984 research outputs found

    A Spectral Learning Approach to Range-Only SLAM

    Full text link
    We present a novel spectral learning algorithm for simultaneous localization and mapping (SLAM) from range data with known correspondences. This algorithm is an instance of a general spectral system identification framework, from which it inherits several desirable properties, including statistical consistency and no local optima. Compared with popular batch optimization or multiple-hypothesis tracking (MHT) methods for range-only SLAM, our spectral approach offers guaranteed low computational requirements and good tracking performance. Compared with popular extended Kalman filter (EKF) or extended information filter (EIF) approaches, and many MHT ones, our approach does not need to linearize a transition or measurement model; such linearizations can cause severe errors in EKFs and EIFs, and to a lesser extent MHT, particularly for the highly non-Gaussian posteriors encountered in range-only SLAM. We provide a theoretical analysis of our method, including finite-sample error bounds. Finally, we demonstrate on a real-world robotic SLAM problem that our algorithm is not only theoretically justified, but works well in practice: in a comparison of multiple methods, the lowest errors come from a combination of our algorithm with batch optimization, but our method alone produces nearly as good a result at far lower computational cost

    Convergence and Consistency Analysis for A 3D Invariant-EKF SLAM

    Full text link
    In this paper, we investigate the convergence and consistency properties of an Invariant-Extended Kalman Filter (RI-EKF) based Simultaneous Localization and Mapping (SLAM) algorithm. Basic convergence properties of this algorithm are proven. These proofs do not require the restrictive assumption that the Jacobians of the motion and observation models need to be evaluated at the ground truth. It is also shown that the output of RI-EKF is invariant under any stochastic rigid body transformation in contrast to SO(3)\mathbb{SO}(3) based EKF SLAM algorithm (SO(3)\mathbb{SO}(3)-EKF) that is only invariant under deterministic rigid body transformation. Implications of these invariance properties on the consistency of the estimator are also discussed. Monte Carlo simulation results demonstrate that RI-EKF outperforms SO(3)\mathbb{SO}(3)-EKF, Robocentric-EKF and the "First Estimates Jacobian" EKF, for 3D point feature based SLAM

    Autonomous navigation with constrained consistency for C-Ranger

    Get PDF
    Autonomous underwater vehicles (AUVs) have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM), are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF) SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC) is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency

    Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied environments

    Get PDF
    This work presents a cooperative monocular-based SLAM approach for multi-UAV systems that can operate in GPS-denied environments. The main contribution of the work is to show that, using visual information obtained from monocular cameras mounted onboard aerial vehicles flying in formation, the observability properties of the whole system are improved. This fact is especially notorious when compared with other related visual SLAM configurations. In order to improve the observability properties, some measurements of the relative distance between the UAVs are included in the system. These relative distances are also obtained from visual information. The proposed approach is theoretically validated by means of a nonlinear observability analysis. Furthermore, an extensive set of computer simulations is presented in order to validate the proposed approach. The numerical simulation results show that the proposed system is able to provide a good position and orientation estimation of the aerial vehicles flying in formation.Peer ReviewedPostprint (published version

    Real-time 3D reconstruction of non-rigid shapes with a single moving camera

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper describes a real-time sequential method to simultaneously recover the camera motion and the 3D shape of deformable objects from a calibrated monocular video. For this purpose, we consider the Navier-Cauchy equations used in 3D linear elasticity and solved by finite elements, to model the time-varying shape per frame. These equations are embedded in an extended Kalman filter, resulting in sequential Bayesian estimation approach. We represent the shape, with unknown material properties, as a combination of elastic elements whose nodal points correspond to salient points in the image. The global rigidity of the shape is encoded by a stiffness matrix, computed after assembling each of these elements. With this piecewise model, we can linearly relate the 3D displacements with the 3D acting forces that cause the object deformation, assumed to be normally distributed. While standard finite-element-method techniques require imposing boundary conditions to solve the resulting linear system, in this work we eliminate this requirement by modeling the compliance matrix with a generalized pseudoinverse that enforces a pre-fixed rank. Our framework also ensures surface continuity without the need for a post-processing step to stitch all the piecewise reconstructions into a global smooth shape. We present experimental results using both synthetic and real videos for different scenarios ranging from isometric to elastic deformations. We also show the consistency of the estimation with respect to 3D ground truth data, include several experiments assessing robustness against artifacts and finally, provide an experimental validation of our performance in real time at frame rate for small mapsPeer ReviewedPostprint (author's final draft
    • …
    corecore