18,742 research outputs found

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    Autonomic Wireless Sensor Networks: A Systematic Literature Review

    Get PDF
    Autonomic computing (AC) is a promising approach to meet basic requirements in the design of wireless sensor networks (WSNs), and its principles can be applied to efficiently manage nodes operation and optimize network resources. Middleware for WSNs supports the implementation and basic operation of such networks. In this systematic literature review (SLR) we aim to provide an overview of existing WSN middleware systems that address autonomic properties. The main goal is to identify which development approaches of AC are used for designing WSN middleware system, which allow the self-management of WSN. Another goal is finding out which interactions and behavior can be automated in WSN components. We drew the following main conclusions from the SLR results: (i) the selected studies address WSN concerns according to the self-* properties of AC, namely, self-configuration, self-healing, self-optimization, and self-protection; (ii) the selected studies use different approaches for managing the dynamic behavior of middleware systems for WSN, such as policy-based reasoning, context-based reasoning, feedback control loops, mobile agents, model transformations, and code generation. Finally, we identified a lack of comprehensive system architecture designs that support the autonomy of sensor networking

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Evaluating Automatic Pools Distribution Techniques for Self-Configured Networks

    Get PDF
    NextGeneration of Networks (NGN) is one of the most important research topics of the last decade. Current Internet is not capable of supporting new users and operators’ demands and a new structure will be necessary to them. In this context many solutions might be necessary: from architectural definitions to new protocols. Addressing protocols are a specific example of protocols which should be defined to support NGN requirements. One special required characteristic is automation of addresses assignment to facilitate networks operation and design. Many addressing levels can be considered, however, proposed solutions are usually restricted to local networks addresses distribution. In this paper we present an analysis over automatic address distribution to networks, allowing a correct local addresses’ assignment. Two allocation techniques are presented and evaluated to present the benefits of this kind of mechanisms. Finally, conclusions about the proposed methodologies and the protocols applicability are discussed

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    A framework for IP and non-IP multicast services for vehicular networks

    Get PDF
    International audienceEnabling drivers to be connected to the Internet and/or Vehicular Ad-hoc networks, is one of the main challenges of the future networking. This enables drivers to benefit from the existing Internet services as well as emerging ITS applications based on IP or non-IP communications (e.g geonetworking). Many of ITS applications such as fleet management require multicast data delivery. Existing works on this subject tackle mainly the problems of IP multicasting inside the Internet or geocasting in VANETs. This paper presents a new framework that enables Internet-based multicast services on top of VANETs. We introduce a self-configuring multicast addressing scheme based on the geographic locations of the vehicles coupled with a simplified approach that locally manages the group membership to allow packet delivery from the Internet. Moreover, we propose an approach that selects the appropriate network-layer protocol for either geocasting or IP multicasting depending on the vehicles' context and the application requirements. Finally, we present the integration of the designed framework to the ITS reference architecture

    Internet protocol over wireless sensor networks, from myth to reality

    Get PDF
    Internet Protocol (IP) is a standard network layer protocol of the Internet architecture, allowing communication among heterogeneous networks. For a given network to be accessible from the Internet it must have a router that complies with this protocol. Wireless sensor networks have many smart sensing nodes with computational, communication and sensing capabilities. Such smart sensors cooperate to gather relevant data and present it to the user. The connection of sensor networks and the Internet has been realized using gateway or proxy- based approaches. Historically, several routing protocols were specifically created, discarding IP. However, recent research, prototypes and even implementation tools show that it is possible to combine the advantages of IP access with sensor networks challenges, with a major contribution from the 6LoWPAN Working Group. This paper presents the advantages and challenges of IP on sensor networks, surveys the state-of-art with some implementation examples, and points further research topics in this area

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks
    corecore