability of four representative FBP-based approaches has been evaluated on the basis of comprehensive classification experiments on three reference datasets of natural textures under various types and levels of additive noise. The results reveal that the FBP-based approaches lead to consistent improvement in texture classification as compared with the original BP-based approaches for various degrees of uncertainty. This improved performance is also validated by illustrative unsupervised segmentation experiments on natural scenes

    Application of Fractal and Wavelets in Microcalcification Detection

    Get PDF
    Breast cancer has been recognized as one or the most frequent, malignant tumors in women, clustered microcalcifications in mammogram images has been widely recognized as an early sign of breast cancer. This work is devote to review the application of Fractal and Wavelets in microcalcifications detection

    Analysis of GLCM Parameters for Textures Classification on UMD Database Images

    Get PDF
    Texture analysis is one of the most important techniques that have been used in image processing for many purposes, including image classification. The texture determines the region of a given gray level image, and reflects its relevant information. Several methods of analysis have been invented and developed to deal with texture in recent years, and each one has its own method of extracting features from the texture. These methods can be divided into two main approaches: statistical methods and processing methods. Gray Level Co-occurrence Matrix (GLCM) is the most popular statistical method used to get features from the texture. In addition to GLCM, a number of equations of Haralick characteristics will be used to calculate values used as discriminate features among different images in this study. There are many parameters of GLCM that should be taken into consideration to increase the discrimination between images belonging to different classes. In this study, we aim to evaluate GLCM parameters. For three decades now, GLCM is popular method used for texture analysis. Neural network which is one of supervised methods will also be used as a classifier. And finally, the database for this study will be images prepared from UMD (University of Maryland database)
    corecore