1,040 research outputs found

    A review of travel and arrival-time prediction methods on road networks: classification, challenges and opportunities

    Get PDF
    Transportation plays a key role in today’s economy. Hence, intelligent transportation systems have attracted a great deal of attention among research communities. There are a few review papers in this area. Most of them focus only on travel time prediction. Furthermore, these papers do not include recent research. To address these shortcomings, this study aims to examine the research on the arrival and travel time prediction on road-based on recently published articles. More specifically, this paper aims to (i) offer an extensive literature review of the field, provide a complete taxonomy of the existing methods, identify key challenges and limitations associated with the techniques; (ii) present various evaluation metrics, influence factors, exploited dataset as well as describe essential concepts based on a detailed analysis of the recent literature sources; (iii) provide significant information to researchers and transportation applications developer. As a result of a rigorous selection process and a comprehensive analysis, the findings provide a holistic picture of open issues and several important observations that can be considered as feasible opportunities for future research directions

    Inferring urban polycentricity from the variability in human mobility patterns

    Get PDF
    The polycentric city model has gained popularity in spatial planning policy, since it is believed to overcome some of the problems often present in monocentric metropolises, ranging from congestion to difficult accessibility to jobs and services. However, the concept 'polycentric city' has a fuzzy definition and as a result, the extent to which a city is polycentric cannot be easily determined. Here, we leverage the fine spatio-temporal resolution of smart travel card data to infer urban polycentricity by examining how a city departs from a well-defined monocentric model. In particular, we analyse the human movements that arise as a result of sophisticated forms of urban structure by introducing a novel probabilistic approach which captures the complexity of these human movements. We focus on London (UK) and Seoul (South Korea) as our two case studies, and we specifically find evidence that London displays a higher degree of monocentricity than Seoul, suggesting that Seoul is likely to be more polycentric than London

    Short-Term Travel Time Prediction on Freeways

    Get PDF
    Short-term travel time prediction supports the implementation of proactive traffic management and control strategies to alleviate if not prevent congestion and enable rational route choices and traffic mode selections to enhance travel mobility and safety. Over the last decade, Bluetooth technology has been increasingly used in collecting travel time data due to the technology’s advantages over conventional detection techniques in terms of direct travel time measurement, anonymous detection, and cost-effectiveness. However, similar to many other Automatic Vehicle Identification (AVI) technologies, Bluetooth technology has some limitations in measuring travel time information including 1) Bluetooth technology cannot associate travel time measurements with different traffic streams or facilities, therefore, the facility-specific travel time information is not directly available from Bluetooth measurements; 2) Bluetooth travel time measurements are influenced by measurement lag, because the travel time associated with vehicles that have not reached the downstream Bluetooth detector location cannot be taken at the instant of analysis. Freeway sections may include multiple distinct traffic stream (i.e., facilities) moving in the same direction of travel under a number of scenarios including: (1) a freeway section that contain both a High Occupancy Vehicle (HOV) or High Occupancy Toll (HOT) lane and several general purpose lanes (GPL); (2) a freeway section with a nearby parallel service roadway; (3) a freeway section in which there exist physically separated lanes (e.g. express versus collector lanes); or (4) a freeway section in which a fraction of the lanes are used by vehicles to access an off ramp. In this research, two different methods were proposed in estimating facility-specific travel times from Bluetooth measurements. Method 1 applies the Anderson-Darling test in matching the distribution of real-time Bluetooth travel time measurements with reference measurements. Method 2 first clusters the travel time measurements using the K-means algorithm, and then associates the clusters with facilities using traffic flow model. The performances of these two proposed methods have been evaluated against a Benchmark method using simulation data. A sensitivity analysis was also performed to understand the impacts of traffic conditions on the performance of different models. Based on the results, Method 2 is recommended when the physical barriers or law enforcement prevent drivers from freely switching between the underlying facilities; however, when the roadway functions as a self-correcting system allowing vehicles to freely switching between underlying facilities, the Benchmark method, which assumes one facility always operating faster than the other facility, is recommended for application. The Bluetooth travel time measurement lag leads to delayed detection of traffic condition variations and travel time changes, especially during congestion and transition periods or when consecutive Bluetooth detectors are placed far apart. In order to alleviate the travel time measurement lag, this research proposed to use non-lagged Bluetooth measurements (e.g., the number of repetitive detections for each vehicle and the time a vehicle spent in the detection zone) for inferring traffic stream states in the vicinity of the Bluetooth detectors. Two model structures including the analytical model and the statistical model have been proposed to estimate the traffic conditions based on non-lagged Bluetooth measurements. The results showed that the proposed RUSBoost classification tree achieved over 94% overall accuracy in predicting traffic conditions as congested or uncongested. When modeling traffic conditions as three traffic states (i.e., the free-flow state, the transition state, and the congested state) using the RUSBoost classification tree, the overall accuracy was 67.2%; however, the accuracy in predicting the congested traffic state was improved from 84.7% of the two state model to 87.7%. Because traffic state information enables the travel time prediction model to more timely detect the changes in traffic conditions, both the two-state model and the three-state model have been evaluated in developing travel time prediction models in this research. The Random Forest model was the main algorithm adopted in training travel time prediction models using both travel time measurements and inferred traffic states. Using historical Bluetooth data as inputs, the model results proved that the inclusion of traffic states information consistently lead to better travel time prediction results in terms of lower root mean square errors (improved by over 11%), lower 90th percentile absolute relative error ARE (improved by over 12%), and lower standard deviations of ARE (improved by over 15%) compared to other model structures without traffic states as inputs. In addition, the impact of traffic state inclusion on travel time prediction accuracy as a function of Bluetooth detector spacing was also examined using simulation data. The results showed that the segment length of 4~8 km is optimal in terms of the improvement from using traffic state information in travel time prediction models

    A two-level identification model for selecting the coordination strategy for the urban arterial road based on fuzzy logic

    Get PDF
    A novel model for identifying the traffic condition of urban arterial roadways is proposed in this paper to improve the operational efficiency and safety of the urban traffic arterial road system. During the identification process, fuzzy analytic hierarchy process and fuzzy integrated evaluation are employed to identify the traffic condition on the arterial road; according to the fuzzy logic scheme, a proper coordination strategy is then generated based on the resulting identification of each way of the artery. To verify the effectiveness of the proposed method, a numerical experiment is carried out by using the microscopic traffic simulation software VISSIM, where a traffic flow simulation system is generated according to the real-time traffic data. The comparison results show that the proposed model works well to fit with the actual operating condition of the arterial traffic and the proposed coordination strategy can provide a better performance for the traffic management

    Machine Learning Approaches for Traffic Flow Forecasting

    Get PDF
    Intelligent Transport Systems (ITS) as a field has emerged quite rapidly in the recent years. A competitive solution coupled with big data gathered for ITS applications needs the latest AI to drive the ITS for the smart and effective public transport planning and management. Although there is a strong need for ITS applications like Advanced Route Planning (ARP) and Traffic Control Systems (TCS) to take the charge and require the minimum of possible human interventions. This thesis develops the models that can predict the traffic link flows on a junction level such as road traffic flows for a freeway or highway road for all traffic conditions. The research first reviews the state-of-the-art time series data prediction techniques with a deep focus in the field of transport Engineering along with the existing statistical and machine leaning methods and their applications for the freeway traffic flow prediction. This review setup a firm work focussed on the view point to look for the superiority in term of prediction performance of individual statistical or machine learning models over another. A detailed theoretical attention has been given, to learn the structure and working of individual chosen prediction models, in relation to the traffic flow data. In modelling the traffic flows from the real-world Highway England (HE) gathered dataset, a traffic flow objective function for highway road prediction models is proposed in a 3-stage framework including the topological breakdown of traffic network into virtual patches, further into nodes and to the basic links flow profiles behaviour estimations. The proposed objective function is tested with ten different prediction models including the statistical, shallow and deep learning constructed hybrid models for bi-directional links flow prediction methods. The effectiveness of the proposed objective function greatly enhances the accuracy of traffic flow prediction, regardless of the machine learning model used. The proposed prediction objective function base framework gives a new approach to model the traffic network to better understand the unknown traffic flow waves and the resulting congestions caused on a junction level. In addition, the results of applied Machine Learning models indicate that RNN variant LSTMs based models in conjunction with neural networks and Deep CNNs, when applied through the proposed objective function, outperforms other chosen machine learning methods for link flow predictions. The experimentation based practical findings reveal that to arrive at an efficient, robust, offline and accurate prediction model apart from feeding the ML mode with the correct representation of the network data, attention should be paid to the deep learning model structure, data pre-processing (i.e. normalisation) and the error matrices used for data behavioural learning. The proposed framework, in future can be utilised to address one of the main aims of the smart transport systems i.e. to reduce the error rates in network wide congestion predictions and the inflicted general traffic travel time delays in real-time

    Freeway Performance Measurement in a Connected Vehicle Environment Utilizing Traffic Disturbance Metrics

    Get PDF
    The introduction of connected vehicles, connected and automated vehicles, and advanced infrastructure sensors will allow the collection of microscopic measures that can be used in combination with macroscopic measures for better estimation of traffic safety and mobility. This dissertation examines the use of microscopic measures in combination with the usually used macroscopic measures for traffic congestion evaluation, traffic state categorization, traffic flow breakdown prediction, and estimation of traffic safety. The considered macroscopic measures are the mean speed, traffic flow rate, and occupancy. The investigated microscopic measures for the stated purpose are: standard deviations of individual vehicle’s speeds, standard deviation of vehicles’ speed, and disturbance metrics. The utilized disturbance metrics to capture the stop-and-go operations are: the number of oscillations and a measure of disturbance durations in terms of the time exposed time–to–collision (TET), which has been used in other studies as a safety surrogate measure. However, this measure of disturbance duration requires the location and speed of both the leading and following vehicles and therefore cannot be measured accurately with low sample sizes of connected vehicles (CV). Thus, this study derived a model to estimate this measure based on speed parameters. The developed model was tested using real-world trajectory data from two locations that were not used in the development of the model. Moreover, the percentage of vehicles in the platoon and the platoon size distribution were evaluated as additional indicators of congestion. The relationship between the platooning and disturbance metrics and the speed parameters were further explored. It is recognized that the parameters required to identify the platoons, such as the time headway, will not be available based on data from low market penetrations of CV. Thus, a model was developed that utilize other measures for the estimation of the platooning measures at lower CV market penetrations. For the purpose of traffic state recognition and prediction, first, the study used a hybrid of two unsupervised clustering techniques to classify traffic states into “breakdown” and “non-breakdown”. The study found that adding the disturbance metrics in data clustering when identifying the traffic states will result in better traffic state recognition and traffic flow breakdown identification by capturing the disturbances in the traffic stream. The categorized traffic state was then used as a binary response to the macroscopic and microscopic measures, as features, to train supervised machine learning techniques for predicting traffic flow breakdown in the following 5-minute interval in real-time operations. The study found that utilizing disturbance and safety surrogate metrics in the real-time classification of traffic flow state increases the accuracy of prediction. Also, the study showed that the investigated disturbance metrics and associated models and thresholds are significantly related to crash frequencies and thus can be used in the activation of transportation management strategies to reduce the probability of unsafe traffic and ease traffic disturbances that have adverse impact on traffic safety

    Understanding Factors Affecting Arterial Reliability Performance Metrics

    Get PDF
    In recent years, the importance of travel time reliability has become equally important as average travel time. However, the majority focus of travel time research is average travel time or travel time reliability on freeways. In addition, the identification of specific factors (i.e., peak hours, nighttime hours, etc.) and their effects on average travel time and travel time variability are often unknown. The current study addresses these two issues through a travel time-based study on urban arterials. Using travel times collected via Bluetooth data, a series of analyses are conducted to understand factors affecting reliability metrics on urban arterials. Analyses include outlier detection, a detailed descriptive analysis of select corridors, median travel time analysis, assessment of travel time reliability metrics recommended by the Federal Highway Administration (FHWA), and a bivariate Tobit model. Results show that day of the week, time of day, and holidays have varying effects on average travel time, travel time reliability, and travel time variability. Results also show that evening peak hours have the greatest effects in regards to increasing travel time, nighttime hours have the greatest effects in regards to decreasing travel time, and directionality plays a vital role in all travel time-related metrics

    Estimation of Travel Time using Temporal and Spatial Relationships in Sparse Data

    Get PDF
    Travel time is a basic measure upon which e.g. traveller information systems, traffic management systems, public transportation planning and other intelligent transport systems are developed. Collecting travel time information in a large and dynamic road network is essential to managing the transportation systems strategically and efficiently. This is a challenging and expensive task that requires costly travel time measurements. Estimation techniques are employed to utilise data collected for the major roads and traffic network structure to approximate travel times for minor links. Although many methodologies have been proposed, they have not yet adequately solved many challenges associated with travel time, in particular, travel time estimation for all links in a large and dynamic urban traffic network. Typically focus is placed on major roads such as motorways and main city arteries but there is an increasing need to know accurate travel times for minor urban roads. Such information is crucial for tackling air quality problems, accommodate a growing number of cars and provide accurate information for routing, e.g. self-driving vehicles. This study aims to address the aforementioned challenges by introducing a methodology able to estimate travel times in near-real-time by using historical sparse travel time data. To this end, an investigation of temporal and spatial dependencies between travel time of traffic links in the datasets is carefully conducted. Two novel methodologies are proposed, Neighbouring Link Inference method (NLIM) and Similar Model Searching method (SMS). The NLIM learns the temporal and spatial relationship between the travel time of adjacent links and uses the relation to estimate travel time of the targeted link. For this purpose, several machine learning techniques including support vector machine regression, neural network and multi-linear regression are employed. Meanwhile, SMS looks for similar NLIM models from which to utilise data in order to improve the performance of a selected NLIM model. NLIM and SMS incorporates an additional novel application for travel time outlier detection and removal. By adapting a multivariate Gaussian mixture model, an improvement in travel time estimation is achieved. Both introduced methods are evaluated on four distinct datasets and compared against benchmark techniques adopted from literature. They efficiently perform the task of travel time estimation in near-real-time of a target link using models learnt from adjacent traffic links. The training data from similar NLIM models provide more information for NLIM to learn the temporal and spatial relationship between the travel time of links to support the high variability of urban travel time and high data sparsity.Ministry of Education and Training of Vietna

    Safety indicators for microsimulation-based assessments

    Get PDF
    In the field of ITS applications evaluation, micro-simulation is becoming more and more a useful and powerful tool. In the evaluation process, one of the most important steps is the safety analysis. For that purpose, classical micro-simulation outputs give some helpful information, but which aren’t sufficient for an accurate analysis in many cases. Nevertheless, the microscopic level of traffic description offers the possibility of tracking the simulated vehicles getting at each time step their relative position, speed and deceleration. This paper explains how a safety indicator can be calculated with these different parameters. This safety indicator is used in a ramp metering case study to illustrate the utility of such output for a safety analysis. However, this indicator is limited to the linear collision probability and gives therefore no information on crossing trajectories conflicts like in junctions. On the other hand the likelihood of an incident to happen depends not only on traffic conditions but on the influence of many other factors as for example the geometry of the road, the visibility or the pavement conditions (wet, dry, etc.). When significant statistical information is available an estimation of the probability of an incident to happen can be computed, and used in microsimulation analysis. The paper is completed with the development and testing of hierarchical logit based model to estimate this probability.Peer ReviewedPostprint (published version
    • …
    corecore