1,884 research outputs found

    Integrating Nanomechanical Property Testing into a Correlative Imaging Workflow

    Get PDF
    This work is aimed at creating a cohesive workflow between correlative imaging techniques and nanomechanical property testing for materials analysis. There exist multiple features of a material, on varying length scales, that can determine its performance in its desired function. As technology advances new materials are developed to address new problems with more and more taking their inspiration from nature. The use of different techniques individually has been able to shed light on either the structure, property, or function of the materials, either manufactured or biological. Understanding has developed that the three aspects; structure, property, and function are related and should be considered together when analysing a material. Combining multiple techniques in a workflow will allow for revealing the ‘whole picture’ of the material. The methods of materials analysis used in this research are X-ray micro-CT, scanning electron microscopy (SEM), light microscopy, X-ray fluorescence (XRF), and nanoindentation. Each of the methods used here requires specific preparation methods prior to testing and one testing method may make the sample unsuitable for another testing method. Therefore, planning the sequence of testing before commencing is of high importance. Putting into place a workflow will not only reduce the likelihood of inhibiting further testing procedures but also reduce the time taken for completing a comprehensive analysis. The workflow proposed here takes into consideration what information can be gained as well as preparation techniques. Initially, this thesis will discuss correlative imaging detailing, sample preparation, and the capabilities of these techniques in uncovering the internal nano – to the macro-structure of antler bone and barnacle plate organisation, as well as the chemical uniformity of the inorganic phase of antler bone across the cross-section and the elongated crystallographic structures unique to the barnacle ala. Secondly, XRF will be explored for its role in the chemical analysis of biological materials and where this technique can be placed into the workflow to impact the overall understanding of the chemical composition in this instance in the application of antlers. Finally covered will be nanomechanical property testing for both stand-alone equipment and in-situ indentation. The suggested position for this technique in the workflow will be explained as it is used as the final connecting piece in determining the structure-function-property relationship of the material due to how the previous methods have directed the research process. Correlating the accelerated property mapping technique to the crystallographic structures in barnacle plates showed a reduced hardness in the elongated crystal region. Nanoindentation of the antler bone showed differences in modulus between the transverse and cross-sections as well as a reduction in average hardness between the male antler and the female reindeer that had calves and those that did not. Each of the individual pieces of information in this workflow when brought together unveils the hidden structure-property-function relationship in materials to provide an in-depth understanding

    Program: Graduate Research Achievement Day 2017

    Get PDF
    Full program for 2017 Graduate Research Achievement Day.https://digitalcommons.odu.edu/graduateschool_achievementday2017-18_programs/1001/thumbnail.jp

    Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    Full text link

    Program and Proceedings: The Nebraska Academy of Sciences 1880-2012

    Get PDF
    PROGRAM FRIDAY, APRIL 20, 2012 REGISTRATION FOR ACADEMY, Lobby of Lecture wing, Olin Hall Aeronautics and Space Science, Session A, Olin 249 Aeronautics and Space Science, Session B, Olin 224 Collegiate Academy, Biology Session A, Olin B Chemistry and Physics, Section A, Chemistry, Olin A Applied Science and Technology, Olin 325 Biological and Medical Sciences, Session A, Olin 112 Biological and Medical Sciences, Session B, Smith Callen Conference Center Junior Academy, Judges Check-In, Olin 219 Junior Academy, Senior High REGISTRATION, Olin Hall Lobby Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Junior Academy, Senior High Competition, Olin 124, Olin 131 Aeronautics and Space Science, Poster Session, Olin 249 NWU Health and Sciences Graduate School Fair, Olin and Smith Curtiss Halls Aeronautics and Space Science, Poster Session, Olin 249 MAIBEN MEMORIAL LECTURE, OLIN B Buffalo Bruce McIntosh, Research Ecologist with Western Nebraska Resources Council, The Status of Nebraska\u27s Native Aspen LUNCH, PATIO ROOM, STORY STUDENT CENTER (pay and carry tray through cafeteria line, or pay at NAS registration desk) Aeronautics Group, Conestoga Room Anthropology, Olin 111 Biological and Medical Sciences, Session C, Olin 112 Biological and Medical Sciences, Session D, Smith Callen Conference Center Chemistry and Physics, Section A, Chemistry, Olin A Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Biology Session B, Olin 249 Collegiate Academy, Chemistry and Physics, Session B, Olin 324 Earth Science, Olin 224 History/Philosophy of Science, Olin 325 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Junior High REGISTRATION, Olin Hall Lobby Junior Academy, Senior High Competition, (Final), Olin 110 Teaching of Science and Math, Olin 325 Junior Academy, Junior High Competition, Olin 124, Olin 131 NJAS Board/Teacher Meeting, Olin 219 BUSINESS MEETING, OLIN B AWARDS RECEPTION for NJAS, Scholarships, Members, Spouses, and Guests First United Methodist Church, 2723 N 50th Street, Lincoln, N

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF
    • …
    corecore