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ABSTRACT OF THE DISSERTATION 

FREEWAY PERFORMANCE MEASUREMENT IN A CONNECTED VEHICLE 

ENVIRONMENT UTILIZING TRAFFIC DISTURBANCE METRICS 

by 

Leila Azizi 

Florida International University, 2019 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

The introduction of connected vehicles, connected and automated vehicles, and 

advanced infrastructure sensors will allow the collection of microscopic measures that can 

be used in combination with macroscopic measures for better estimation of traffic safety 

and mobility. This dissertation examines the use of microscopic measures in combination 

with the usually used macroscopic measures for traffic congestion evaluation, traffic state 

categorization, traffic flow breakdown prediction, and estimation of traffic safety. The 

considered macroscopic measures are the mean speed, traffic flow rate, and occupancy. 

The investigated microscopic measures for the stated purpose are: standard deviations of 

individual vehicle’s speeds, standard deviation of vehicles’ speed, and disturbance metrics. 

The utilized disturbance metrics to capture the stop-and-go operations are: the number of 

oscillations and a measure of disturbance durations in terms of the time exposed time–to–

collision (TET), which has been used in other studies as a safety surrogate measure.  

However, this measure of disturbance duration requires the location and speed of both the 

leading and following vehicles and therefore cannot be measured accurately with low 

sample sizes of connected vehicles (CV). Thus, this study derived a model to estimate this 
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measure based on speed parameters. The developed model was tested using real-world 

trajectory data from two locations that were not used in the development of the model.  

Moreover, the percentage of vehicles in the platoon and the platoon size distribution 

were evaluated as additional indicators of congestion. The relationship between the 

platooning and disturbance metrics and the speed parameters were further explored. It is 

recognized that the parameters required to identify the platoons, such as the time headway, 

will not be available based on data from low market penetrations of CV. Thus, a model 

was developed that utilize other measures for the estimation of the platooning measures at 

lower CV market penetrations.  

For the purpose of traffic state recognition and prediction, first, the study used a 

hybrid of two unsupervised clustering techniques to classify traffic states into “breakdown” 

and “non-breakdown”. The study found that adding the disturbance metrics in data 

clustering when identifying the traffic states will result in better traffic state recognition 

and traffic flow breakdown identification by capturing the disturbances in the traffic 

stream. The categorized traffic state was then used as a binary response to the macroscopic 

and microscopic measures, as features, to train supervised machine learning techniques for 

predicting traffic flow breakdown in the following 5-minute interval in real-time 

operations. The study found that the utilizing disturbance and safety surrogate metrics in 

the real-time classification of traffic flow state increases the accuracy of prediction. Also, 

the study showed that the investigated disturbance metrics and associated models and 

thresholds are significantly related to crash frequencies and thus can be used in the 

activation of transportation management strategies to reduce the probability of unsafe 

traffic and ease traffic disturbances that have adverse impact on traffic safety. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Background 
 

Transportation system performance is a key component in congestion management, 

traffic safety management, setting agency priorities, and making policy decisions. 

Emerging connected and automated vehicle (CAV) technologies, shared autonomy, and 

shared mobility will significantly affect the demand and supply of the transportation 

network. They will also increase data quantity and quality, allowing the use of better 

performance measures and better estimation of existing measures. 

The increase in the market penetration of connected vehicles (CV) in the coming 

years will provide an important source of data for planning, planning for operations, and 

operations and management of transportation systems. The improved quality, quantity, 

details, and types of data provided by CV will allow for a better estimation of system 

performance, and the development and application of more effective strategies based on 

this estimation. Transportation System Management and Operations (TSMO) agencies are 

currently collecting data using point detectors, automatic vehicle identification 

technologies such as Bluetooth and Wi-Fi readers, video analytics, and private sector 

vendor data. The parameters currently obtained and used based on these data sources 

usually include volume, speed, occupancy/density, and travel time measurements. The 

National CV Field Infrastructure Footprint Analysis document, produced by the American 

Association of State Highway and Transportation Officials (AASHTO) (Wright et al., 

2014) recommends that public agencies should assess and trade-off the opportunities to use 

connected vehicle probe data aggregation and processing versus the continued deployment, 
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operations, and maintenance of traditional ITS vehicle detection versus purchasing private 

sector data. 

1.2 Problem Statement 

 

Due to the limited data availability, the traffic mobility and safety performance 

estimations in real-time operations have been mainly based on the three fundamental 

macroscopic measures (speed, occupancy, and volume). The introduction of connected 

vehicles, connected automated vehicles, and advanced infrastructure sensors will allow the 

collection of microscopic measures that can be used in combination with the macroscopic 

measures for better estimation of traffic mobility and safety than what can be done with 

the macroscopic measures by themselves.  

There are a number of studies that have investigated using CV data for performance 

measurement. However, these studies have mainly focused on measures that can be 

estimated by existing technology.  Also, there have been limited efforts to investigate the 

potential of taking advantage of the more detailed data obtained from CV in deriving 

additional microscopic measures for use in assessing system operations. The availability 

of CV data will allow for the collection of parameters such as the distributions of the time 

headways between vehicles, variations of the speed between vehicles, variations of the 

speed of each vehicle, and variations of acceleration of each vehicle. A relatively low 

market penetration of CV may be required for estimating some of the detailed measures, 

while other measures will require high market penetrations to produce accurate results.  

Measures such as time headway, volume, and density will not be available based on data 

from low market penetrations of CV. Thus, other surrogate measures are needed for the 

estimation of performance measures at lower CV market penetrations.  
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Based on NCHRP report 551(NCHRP, 2006), the most commonly used criteria by 

agencies to select performance measurements for utilization are: easy to understand, well 

defined and quantifiable, describing existing conditions, predictability, accuracy of 

precision, variability by transportation alternatives, and consistently interpretability.   The 

newly derived measures will provide agencies with additional capabilities to estimate 

system performance.  

1.3 Research Goal and Objectives 

 

The goal of this study is to investigate the use of microscopic measures that can be 

estimated in real-time operations based on CV data in combination with the commonly 

used macroscopic measures to estimate and predict system performance.  For this purpose, 

this study defines additional microscopic measures to quantify disturbances by individual’s 

vehicles. The disturbance metrics are defined to capture the stop-and-go operations and 

include the number of oscillations and a measure of disturbance durations in terms of the 

time exposed time-to-collisions, which has been used in other studies as a safety surrogate 

measure. An oscillation is defined as a deceleration phase followed by an acceleration 

phase. The time exposed time-to-collisions was derived from time-to-collision in the 

evaluation of the risk of collision. These existing measures are reformed and used as 

disturbance metrics in congestion evaluation, traffic state recognition, traffic breakdown 

prediction, and safety assessment using trajectory data and low market penetrations of CV 

data. The findings from this research will improve agency decision-making and allow 

optimized operations and better outcome performance. 
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 The specific objectives of this study are: 

 Developing methods for traffic state identification utilizing defined 

disturbance metrics  

 Developing methods for real-time prediction of traffic state utilizing 

defined disturbance metrics  

 Developing methods for real-time traffic safety estimation utilizing defined 

disturbance metrics  

 Assessing the developed models at low market penetrations of CV data 

1.4 Dissertation Organization 

 

This dissertation includes five chapters. Chapter II presents a review of CV data 

and literature review of existing performance measurement for congestion evaluation, 

traffic state recognition and prediction, and traffic safety. Chapter III discusses the 

assessment methodologies, machine learning methods, and utilized data to attain the stated 

objectives. Chapter VI presents the results, analyses and discussions. Chapter V 

summarizes the finding of this study and provides recommendations for future study.  
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter first provides information about CV data elements, available real word 

CV data, and its applications to transportation system. It then presents a literature review 

related to study’s purposes including: (a) platooning formation (b) traffic state 

classification, (c) traffic flow state prediction and (d) safety assessment.  

2.1 Connected Vehicle Data Element 

Connected vehicle data are generated from vehicles and communicated to either the 

roadside units (RSU) or central facilities for processing and use. These data are useful for 

mobility, safety, and environmental applications. Obtaining some of the useful data 

elements requires connection to the vehicles on-board diagnostic port (OBD-II).  The data 

is transmitted using connected vehicle messages utilizing dedicated short-range 

communication (DSRC) or other communication technologies such as cellular 

communications.  The connected vehicle message types and components are specified in 

the Society of Automotive Engineers (SAE) J2735 standards (SAE International, 2009).  

The basic safety message (BSM), specified in J2735, contains vehicle safety-related 

information broadcasted to surrounding vehicles, but can be also sent and/or captured by 

the infrastructure.  The BSM, as defined in the J2735 standards, consists of two parts. Part 

1 is sent in every BSM message broadcasted ten times per second.  It contains core data 

elements, including vehicle position, heading, speed, acceleration, steering wheel angle, 

and vehicle size. Part 2 consists of a large set of optional elements such as precipitation, 

air temperature, wiper status, light status, road coefficient of friction, antilock brake system 
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activation, traction control system activation, and vehicle type.  However, not all of these 

data elements are currently available from every vehicle. 

CV data communication involves communications between vehicles, infrastructure 

and road users to talk with each other. This is normally categorized as Vehicle to Vehicle 

(V2V), Vehicle to Infrastructure (V2I), and Vehicle to Everything (V2X) such as to 

pedestrians and bicycles. V2I communication provides significant opportunity to collect 

CV data for use in measuring system performance.  

A key challenge is the collection, storage and analysis of data from connected 

vehicles.  The amount of this data is considerably larger than traditional transportation data 

collected by existing sensors such as speed, volume, and occupancy measurements. CV 

offers the opportunity to collect detailed microscopic data from each vehicle ten times per 

second. 

2.1.1 Data from Real-World Deployments of Connected Vehicles 

One of the important consideration of the real-world deployments of the US 

Department of Transportation's intelligent transportation systems, Joint Program Office 

(JPO) is to share the collected ITS including CV data with the users. To date, the available 

connected vehicles data on freeways is summarized in Table 2-1 (ITS DataHub).  

Table 2-1: Available CV Data on Freeways from US Funded Deployments 
CV Data Short Description Location 

Safety Pilot Model 

Deployment (SPMD) 

 

This data provides BSM, vehicle trajectories, 

and various driver-vehicle interaction data  

Ann Arbor, 

Michigan 

Wyoming CV Pilot  

BSM Sample 
This is a live running log of sanitized BSM Wyoming 

Tampa CV Pilot  

BSM Sample 

Generates data from the interaction between 

vehicles and between vehicles and 

infrastructure 

Tampa, FL 

 

https://data.transportation.gov/Automobiles/Wyoming-CV-Pilot-Basic-Safety-Message-One-Day-Samp/9k4m-a3jc
https://data.transportation.gov/Automobiles/Wyoming-CV-Pilot-Basic-Safety-Message-One-Day-Samp/9k4m-a3jc
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2.1.2 Mapping Performance Measures to System Applications 

        The Wyoming CV pilot demonstration team has identified the applications of  

performance measures in nine categories focusing on improvement of traffic safety and 

mobility (Hartman et al., 2016). The measure applications were categorized in: (1) 

improving performance during bad weather condition, (2) improving ability of traffic 

management centers (TMC) to generate alerts and advisories, (3) efficiently disseminate 

traveler information, (4) effectively disseminating and receiving I2V and V2I alerts from 

the TMC, (5) improving information to fleet manager, (6) effectively transmitting and 

receiving V2V messages, (7) automatic emergency notification of crashes, (8) reducing 

speed variation, and (9) reducing crashes. 

2.2 Platooning Measures 

This section first defines platoon and then reviews existing studies that developed 

and utilized methods to estimate platooning in congestion evaluation. These study mainly 

focus on the estimation of the percentage of vehicles in the platoon and the platoon size 

distribution based on macroscopic and microscopic traffic flow parameters.  

As the flow rate increases, two or more vehicles will form platoons. Platooning is 

important as it has serious implications on traffic operations. The Highway Capacity 

Manual (HCM) ( 2016) defines platoon as “a group of vehicles traveling together either 

voluntarily or involuntarily because of signal control, geometric or other factors.” A 

vehicle with a higher desired speed catches up with a slow vehicle and is forced to follow 

it, reducing its speed to maintain its desired following distance.  

Traffic flow breakdown on a freeway and its stochastic nature are strongly related 

to the platooning and platoon size (Shiomi et al., 2011). Shiomi et al. (2011) defined the 



8 
 

traffic breakdown probability as a function of platoon size and its lead vehicle’s speed, 

given the traffic flow rate. They also utilized a probability density function of the 

appearance of a platoon of size of “x,” in which “x” is the number of vehicles in the platoon. 

Thus, the likelihood of a platoons of a given size can be estimated utilizing this function.  

In addition to their use in determining the probability of breakdown, the platooning 

characteristics can be used as criteria to determine the level of service of a facility. When 

drivers are forced to adjust their speed and follow the leading vehicle, they perceive lower 

serviceability. Platooning also indicates lower maneuverability, in terms of the ability to 

change lanes, once again indicating a lower level of service. Furthermore, there is an 

increase in conflicts with the presence of platoons, indicating an impact on safety.  A 

previous study showed that the number of platooned vehicles over one mile can be used as 

a better serviceability criterion in multi-lane highways, compared to density (Chatterjee et 

al., 2017).  Thus, measuring or estimating platooning attributes, as part of traffic operations 

and management, will allow TSMO agencies to make better decisions to implement active 

traffic management strategies to reduce the probability of breakdown and improve the level 

of service.  The estimation of the platooning characteristics on a freeway segment is 

important for both planning and operation analysis and can be used to assess the level of 

operations and service of traffic, as well as to potentially predict the safety of the traffic 

stream. 

The relationship between platooning and traffic flow stability has been a subject of 

research in traffic flow theory and applications. Platooning characteristics have been 

associated with three types of instability that represent increasing levels of instability:  local 

instability, platoon (or string) instability, and traffic flow instability. Determining the 
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distribution of platoon size and the distribution of the inter-platoon gaps can be used in 

assessing the level of instability. Traffic flow is considered unstable if it contains enough 

long platoons and short inter-platoon gaps resulting in the instability within one platoon 

transferring to the next platoon and the disturbance continuing to grow in amplitude 

(Pueboobpaphan & Arem, 2011).  

The review of literature shows that the time headway has been widely used for 

platoon identification. Different thresholds of time headway, ranging from 3.0 seconds to 

6.0 seconds, have been used in the past to identify platooning vehicles. Lay (1986) 

suggested three groups for time headway. When the headway is less than 2.5 seconds, the 

traffic is recognized to be following (in the platoon). When it is between 2.5 seconds and 

9.0 seconds, the traffic is considered to be either following or free (not platooning), and 

when it is more than 9.0 seconds, the traffic is considered free.  Shimoi et al. (2011) defined 

platoons as vehicles whose speeds are strongly correlated with the speed of the lead vehicle. 

They studied the relationship between the time headway and the correlation coefficient in 

the speed of two successive vehicles and determined that the critical headway is 4.0 

seconds. Rahman et al. (2012) used a time gap threshold of 4.0 seconds instead of time 

headway to define platooned vehicles. Vogel (2002) found that the 6.0-second time 

headway is optimal for identifying non-following vehicles. Al-Kaisy and Durbin (2009) 

identified vehicles as being in a platoon based on plotting the mean speed of the vehicles 

and their time headways. The time headway that indicates platooning was identified to be 

3.0 seconds. The HCM points to 3.0 seconds as the threshold, although it recommends 

using the percentage of time spent following to determine the platooned vehicles. Gattis et 

al. (1997) used 5.0 seconds as a time headway criterion to define platoons.   
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Yang et al.(2015) conducted empirical analysis on platoons from free flow to 

congestion flow at on-ramp bottlenecks in I-405 Santa Monica, California and I-95 

Backlick, North Virginia. They found that the platoon time headway fits a normal 

distribution, with a mean of 1.42 seconds and standard deviation of 0.42 seconds in 

Backlick. In Santa Monica, it fits the lognormal distribution with a mean of 1.66 seconds 

and standard deviation of 0.84 seconds. They also found that the non-platoon vehicle time 

headway fits shifted negative exponential distribution with a mean of 3.01 seconds and 

standard deviation of 1.12 seconds. 

Researchers also linked the position of a vehicle in a platoon with the standard 

deviation of speed. Jiang et al. (2015) conducted an experimental study of car-following 

behavior in a 25-car platoon using GPS data and found that the standard deviation of speed 

increases in a concave manner with the position of the vehicle in the platoon. Tian et al. 

(2015) investigated the growth pattern of traffic oscillation using US-101 trajectories data 

collected by the Next Generation SIMulation (NGSIM) program and produced the 

following relationship between the location of the vehicle in a platoon and its standard 

deviation of speed: 

                                SDv  = −10.4 e(−
NVP

94.29
) + 10.56                                        (2-1) 

 where SDv is the standard deviation of speed of each vehicle (m/s) and NVP is number of 

vehicles in the platoon.  

Researchers also investigated the variation in the percentage of vehicles in a platoon 

with traffic volume. Sun et al.(2005) examined the relationship between traffic volume and 

the percentage of vehicles platooning on a highway, with two lanes in each direction and 

short-term and long-term work zones in Illinois. They showed that as the volume increases, 
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the percentage of platooning vehicles increases. The following equation was developed 

based on the collected data: 

                              FR = −1.377 + 0.327 × ln(PIP)                                   (2-2) 

where FR is the hourly flow rate (vphl) ranging between 400 and 1,400 vphl, and PIP is 

the percentage of vehicles in the platoon. 

2.3 Safety Measures 

Rear-end collisions are a main safety concern on freeways, mainly caused by slow 

or stopped traffic. Because collisions are rare events, crash data for at least three years is 

required to have a sufficient sample size to assess traffic safety (Rahman & Abdel-Aty, 

2018).  The safety assessment to support TSMO, particularly in real-time operations, does 

not have access to sufficient crash data to assess safety.  To assess safety for a shorter 

period of time or when such data is not available, traffic conflicts have been used as a 

technique to assess the safety at a location ( Li et al., 2017; Rahman & Abdel-Aty, 2018), 

with the assumption that the conflict statistics is correlated with the risk of actual collisions 

(Dijkstra et al., 2010; Lu et al., 2011). A conflict is a scenario where two drivers will likely 

collide without evasive action.  In order to evaluate rear-end crashes, surrogate measures 

of safety have been proposed to allow the development of relationships between the 

likelihood of crashes and traffic stream flow parameters (Kuang et al., 2015; Z. Li et al., 

2014). These measures have been widely used as indicators to evaluate rear-end crash risk 

and to quantify the number of conflicts. Examples are the time–to–collision (TTC), time 

exposed time–to–collision (TET), time integrated time-to-collision (TIT), post 

encroachment time (PET) and deceleration rate to avoid the crash (DRAC) (Abdel-Aty & 

Pande, 2005; Guido et al., 2012; Li et al., 2017; Peng et al., 2017; Rahman & Abdel-Aty, 
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2018). TTC is defined as the expected time for two vehicles, following each other, to 

collide if they remain at their present speed and on the same path (Hayward, 1972). The 

TET reflects the total time spent under dangerous traffic conditions, characterized by TTC 

values below a threshold value of TTC. TIT is a measure that represents the TTC lower 

than the threshold. TET and TIT were derived from TTC (Minderhoud & Bovy , 2001).  

Figure 2-1 describes these measures. PET (Gettman &Head, 2003) represents the time 

difference between vehicle leaving the area of encroachment and a conflicting vehicle 

entering the same area. DRAC defined as “rate at which crossing vehicles must 

deaccelerate to avoid collision with the conflicting vehicle” (Gettman &Head, 2003). 

Moreover, since a rear-end crash may occur due to insufficient safety distance between the 

leading and the following vehicle, Oh et al. (2006) proposed a rear-end crash index (RCI) 

based on the safe stopping distance in car following to indicate dangerous conditions. 

 

Figure 2-1: TTC Profile with TET and TIT (Minderhoud &Bovy,2001) 
 

The macroscopic traffic flow parameters  (flow, speed, and density) have been used 

in safety performance estimation (Chang & Xiang, 2003).  However, these measures do 

https://www.tandfonline.com/doi/full/10.1080/15389588.2015.1121384


13 
 

not adequately capture the interactions among individual vehicles. A study by Zheng 

(2012) showed that crashes happen in congested conditions and in the transition conditions 

about six times and two times, compared  to free flow conditions, respectively. There are 

limited studies that utilize microscopic traffic flow data in estimating the safety 

performance. Zheng ( 2012) reported that a combination of speed, speed variance and flow 

as a good indicator of traffic’s chaos which has adverse impact on traffic safety. A study 

by Zheng et al. (2010) also showed that traffic oscillations are related to the standard 

deviation of speed and crash rate tends to increase as the standard deviation of speed 

increases. Other studies also found a direct relationship between the standard deviation of 

speed and safety (Abdel-Aty & Pande, 2005; Kamrani et al., 2018; Lee et al., 2002). Arvin 

et al. (2019) used lateral and longitude accelerations of individual vehicles that were 

estimated based on CV data collected as part of the Safety Pilot Model Development 

(SPMD) as a measure of driver’s volatility that impacts crash frequencies at intersections. 

The above review of the literature indicates that although a number of studies have 

investigated using surrogate measures for safety performance assessment, there is limited 

work on utilizing microscopic parameters at the individual vehicle level, that will 

potentially become available from small market penetrations of emerging vehicle 

technology, to assess safety.  

2.4 Traffic State Identification 

The categorization and recognition of the traffic state, particularly the occurrence 

of breakdown, is critical to traffic flow analysis and effective traffic management and 

operations. Due to the data availability, the identification of the traffic states has been 

mainly based on the three macroscopic measures (speed, occupancy, and volume). The 
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introduction of connected vehicles, connected automated vehicles, and advanced 

infrastructure sensors will allow the collection of microscopic measures that can be used 

in combination with the macroscopic measures for better recognition of the traffic state. 

Understanding traffic flow breakdown mechanism and the probability of its 

occurrence is important in traffic analysis, management and operations. The causes of 

traffic breakdowns include: high traffic volume that exceeds the maximum allowable 

throughput and/or bottlenecks where the capacity drops due to disturbance caused by 

individual drivers such as lane changing and abrupt braking. The Highway Capacity 

Manual (HCM) procedure for basic freeway segments categorize the traffic states into six 

levels of service (LOS) and analysts have generally assumed that the breakdown occurs in 

the threshold between LOS E and F, where the demand exceeds capacity of the freeway 

segment. The traffic flow rate at breakdown can be lower than the estimated average 

roadway capacity, as defined in the HCM. Research efforts have confirmed that breakdown 

can happen stochastically and not at a deterministic value of capacity (Dong & 

Mahmassani, 2012; Elefteriadou et al., 1995). 

For modeling the probability of traffic breakdown, the classification of traffic 

conditions into congested and uncongested conditions is important. Such classification, if 

estimated and eventually predicted, will allow traffic management agencies to activate 

operational plans to address the adverse impacts of congestion.  Traffic flow breakdown is 

usually defined as a speed drop of a certain amount when the traffic demand exceeds 

capacity. The HCM defines breakdown on freeways as a condition when the speed drops 

below a certain threshold (e.g., 40 mph) and/or by a certain amount (e.g., 10 mph) 
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(Elefteriadou, 2017) and it is sustained at least for three time intervals (e.g., 15 minutes 

totally). 

Researchers have used visual observations of the traffic flow-speed, flow-

occupancy and speed-occupancy diagrams to evaluate breakdown using threshold values 

of speed, flow, density/occupancy, or combinations of these variables (Dehman, 2014; 

Kondyli et al., 2013; Laflamme & Ossenbruggen, 2017; Yeon et al., 2009).  The change-

point regression modeling was also used to identify the critical value to estimate the 

breakdown based on the speed-occupancy diagram (Kidando et al., 2019).  Clustering 

models, which are unsupervised machine learning algorithms, such as the Gaussian mixture 

model (Kidando et al., 2018; Ko & Guensler, 2005) and K-Means clustering (Elfar et 

al.,2018; Jingxin et al., 2013) have also been used to identify the traffic state based on speed 

and density. The speed threshold used to identify breakdown in previous studies widely 

varied from 25 mph to 50 mph, showing that there is no agreed-on definition of breakdown 

(Kidando et al., 2019). 

Some researchers also defined traffic regimes based on oscillations and categorized 

traffic conditions as non-oscillatory, damped oscillatory, and oscillatory regimes. The 

breakdown is associated with the oscillatory regime that indicate unstable conditions 

(Herman et al., 1959; Swaroop & Rajagopal, 1999). A traffic condition is considered stable 

if the flow is able to handle disruptions without breaking down. Treiber and Kesting ( 2013) 

divided the traffic flow states into stable and unstable and recognized key factors of 

congested traffic instability such as disruption and its propagation probability. It was found 

that there is always a growth of perturbation in the congestion regime (Treiber & Kesting, 

2013). Treiber and Kesting (2013) defined five stability classes based on density, with two 
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classes are unconditionally stable or unstable but the remaining three classes can be stable, 

unstable or metastable and there is a probability of traffic breakdown associated with these 

states.  However, an experimental study by Jiang et al. ( 2018) showed that traffic instability 

is related more to speed rather than density. They also found that for the same average 

traffic speed, some experiments showed stable traffic flow while others showed unstable 

traffic flow. This indicates that speed by itself may not be a sufficient indicator of 

breakdown and other parameters are needed to indicate traffic instability. Some researchers 

assumed traffic flow to be stable if the slope of the flow-speed fundamental diagram is 

positive and is unstable if the slope is negative. However, it was shown that under the 

negative slope, the traffic flow is not necessarily unstable and depends on driving behaviors 

(Pueboobpaphan & Arem, 2011).  Chatterjee et al.(2017) also used platoon characteristics 

to determine three different traffic states: free flow, stable flow and constraint flow. 

The majority of previous studies used either visual observation or clustering 

methods using macroscopic parameters (speed, flow, and density) to identify traffic state. 

However, the review of literature presented in this section indicates that other factors 

should be considered for accurate traffic state identification and prediction.  

2.5 Traffic Flow Breakdown Prediction 
 

The prediction of the traffic flow breakdown is critical to effective traffic 

management and operations. Active traffic management applications have generally used 

macroscopic traffic metrics in their decisions to activate operation plans. The traffic 

breakdown has been identified mainly based on thresholds of speed and/or 

occupancy/density. The critical speed or density at capacity, as identified in the highway 

capacity manual (HCM) can be used for this purpose.  In terms of traffic flow, however, 
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research efforts have confirmed that breakdown can happen stochastically and not at a 

deterministic value of capacity (Dong & Mahmassani, 2012; Elefteriadou et al., 1995).  As 

mentioned before, the introduction of connected vehicles, connected automated vehicles, 

and advanced infrastructure sensors will allow the estimation of microscopic traffic metrics 

that can be used in combination with the macroscopic measures commonly used for better 

identification of the traffic breakdown in terms of both mobility and safety.  

Traffic flow breakdown is usually defined as a speed drop of a certain amount. 

There are numerous studies that investigated the traffic breakdown phenomena. The first 

probabilistic breakdown model was proposed in 1972 (Bullen, 1972) identifying the 

probability of breakdown as an increasing function of the flow rate. Wang et al. (2010) 

developed a model for  predicting the  breakdown probability based on the expected future 

density, utilizing Markov transition. Son et al. (2004) developed a probabilistic model of 

traffic breakdown, triggered by merging vehicles, by applying a wave propagation model 

with random disturbance. Elefteriadou  et al. (1995) defined the breakdown mechanism as 

resulting from a large vehicle groups entering freeway through an on-ramp causing  speed 

drops. Shiomi et al. (2011) defined the traffic breakdown probability as a function of 

platoon size and its lead vehicle’s speed given the traffic flow rate. Ahn et al. ( 2017) 

studied a stochastic modeling of traffic breakdown for freeway merge bottlenecks with 

consideration of headway distribution. Chen et al. (2014) proposed a model for traffic 

breakdown, caused by perturbations of on-ramp merging vehicles, based on queuing 

theory. Dong et al. (2012) studied traffic breakdown, focusing on disturbance caused by 

speed changes of the lead vehicle and the propagation by followers. Kondyli (2009) also 
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studied breakdown probability at freeway ramp merge based on the stochasticity of driver 

behaviors in accepting gaps and making decisions.  

With the rapid advancement of machine learning, it is possible to utilize large 

amount of data including microscopic traffic data that includes detailed trajectory data to 

improve the accuracy of traffic state identification and prediction. The machine learning 

methods are mainly categorized in three categories: naïve, parametric, and non-parametric 

methods (Van &Van, 2012). There are numerous studies in transportation engineering on 

using various machine learning methods in a wide variety of applications.  However, there 

is a limited research on using machine learning methods in conjunction with high-

resolution data in real-time traffic state estimation.  Elfar et al. ( 2018) used trajectory data 

to predict congestion utilizing speed and standard deviation of speed. There are also 

existing studies that used deep learning methods in traffic congestion and trajectory 

prediction (Khajeh Hosseini & Talebpour, 2019; Zhang et al., 2019). However, these 

existing studies (Elfar et al., 2018; Khajeh Hosseini & Talebpour, 2019) focused on the 

classification of congestion for short periods of time in the future (10 seconds/ 20 seconds) 

and did not combine mobility and safety metrics in the prediction.  In addition, these studies 

used data that were collected only at congested conditions and do not covered all traffic 

conditions (Elfar et al., 2018; Zhang et al., 2019).   

2.6 Summary 

 

This chapter presented a comprehensive literature review on platooning measures, 

safety measures, traffic state identification, and traffic flow breakdown prediction. It can 

be concluded that there have been limited efforts to investigate the potential of the more 

detailed data obtained from CV in deriving additional measures for use in assessing system 
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operations. The review of the literature indicates that although a number of studies have 

investigated using surrogate measures for safety and traffic state performance assessment, 

there is limited work on utilizing microscopic parameters at the individual vehicle level, 

that will potentially become available from emerging vehicle technology, to assess safety 

and mobility. Also there is no study on the identification of microscopic measures’ 

thresholds to justify activating plans to mitigate unsafe and congested conditions in real-

time operations.  

Some data required for better measurements of performance such as the time 

headway used in estimating the platooning characteristics and the TET, which is a 

surrogate measure to safety will not be available based on data from low market 

penetrations of CV. For example, if the market penetration of CV is 5%, then the 

percentage of vehicles following each other is 0.25%.  This means that there will be an 

opportunity for 25 headway measurements for each 10,000 passing vehicles.  Therefore, 

there is a need for methods for the estimation based on surrogate measures that can be 

assessed using CV data at a relatively low market penetration of CV.  
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CHAPTER III 

METHODOLOGY AND UTILIZED DATA 

 

This chapter presents the surrogate measures, utilized data, and methods that were 

used to achieve the research objectives stated in Chapter I. 

3.1 Surrogate Measures 

Before providing more details on the utilized methodology and data, this section 

describes the microscopic traffic parameters investigated for use in the listed study’ 

purposes and how they are calculated. A Procedural Language extension to Structured 

Query Language (PL/SQL) program was developed with Oracle SQL Developer to 

calculate these measures utilizing the trajectory datasets used in this study.  

3.1.1 Standard Deviations of Speeds  

 

The standard deviation of speed is related to the shockwave and platoon formation, 

which preludes traffic breakdown (Elfar et al., 2018). Some studies also showed that the 

increase in standard deviation of speed will result in traffic breakdown (Krauss et al., 1997; 

Kühne, 1984).The standard deviation of individual vehicle’s speeds (SDv) and standard 

deviation of vehicles’ speed (SDt) are calculated as follows: 

                              SDt=√
1

n−1
∑ (Vi − V̅)2n

i=1                                                       (3-1) 

                             SDv= √
1

n1−1
∑ (Sj − S̅)2n1

j=1                                                     (3-2) 

where, n is the number of vehicles, V𝑖 is the speed of vehicle i, V̅ is the mean speed of 

vehicles, n1is the number of speed data collected for a specific vehicle at 1/10th of a second 

time interval, Sj is the speed of the vehicle at interval j, and S̅ is the mean of individual 

vehicle’s speeds. 
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3.1.2 The Index of Time Exposed  Time to Collision (TETIndex) 

Time-to-Collision (TTC) is a primary conflict measure, introduced by Hayward 

(Hayward, 1972), and has been widely used as a surrogate safety measure for rear-end 

crashes. TTC is defined as the expected time for two vehicles, following each other, to 

collide if they remain at their present speed and on the same path (Hayward, 1972). It has 

been reported that lower TTC is a good indicator of the probability of collision, but cannot 

be directly linked to the severity of the collision. Balas et al. (Balas & Balas, 2007) used 

the inverse of the TTC as an indicator of safety. Another type of TTC referred to as 

TTCBreak (Peng et al., 2017) was proposed to consider situations, in which the leading 

vehicle stops suddenly. This parameter is calculated as follows: 

                      TTCBreak(t) =
 xi−1 (t)−xi(t)−L̅

vi(t)
   if vi(t) > vi−1(t)                        (3-3)  

where TTCBreak(t) is the time to collision value of vehicle i at time t, xi (t) is the position 

of vehicle i at time t, xi−1 (t) is the position of vehicle i-1 at time t , vi (t)  is the speed of 

vehicle i at time t, and L is the average length of vehicles.  

An aggregate indicator, the TET, was introduced (Minderhoud & Bovy, 2001) to 

assess the safety performance of monitored segment in space and time. The TET reflects 

the total time spent under dangerous traffic conditions, characterized by TTC values below 

a threshold value TTC*.  The TET is calculated as follows. 

                       TET(t)=∑ δtΔtn
i=1                                                                        (3-4) 

                       δt={
1  , 0 < TTCbreak(t) ≤ TTC∗

0 ,                                           else
                              

                       TET=∑ TET(t)T
t=1                                                                                                                   
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where, Δ𝑡 is the time step of the trajectory data collection, which is usually set at 0.1 second 

in simulation, TTC* is the threshold, n is the number of vehicles, and T is the time period. 

The TTC* threshold, referenced above is used to differentiate the unsafe car 

following conditions from the ones that are considered safe. According to the past research 

(Abdel-Aty & Pande, 2005), the threshold values are usually set between 0.5 second to 3.5 

second. Fan et al. (Fan et al., 2013) recommended using a TTC* threshold of 2 seconds in 

freeway merge areas to identify the conflicts. The sensitivity analysis in previous research 

also showed that changing the TTC* value within the investigated range does not have a 

significant effect on the results of the safety assessment ( Li et al., 2017).  Based on the 

above review, this study uses TET with a threshold (TTC*) of 2 seconds, as the surrogate 

safety measure to be estimated based on CV trajectory data.   

In this study, TET is calculated for each subsegment and normalized using Equation 

3-5 to determine a TET index, which is proposed in this study as an index of disturbance 

duration.   

         TETIndex=((TET/n)/T )             0 <=TETIndex <=  1                            (3-5) 

where TET, n and T are as in Equation 3-4.   

3.1.3 Number of Oscillations (NO) 
 

In addition to the duration of disturbance, reflected by the TETIndex described in 

Equation 3-5, the number of oscillations (NO), reflecting the stop-and-go maneuvers, was 

also defined in this study.  An oscillation is defined as a deceleration phase followed by an 

acceleration phase. Stop-and-go traffic is the mechanism of traffic state transition to 

congestion and is related to traffic breakdown and instability (Zheng et al., 2010). An 

oscillation occurs when the speed of the follower vehicle is changing while the leader’s 
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speed does not. This study measured NO directly from individual’s vehicles 

acceleration/deceleration. The percentage of vehicles having oscillation in each 300 feet 

segment is calculated and used as another disturbance indicator. 

3.1.4 Rear-End Crash Index (RCI) 
 

Rear-end crash Index (RCI) is another surrogate safety measure proposed based on 

the safe stopping distance in car following situations (Oh et al., 2006; Ozbay et al., 2007).  

Safe stopping distance is defined as that, at which the follower vehicle can safely reduce 

speed to avoid colliding with the leading vehicle when the leading vehicle reduces its speed 

or stops. Using the RCI, the judgment of whether a conflict occurs is based on the 

trajectories parameters of two consecutive vehicles including the relative speed, distance, 

and acceleration between the leading and following vehicles. RCI was defined as follows: 

                                  RCI =(∑ RC(t)T
t=1  )/n                                                                 (3-6) 

                      RC (t)=∑ SDI ×  Δtn
i=1  

       SDI={
0  (safe),                               if SDF < SDL
1  (unsafe) ,                                           else

 

where, RC(t) is the number of conflicts at time t, Δt ,t,T and n are as defined before and the 

stopping distance (SDI) is calculated as function of the reaction distance and braking 

distance as follows:                      

                        SDF = vf × PRT +
vf

2

2×af
                                                            (3-7) 

                       𝑆DL = vl × PRT +
vl

2

2×al
+ l ̅

                       SDLBreak = l ̅

                       l=̅ xi−1 (t) − xi(t) − L̅ 
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where SDF is the stopping distance of the following vehicle , SDL is  the stopping distance 

of the leading vehicle, PRT is the perception reaction time, set to 1.5 seconds (AASHTO, 

2011), a is deceleration rate, v is the speed and l ̅ is relative distance. xi(t) and L̅ are as 

defined before. Please note that since this study uses TTCBreak, SDLBreak  was defined in 

this study to extend the original concept of SDL to reflect conditions, at which the leading 

vehicle stops suddenly causing a conflict with the lagging vehicle. 

3.2 Utilized Data  

A complete understanding of the traffic conditions will benefit from collecting the 

data at the individual vehicle level and generating time-space diagrams showing vehicle 

interactions, disturbances in traffic flow, congestion formation, and shockwave 

propagation that are important in assessing traffic safety and mobility. As stated earlier, the 

recent advancement of emerging technologies such as CV and CAV promise to provide 

such data in real-time. However, CV and CAV data are not yet available from traffic 

streams with high market penetrations of these technologies to allow its use in this study. 

The real-world trajectory data collected as part of the Federal Highway Administration 

(FHWA) by Next Generation SIMulation (NGSIM) program was also collected only for 

congested conditions, and thus does not fully satisfy the data requirements of this study. 

Therefore, simulation modeling was used to produce trajectory data for different 

congestion levels for use in the development of the models in this study.  However, real-

world vehicle level data in addition to macroscopic traffic data were used in calibrating the 

simulation model.  In addition, vehicle-level real-world data from other locations were used 

in validating and evaluating the developed models, as described later in this chapter.  

 



25 
 

Thus, the utilized data includes the following three groups: 

 Simulated vehicle trajectory from microscopic simulation 

 Real-world vehicle trajectory from NGSIM data 

 CV data from real-world deployments of connected vehicles (CV) 

The trajectory data from microscopic simulation, NGSIM data, and CV data include 

information about vehicles’ speeds, accelerations/decelerations, and locations at the 1/10th 

of a second resolution. These trajectory data were associated with subsegments per lane, 

each measuring 300 feet long.  The segment performance was assessed for each 5-minute 

interval, unless otherwise stated.  

3.2.1 Microscopic Simulation 

 

Simulation modeling of a freeway segment was performed utilizing the PTV’s 

Verkehr In Städten SIMulationsmodell (VISSIM) microscopic simulation tool. The 

simulated segment includes an on-ramp and off-ramp with three main lanes throughout the 

section. The merge of the on-ramp traffic creates a bottleneck with different levels of 

congestion at the upstream section, depending on the traffic level.  The segment was 

simulated and calibrated to reflect real-world conditions on the eastbound segment of the 

I-580 in California, between Strobridge Ave and Redwood Rd. The calibration process 

utilized data and results from a FHWA study, in which the time headways of all vehicles 

were collected utilizing a drone video recording and analyzed using an image processing 

software (Hale et al., 2019). The FHWA study utilized a previously developed method 

(Rakha & Gao, 2010) to calibrate the Wiedemann model based on the collected headway 

data. Please refer to Hale et al. (2019) and Rakha & Gao (2010)  for the utilized VISSIM 

calibration processes and its validation.  
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1030 ft 2125 ft 2125 ft 

A one-mile segment in the simulation was divided into subsegments per lane, each 

is 300 feet long, to allow a detailed spatial analysis of the segment for each 5-minute time 

intervals for a total period of 15-minutes. The first 30 minutes of VISSIM simulation was 

set as a warm-up period and thus was excluded from the period of performance assessment. 

Figure 3-1 shows the coded freeway section.  

 

 

Figure 3-1 : Coded Freeway Section 

 

3.2.2 NGSIM Data 

 

The data from the simulation effort described above was used to derive a model to 

estimate safety and mobility performance. To validate the transferability of the model in 

producing acceptable results in other locations not used in the calibration of the simulation 

model, this study used real-world trajectories data collected from both I-80 and  US 101 

segment in California as part of the NGSIM program (FHWA, 2007) for the two locations. 

The segment of US101 is about 2,100 feet long and has five mainline lanes, one on-ramp 

and one off-ramp. The data were collected for the period between 7:50 A.M. to 8:35 A.M, 

for a total period of 45 minutes. The segment of I-80 is about 1,650 feet long and has five 

mainline lanes, one on-ramp, and one off-ramp. The I-80 data were collected for the period 

between 4:00 P.M. and 4:15 P.M. Figure 3-2 shows the study areas of I-80 and US101. 
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(a) 

 

(b) 

Figure 3-2: NGSIM Program Study Areas (a) I-80 and (b) US101 

3.2.3 Connected Vehicle Data 

Further evaluation of the application of the developed models for safety and 

breakdown prediction was done using data collected based on BSM from connected 

vehicles as part of the SPMD project in Ann Arbor, Michigan.  The data was collected for 

3,600 feet of the eastbound direction of I-94. This study used this data to assess the 

performance of the developed method when the data is obtained from low market 
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penetrations of CV. The SPMD included about 2,800 instrumented vehicles and about 70 

miles of roads instrumented with road side units (RSU) (Henclewood, et al., 2014).  The 

CV and RSU communicated via DSRC communication. The selected segment has two 

lanes and located between ramps (Figure 3-3) 

 

 Figure 3-3: SPDM Study Area 
 

3.2.4 Descriptive Statistics of Utilized Data 

The summary statistics for utilized data including the simulated dataset, CV dataset, 

and NGSIM dataset are reported in Table 3-1. The features included in Table 3-1 are 

microscopic and macroscopic measures explained earlier in section 3.1. 
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Table 3-1: Descriptive Statistics of Features  
Real-World CV Data from the SPMD Project and Detector Data  (One day) 

Features Mean Standard Deviation Minimum Maximum 

Mean Speed (fps)          93.88            15.05        45.18     120.41 

Avearge SDv (fps) 0.88 0.74 0.04 4.08 

SDt (fps) 6.66 5.05          0.10        22.30 

TETIndex 0.03 0.02 0.01          0.15 

NO (%)          17.15            36.63          0.00      100.00 

Flow (vphl)         693.00          228.10      104.00    1814.00 

Occupancy (%)           13.25            10.23          1.50        56.60 

Simulated Data 

Mean Speed (fps)          73.83 25.60 12.20      106.34 

Avearge SDv (fps) 1.59 1.38   0.09 5.02 

SDt (fps) 5.95 3.53   1.91       17.87 

TETIndex   0.035             0.032       0.0013         0.17 

NO (%)          16.28           24.23   0.00     100.00 

Flow (vphl)      1772.00         322.00        693.00   2488.00 

Occupancy (%)          28.98           16.34   7.29       95.86 

NGSIM : I-80  (4:00 P.M. and 4:15 P.M.) 

Mean Speed (fps)          25.76 4.39         15.69 37.20 

Average SDv (fps) 3.86 0.73 2.35 5.75 

SDt (fps) 6.74 1.62 4.05        12.90 

TETIndex 0.09 0.03 0.05 0.19 

NO (%)           96.28 5.51        76.47      100.00 

Flow (vphl)       1293.00          210.90       824.00    1941.00 

Occupancy (%)           40.84              9.44 25.08        81.53 

NGSIM : US101 (7:50 A.M. to 8:35 A.M.) 

Mean Speed (fps)           34.25 5.08 24.08        45.15 

Average SDv (fps) 3.62 0.49  2.42 4.46 

SDt (fps) 9.88 1.72  6.70        14.28 

TETIndex 0.13   0.025  0.07          0.19 

NO (%)          76.26            21.14 18.75      100.00 

Flow (vphl)      1677.00          134.20      1392.00    2004.00 

Occupancy (%)          41.38 4.65          31.00        55.21 

 

3.3 Platooning Measures 

One of the objectives of this dissertation is to estimate platooning measures at low 

market penetration of CV data. Several studies used time headway and its distribution as 

criteria to identify platooned vehicles. Although the headway distribution is a good 

measure to use in estimating the platooning characteristics, the data required for headway 

estimation will not be available based on data from low market penetrations of CV data, as 
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described earlier. The headway measurement requires the location and speed of both the 

leading and lagging vehicles, and these vehicles will have to be equipped with CV 

technologies to provide this information. The headway data can be also obtained from 

connected automated vehicles if information from the vehicle sensors installed in these 

vehicles such as image-based sensors and microwave sensors are made available for 

performance measurement. However, this is not expected in the near future. Thus, 

measures other than time headway is needed to estimate platooning at lower CV market 

penetrations.  

This section identifies methods for the estimation of the percentage of vehicles in 

the platoon and the distribution of the platoon size based on surrogate measures that can be 

assessed using CV data at a relatively low market penetration of connected vehicles. This 

study utilizes two surrogate measures for this purpose, the standard deviation of vehicles’ 

speed (SDt), and the average of the standard deviations of individual vehicle’s speeds 

(SDv) as were described before. 

To investigate the relationship between the surrogate measures and the platooning 

characteristics, this study utilized real-world trajectory data collected as part of the Federal 

Highway Administration (FHWA) NGSIM program. Since this data was collected for 

congested conditions with high levels of platooning, trajectory data generated from 

simulation analysis were used to supplement the real-world data, which provided the 

coverage of additional platooning levels. The mean speed, SDv and SDt were calculated 

based on the real-world and simulated trajectories. A moving average method was used to 

remove the noise in the vehicle speed profile. All vehicles were sorted by their entrance 
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times to the 300 feet subsegment and were assigned vehicle identifications for use in the 

determination of the platooning of vehicles.  

Two criteria were used to decide whether a vehicle is platooned or not. The first 

criterion is the time headway. A time headway of 4.0 seconds was selected as a threshold 

to identify the platoon based on data analysis that involved plotting vehicle headway vs. 

speed, sensitivity analysis that involves varying the headway threshold between 3.0 

seconds to 5.0 seconds, and findings based on the literature review. Since the standard 

deviation of speed of the leading vehicles should be small, another criterion was used to 

supplement the time headway criterion in the identification of a non-platooned vehicle or 

the leading vehicle of a platoon based on the standard deviations of individual vehicle 

speed.  Based on examining the data used in this study and the review of literature, the 

standard deviation of speed below 1.0 fps was used as an indication of a non-platooned 

vehicle or the leading vehicle in a platoon, if the vehicle also meets the headway criterion. 

The reason for using 1.0 fps is because in Equation 2-1, if the specified number of vehicles 

in a platoon is 1, then the SDv is 0.26 m/s (0.88 fps), which is close to 1 fps. 

The above procedure allows the estimation of the percentage of vehicles in a 

platoon based on all available trajectories.  In addition, the distribution of the size of the 

platoon was estimated by estimating the position of each vehicle in the platoon based on a 

model developed by Tian et al. (2017) that links the standard deviation of the speed of a 

vehicle to its position in the platoon.  This model was previously presented in Equation 2-

1. This relationship was validated based on the data collected in this study, as discussed 

later in this document.   
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The above discussion summarizes the estimation of two platooning measures for 

use in this study: the percentage of vehicles in a platoon and the distribution of the size of 

the platoon. Since the purpose of this study is to link the two surrogate measures (SDv and 

SDt) to the platooning measures discussed above, the relationships between the surrogate 

measures and the platooning measures were then developed based on all available 

trajectories since the platooning measures can only be measured if all trajectories are used. 

The trajectories of all vehicles cannot be obtained unless the market penetration of CV is 

100%. Thus, the developed relationship was derived for use to estimate the platooning 

measures based on the surrogate measures for lower market penetrations. 

As stated earlier, the trajectories utilized in this study were obtained from two 

sources: real-world trajectories collected from I-80 in Emeryville, California by the 

NGSIM program, and simulated trajectories for the same corridor. For both the real-world 

and simulation, the segment was divided into five subsegments per lane, each measuring 

300 feet long. The platooning measures and surrogate measures were estimated for each 

subsegment per 15-minute time interval.  

3.4 Safety Measures 

Another objective of this study is to use trajectory data in estimating metrics of the 

safety of freeway segments using data collected from low market penetrations of CV.  The 

safety performance was assessed based on indicators of the interactions between pairs of 

vehicles in the traffic stream. These interactions at the individual’s vehicle level creates 

perturbation in the traffic flow that can potentially lead to traffic breakdown or collisions.  

This study investigated methods for the utilization of detailed trajectory data to 

measure disturbances metrics as indictors of the perturbation of traffic flow to identify 
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unsafe conditions. The utilized disturbance metrics are the number of oscillations (NO) and 

a measure of disturbance durations index based on time exposed time-to-collisions (TET), 

referred to as TETIndex. This study also measured NO directly from individual vehicles’ 

acceleration/deceleration in transition to congested conditions.  TET has been widely used 

as a safety surrogate measure, however, to the best of author’s knowledge, there is no study 

on the identification of its thresholds to justify activating plans to mitigate unsafe 

conditions in real-time operations. TET also has not been sufficiently investigated as a real-

time indicator of safety under different conditions and with smaller sample sizes of 

trajectory data. The TETIndex estimation requires the location and speed of both the 

leading and following vehicles and therefore cannot be measured accurately at low sample 

sizes of vehicle trajectories. Thus, this study derived regression models to estimate the 

TETIndex based on speed parameters for use in cases such as low market penetrations of 

CV. The considered speed parameters are the mean speed, the average of the standard 

deviations of individual vehicle’s speeds (SDv), and standard deviation of vehicles’ speed 

(SDt). The developed model was tested using real-world trajectory data from two locations 

that were not used in the development of the model.  The model was also used to estimate 

the TETIndex at low market penetrations of real-world vehicle trajectories based on CV 

data and the results were related to crash data at the site. 

The disturbance metrics were also related to an additional surrogate measure of 

safety referred to the rear end crash index (RCI) to confirm the critical values of the 

disturbance metrics that indicate unsafe conditions, as described later.  The parameters used 

in this research are described in the section 3.1. When calculating these parameters, a 

moving average method was used to remove the noise in the vehicle speed profile.  The 



34 
 

estimation was done for each 300 feet subsegment of the case study facility, per lane and 

for each 5-minute time intervals. Figure 3-4 presents an overview of the utilized data 

sources, the developed method, and the associated evaluation. 

 

Figure 3-4: Methodology Framework of the Assessment of Safety 

 

3.5 Traffic State Identification 

This study investigated the use of microscopic features that contribute to traffic 

flow perturbations as indicators of breakdown, in addition to the commonly used 

macroscopic measures.  Three methods were used and compared in identifying the 

breakdown state.  The first and second methods use clustering technique and the change-
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point regression, respectively, based on macroscopic measures, as have been done in 

previous studies and discussed in the literature review.  The third method, as a contribution 

of this study, uses a combination of macroscopic and microscopic features in the clustering 

analysis to identify the traffic state. The first step in the analysis was to identify the 

conditions, under which there is uncertainty in whether a breakdown has occurred when 

using the macroscopic measures alone. This was determined by using clustering based on 

the macroscopic measures and identifying the uncertain traffic conditions with high 

probabilities of belonging to two clusters, one cluster indicating a “breakdown” and one 

indicating “non-breakdown”. The Gaussian Mixture Models (GMM) with the three 

macroscopic features of traffic (flow rate, speed and density) was used to identify the 

uncertain phase of traffic conditions. The reason for using the GMM clustering for this 

purpose instead of using other more commonly used clustering methods is that the GMM 

clustering is capable of providing the probability of belonging to the identified clusters 

(Bishop, 2006).   

The identified uncertain traffic condition phase from the GMM analysis was then 

further analyzed using the K-Means clustering, with consideration of both macroscopic and 

microscopic features. The microscopic features include the standard deviation of speed, 

number of oscillation (stop-and-go), and TETIndex, which are indicators of disturbances. 

The results from using these additional microscopic features in the clustering are then 

evaluated and compared to those using only macroscopic measures. In addition, the 

performance of the method was compared with the results obtained from using a 

deterministic value of speed as an indicator of breakdown as identified using the change-
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point regression analysis procedure based on the speed-occupancy relationship. Finally, 

the method was tested using NGSIM dataset. 

Clustering Analysis: 

Clustering is the grouping of a set of data into clusters where the data in the same 

cluster are similar in some sense. There are several clustering methods that have been 

proposed and utilized in the literature. The two approaches mentioned earlier, the GMM 

and K-Means clustering methods have their own strengths and weakness. GMM is a 

probabilistic clustering that fits a set of number of Gaussians (number of components) to 

the data and estimates the Gaussian distribution parameters (the mean and variance) for 

each cluster and the size of a cluster. It then calculates the probability of the data points 

belonging to each cluster (Neal, 2007).  The K-Means method clusters the data points based 

on the average squared distance between the points such that the distance in the same 

cluster is minimized (Arthur & Vassilvitskii, 2007).  The K-Means methods, which is the 

most widely used clustering method, clusters the data deterministically while in reality 

there might be some overlapping between the clusters.  The GMM addresses this issue by 

providing the probability of a data point belonging to a specific cluster.  However, the K-

Means clustering was found to performs better with high dimensional data (Neal, 2007). 

As mentioned earlier, there is uncertainty in the data belonging to clusters around 

the breakdown point.  Thus, in this study a hybrid clustering approach that combines GMM 

and K-Means was used to better categorize the data around the breakdown point. The 

clustering algorithm and analysis were implemented using the scikit-learn library in 

Python.  First, the GMM was used to identify the traffic phase with uncertainty where the 

probability of being in more than one cluster is significantly higher than zero. Then, the K-
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Means clustering was used to classify that data points in the phase of uncertain traffic 

conditions into “breakdown” and “non-breakdown” conditions based on different 

combinations of macroscopic and microscopic traffic features. Note that clustering the 

uncertain phase with GMM was also tried. It was found that the K-Means clustering 

outperformed the GMM with regard to the Silhouette Coefficient (SC), which is a measure 

used for clustering assessment, explained in the next paragraph. 

Recognizing the difference in scale between the used features, the values of each 

feature were standardized before clustering by subtracting the mean and then dividing by 

the standard deviation of the feature values (Hale, 2018). The results of the clustering 

algorithm were assessed using the SC as a performance measure of clustering. The SC 

value for each point is a measure of how that point is similar to the points in its own cluster, 

compared to the points in another cluster. The value is between -1 and 1.  Values close to 

one indicate data that the data is very well clustered (Liu et al., 2016).   In addition to the 

similarity of the points in the clusters, this value also increases with the decrease in the 

number of features. Thus, this should be considered when comparing the performance of 

different clustering alternatives using the SC.  

3.6 Traffic Flow Breakdown Prediction 

This study investigated the use of combinations of macroscopic and microscopic 

features to identify the mobility and safety state of freeway traffic. The investigated 

microscopic features included the standard deviations of individual vehicle’s speeds and 

the standard deviation of vehicles’ speed, in addition to the two disturbance metrics of 

traffic flow, mentioned earlier. The two disturbance metrics are the number of oscillations 

(stop-and-go) and a metric that has been widely used as a surrogate metric to safety, 
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referred to as the time exposed time–to–collision (TET).  These disturbance metrics are 

expected to be good indicators of the perturbation in traffic flow and also safety, thus 

allowing more accurate alerts to traffic management agencies regarding entering a 

nonacceptable traffic state. The developed and evaluated models predict the breakdown 

state in term of combined mobility and safety metrics in the next 5-minute interval in real-

time operations.  Three different machine learning approaches were used and evaluated for 

developing state prediction models using data from simulation modeling and data from a 

real-world CV deployment, as part of the SPMD. 

Utilized Machine Learning Approaches: 

Machine learning methods/algorithms are classified as supervised, unsupervised, 

and reinforcement learning. Supervised learning requires training data that include feeding 

paired inputs and outputs to the model.  Examples of supervised learning are statistical 

regressions, K-nearest neighbors, support vector machine (SVM), artificial neural 

networks (ANN), decision trees, and tree ensembles. With unsupervised learning, the input 

data is not associate with outputs. Examples are clustering and association rules.  

Reinforcement learning can observe the conditions and select the best actions for a given 

situation (Bishop, 2006).   

For the real-time classification of traffic state, as explained in previous sections, 

this study first categorized the historical traffic data using unsupervised clustering 

technique that separates the traffic states into “breakdown” and “non-breakdown”, based 

on combinations of microscopic and macroscopic features, that reflect both mobility and 

safety.  The identified traffic state was then used as a binary response label, to the data that 
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is used in the training and testing of the machine learning classification methods used in 

this study.   

The top ten classifiers that are widely used in research and practice were attempted 

using the scikit-learn library in Python. Each of these classifiers has its own weakness and 

strengths Based on the initial evaluation results, three of the classifiers were selected for 

use in this study. These selected classifiers are: the SVM and two tree ensemble techniques, 

which are the Random Forest (RF) and Extreme Gradient Boosting (XGB). RF is one of 

the simplest, popular and accurate learning algorithm and act excellent in prediction 

performance. RF trains each tree individually using a random feature. XGB, known as 

regularized boosting, is an implementation of gradient boosted decision trees designed for 

speed and performance. XGB builds each new tree correcting errors made by the previous 

trees. SVM is a linear/non-linear separator that transform the data and found the optimum 

boundary to separate the data into two classes (Bishop, 2006).  

As stated earlier, several macroscopic and microscopic features were utilized as 

inputs to the investigated models. Recognizing the difference in scale between the used 

features, the values of each feature were standardized before clustering by subtracting the 

mean and then dividing by the standard deviation of the feature values. Since most features 

are correlated with each other, first, the Principal Component Analysis (PCA) was utilized 

to reduce the dimensionality of data and handle the collinearity between variables. The 

utilized number of components was selected based on the number of input features and 

projected variance (Bishop, 2006).  
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3.7 Summary  

 

This chapter discussed the methodologies and utilized data that were adopted to 

achieve the objectives of this research. Methodologies for platooning estimation, safety 

state estimation, traffic operation state recognition, and traffic flow breakdown prediction 

were discussed. Simulated trajectory data were used to develop the models and NGSIM 

data were used to validate the further developed model. Data from a connected vehicle 

pilot with low CV market penetration was also used to assess the developed models for 

safety estimation and breakdown prediction at low market penetrations of CV. 
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CHAPTER IV 

ANALYSIS, RESULTS AND DISCUSSIONS 

 

This section presents the results and discussion of the development, validation, and 

evaluation of the models and methods developed in this study. 

4.1 Relationships between Parameters 

First, the study performed an initial exploration of the relationship between the 

three fundamental macroscopic variables (flow, density, and speed) for the simulated data 

as presented by the fundamental diagrams and shown in Figure 4-1. A Change-Point 

Regression with Gaussian Mixture analysis was conducted based on the data from the 

calibrated simulation model and the critical speed at capacity was found to be around 65 

fps. This value was used in further analysis of the results, as described later.  

 

 

Figure 4-1: Fundamental Diagram of the Macroscopic Traffic Features  
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Then, this study performed a visual inspection of the relationship between 

disturbance metrics (TETIndex and NO) with speed parameters (S, SDv and SDt), as 

described next. 

Disturbance Metrics: TETIndex and NO Analysis:  

The relationship between the speed parameters are shown in Figure 4-2. Figure 4-

2 (a) shows that as the speed decreases, the SDv, increases reaching a maximum of about 

4 fps at speed slightly below the critical speed at capacity (about 55 fps which is lower than 

the speed at capacity, which is 65 fps). However, the SDv does not increase further when 

the speed decreased below 65 fps since the traffic is already in a congested regime. Figure 

4-2 (b) shows that as the speed decreases, the SDt, increases reaching a maximum of about 

8 fps around the breakdown point. As the traffic becomes more congested and the speed 

drops, the SDt decreases due to the constraint on the desired speeds of vehicle by their 

leaders.  

 

                               (a)                                                            (b) 

Figure 4-2: The Relationship between Space Mean Speed and (a) SDv and (b) SDt  
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Visual inspection of the relationships of the two disturbance metrics (TETIndex 

and NO) and the speed parameters are shown in Figure 4-3. It can be seen that the 

TETIndex and NO increase with the decrease in the mean speed. They also increase with 

increase in SDv. In addition, the TETIndex and NO increase sharply as the speed drops 

below 65 fps and SDv increases above 2.0-2.5 fps. The values of the TETIndex and NO at 

the break point, beyond which the two values of the two variables increase sharply, are 

about 0.03 and 10%, respectively. Figure 4-3 shows that the values of the TETIndex and 

NO with the maximum SDt are also around 0.03 and 10%, respectively.  These values seem 

to indicate the start of the transition phase of traffic conditions, at which the perturbation 

of traffic flow is more likely to grow.  Figure 4-3 shows higher values of the disturbance 

metrics including a TETindex of 0.05 and a NO of 20% are clearly in the congestion region 

of the curves.    

4.2 Platooning Measures 

Next, this study investigated the CV use of data at a relatively low market 

penetration of CV for platooning measure estimation including the percentage of vehicles 

in the platoon and the distribution of the platoon size based on surrogate measures. This 

study utilized two surrogate measures for this purpose, the standard deviation of vehicles’ 

speed, and the average of the standard deviations of individual vehicle’s speeds.  
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Figure 4-3: The Relationship between Disturbances with Mean Speed, SDv and SDt 

 

4.2.1 Platoon Percentage Determination 

As described earlier, the number of vehicles in the platoon was calculated in 

previous studies by identifying whether or not a vehicle is platooned based on the measured 

time headways and the standard deviations of individual vehicle’s speeds based on vehicle 
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trajectories. The result was used to calculate the percentage of the vehicles in the platoon. 

This calculation is possible only if 100% of the vehicle trajectories are available. Thus, the 

standard deviation of vehicles’ speed (SDt), which can be measured at low CV market 

penetrations, was also measured based on the trajectories for potential use to estimate the 

percentage of vehicles in the platoon at low market penetrations. A regression analysis was 

conducted to derive the relationship between the percentage of vehicles in platoon for each 

subsegment and time interval and the corresponding SDt.    

The analysis of the results shows that at low volumes, when the segment is 

operating at Level of Service C to D or better, according to the HCM procedure, the SDt 

does not change with the increase in demand and the percentage in platoons, as shown in 

Figure 4-1.  However, an increase in the SDt is observed with a decrease in speed as traffic 

approaches breakdown, reaching a maximum close to traffic breakdown, as shown in 

Figure 4-2.  Figure 4-2 shows that the maximum observed SDt is at a speed around 59 fps 

(about 41 mph), which is beyond the critical speed at capacity estimated, which according 

to the HCM procedure, is around 77 fps (52 mph). Around that point, which corresponds 

to about 84% of vehicles in the platoon, a significant increase in the SDt is observed, as 

shown in Figure 4-4. This can be explained by the fact that some vehicles may still be 

traveling at a relatively higher speed when they are not in platoons, while others are 

constrained due the following of slower vehicles in the platoons.   

 Beyond the point mentioned above (84% platoon percent and 40 mph speed), as 

the speed decreases further and the platooning percentage increases, the relationship 

between the percent of vehicles in the platoon and SDt follows a negative log linear 

relationship, as shown in Figure 4-4. The decrease in the SDt with the increase in platoon 
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percentage, and thus congestion, is expected since the increase in platooning after 

breakdown will further reduce the ability of vehicles to travel at their desired speeds. As 

shown in Figure 4-4 and Figure 4-5, SDt decreases from 12 fps when 84% of the vehicles 

were in the platoon and the average speed was 40 mph to 6 fps at a speed of 20 fps (13 

mph) and 95% or more of the vehicles in platoon.  It should also be mentioned that a direct 

relationship has also been found between the SDt and safety in previous work. Thus, the 

discussed relationship may be used to further assess the impacts of different levels of 

platooning on safety, in addition to mobility. 

 

Figure 4-4: The Relationship between SDt and The Percentage of Vehicles in the 

Platoon 
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 Figure 4-5: The Relationship between SDt and The Space Mean Speed 
 

The fitted function between the percent of vehicles in the platoon and SDt for “after 

traffic breakdown” is provided in Equation 4-1. 

                                                     P=α + βlog (SDt)                                                     (4-1) 

where P is the Percentage in the Platoon in the “After Breakdown” conditions, SDt is the 

standard deviation of vehicles’ speed (fps), and α and β are coefficients. The 

statistical software R was used to fit the regression equations and produce the statistics 

required to assess the significance of the relationships.  The regression analysis results are 

presented in Table 4-1. Various transition forms were investigated, and the best form was 

selected.  In addition to the statistical test results presented in Table 4-1, the model was 

also validated using the residual plot and the quantile-quantile (q-q) plot.  

Table 4-1: Developed Equations to Estimate the Percent in Platoon  

Equation  

 
𝛼 𝛽 

R- 

Squared 

Value 

 

Adjusted 

R-

Squared 

t value of 

α (Pr(>|t|)) 

t value of β 

(Pr(>|t|)) 

Residual 

(P-value) 

After 

Breakdown 
111.09 -10.67 0.6354 0.625 

38.565  

(2e-16) 

-7.811 

(3.55e-09) 
3.547e-09 
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Equation 4-1 can be used to estimate the percent of vehicles in platoons during 

breakdown conditions that appear to occur when 84% of the vehicles or more are in the 

platoon and the speed is below the estimated speed at capacity. The equation can be used 

to estimate the percent of vehicles in the platoon as a function of SDt when these estimates 

are made based on data from a low market penetration of connected vehicles. This is 

because the platooning characteristics cannot be measured directly at low CV market 

penetrations. In this study, the accuracy of this estimation was assessed at market 

penetrations of 5%, 10%, 50% and 80%. For each market penetration, the percent of 

vehicles in the platoon was calculated based on the measured standard deviation of 

vehicles’ speed. The assessment was performed utilizing the NGSIM data for the I-80 

segment described previously. The vehicles with connected vehicle equipment for each CV 

penetration were selected randomly from all vehicles in the traffic stream. However, the 

accuracy of the estimation of the speed standard deviation is expected to depend on this 

selection when there is a high variation in the speed characteristics of the vehicles in the 

link, particularly at low market penetrations. Thus, a Monte Carlo analysis was used in this 

study to account for this stochasticity by randomly selecting different CV vehicles from 

the traffic stream for each Monte Carlo run. Twenty Monte Carlo runs were conducted, 

and the estimates of the percent of vehicles in the platoon were estimated using Equation 

4-1, based on the SDt generated from these runs, and were then compared with those 

actually measured using vehicle trajectories from a 100% market penetration of CV. The 

Mean Absolute Percent Error (MAPE) and Standard Deviation of Percentage Error (SDPE) 

provide expressions of the measures used to assess the quality of the estimation as follows: 
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                                                  MAPE=
1

n
∑ |

yi−y

yi
|n

i=1                                                     (4-2) 

                                               SDPE = √
1

n−1
∑ (wi

2 − nw̅2)n
i=1                                     (4-3)  

where wi =
yi−y

yi
,  yi is the estimated value of the ith run, y is the value at 100% MP, n is 

the total number of runs (n=20), and w̅ is the average of all the wi. Different quality 

measurements have different significance. SDPE is a measure of reliability of the 

estimates. MAPE is the average error of all runs. The results of the quality measure 

calculations are shown in Table 4-2. As can be seen from the results in Tables 4-2, the error 

in the estimation of the platoon percentage is low. Thus, it can be concluded that the platoon 

percentage can be estimated at the low market penetration of CV data accurately based on 

the methodology presented in this study. 

Table 4-2: The Quality of the Estimation of the Percentage of Vehicles in Platoon with 

Different Market Penetrations 

Accuracy 

Measure 

Market Penetration 

5% 10% 50% 80% 

MAPE 1.9010 1.0423 0.2968 0.1882 

SDPE 1.2912 0.8532 0.2910 0.1448 

 

Sensitivity Analysis on the Utilized Time Headway Threshold  

An analysis was conducted to determine the sensitivity of the platoon percentage 

in this study for the utilized time headway threshold. Figure 4-6 shows how the estimated 

percentage of vehicles in a platoon in the NGSIM data varies as the standard deviation of 

vehicles’ speed changes with different time headway thresholds (5-second, 4-second and 

3-second time headways). 
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Figure 4-6: Platoon Percentages Estimated Using Different Headway Thresholds   

As can be seen from Figure 4-6, the use of a 3-second headway as a threshold results 

in a lower percentage of vehicles in platoon and the use of a 5-second headway results in a 

higher percentage of vehicles in platoon than the 4-second headway. During a traffic 

congestion period, only 63% to 76% of the vehicles were identified as platooning when 

using the 3-second headway criterion. This indicates that using the 3-second headway 

underestimate the percentage of vehicles in platoon. When the 5-second headway is used 

as the threshold, 100% of vehicles were identified as platooned. However, examining the 

standard deviations of individual vehicle’s speeds shows that there are non-platooned 

vehicles, indicating that the 5-second threshold possibly overestimate the platooned 

vehicles percentage. Thus, the 4-second headway is used as the threshold in this study. 
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4.2.2 Determination of Platoon Size Distribution 

In addition to the percent of vehicles in the platoon discussed in the previous 

section, this study also investigates estimating the platoon size distribution based on the 

standard deviations of individual vehicle’s speeds (SDv) at different market penetrations. 

The estimation is conducted for the “after breakdown.” conditions Each non-platooned 

vehicle is considered a special vehicle platoon with platoon size equal to one. Tian et al. 

(2017) developed an equation to estimate the platoon size based on the standard deviations 

of individual vehicle’s speed using NGSIM data for the U.S. 101 Freeway in California. In 

this study, we obtained the standard deviations of speed for several vehicles with different 

positions in the platoons utilizing NGSIM I-80 data.  It was determined that the equation 

developed by Tian et al. (2017) produces reasonable results for the purpose of this research.  

This equation, as presented in the review of literature in Equation 2-1, was utilized in this 

study and rearranged to calculate the size of the platoon as a function of the SDv, as 

follows: 

                             NVP = −94.29(ln(10.56 − 0.3048 × SDv) − ln(10.4))              (4-4) 

where SDv is the average of standard deviations of individual vehicle’s speeds (fps), and 

NPV is the number of vehicles in the platoon. The position of each vehicle in the platoon 

was estimated based on Equation 4-4 and with different CV market penetrations. The 

estimated positions were categorized into four groups, as shown in Table 4-3. The results 

in Table 4-3 are based on the full set of trajectories of the I-80 NGSIM data in a peak period 

from 4:00 p.m. to 4:15 p.m. 
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Table 4-3: Platoon Size Percentage based on All Trajectories  

Subsegment 
Percentage of Vehicles in Platoon Size Group 

1<=x<=2 2<x<=5 5<x<=15 x>15 

1 0.75 13.43 57.09 28.73 

2 3.14 28.63 60.39 7.84 

3 3.82 32.44 56.87 6.87 

4 2.27 25.38 57.58 14.77 

5 4.60 24.52 53.64 17.24 

 

The percentage of vehicles in each platoon size group was estimated utilizing data 

that assumed different market penetrations of CV.  The accuracy of this estimation was 

assessed at market penetrations of 5%, 10%, 20%, 50% and 80%, compared to the base 

value of the comparison, which is the estimation when utilizing data from CVs at 100% 

market penetration. Twenty Monte Carlo runs were conducted to account for the 

stochasticity due to the random selection of different CV vehicles from the traffic stream, 

as discussed earlier.  Each of these runs represents a different day of operations with 

different vehicles selected to be equipped with CV technology for each day. 

 The t-test of the difference in the mean and the Chi-square (χ2) on the difference 

in the frequency distribution tests (McShane, 2011) were conducted to assess the accuracy 

of the estimated platoon size mean and distribution, respectively. For example, Table 4-4 

shows the t-test and χ2 results for different market penetrations for one of the test’s 

subsegments. The results of the t-test on the difference in the mean and the χ2 test of the 

platoon size distribution based on the mean of the 20 runs can be used to assess the 

adequacy of the estimation for planning purposes.  The data used are average values based 

on data from 20 days, represented by the 20 runs.  The results of the χ2 for each of the 20 

days (runs) represent the adequacy of the estimation for use in the real-time operation for 

that single day. 
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Table 4-4: t-Test and χ2 Test for Different Market Penetration Levels 

Hypothesis Test 
Chi-Square Test on Frequency Distribution 

(df=3) 

t-test on the Mean 

(df=19) 

Market 

Penetration 

Is the Average of the 

Runs passing Test 

(Do not Reject Null 

Hypothesis) 

No. of Individual Runs 

Passing 

(Do not Reject Null 

Hypothesis) 

t-value 

Do not 

Reject Null 

Hypothesis 

5% Y 10 out of 20 1.013 Y 

10% Y 14 out of 20 0.5239 Y 

20% Y 18 out of 20 0.6665 Y 

50% Y 20 0ut of 20 1.3209 Y 

 

As can be seen from Table 4-4, when comparing the results from using the data at 

the 5% and 10% market penetration levels and using the data at the 100% level, the null 

hypothesis of no difference between the estimation of the means according to the t-test and 

no difference in the frequency distribution of the platoon size based on the average of the 

runs could not be rejected at the 95% confidence level. However, when considering the 

platoon size distribution for individual days, the null hypothesis can be rejected for 10 of 

the 20 days with a 5% market penetration, and 6 of the 20 days with a 10% market 

penetration at the 95% confidence level, indicating that the estimate is not adequate for 

operations at the 5% and 10% market penetration levels. However, at a higher market 

penetration of 20%, the null hypothesis of the χ2 test can be rejected for most of the 

individual runs (days) at the 95% confidence level.  With this CV market penetration 

(20%), the estimates can be used for both planning (based on the average of the runs) and 

operations (based on individual runs). Table 4-5 shows a comparison of the platoon size 

distribution using the data from each of the runs of the Monte Carlo simulation with a 20% 

market penetration, the average of the runs with a 20% market penetration, and the 

distribution based on a 100% market penetration of CV. Inspection of the data in this table 
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confirms that most Monte Carlo runs with the 20% CV market penetration produces results 

that are comparable to those obtained with the 100% market penetration.   

Table 4-5: Comparison of the Platoon Size Distribution Estimated with the 20% and 

100% CV Market Penetration Levels 

Market 

Penetration  
Percentage of Vehicles in Platoon Size Group 

 

20% 

Run 1<=x<=2 2<x<=5 5<x<=15 15<x<=30 Mean of value 

1 0.00 3.77 69.81 26.42 13.06 

2 3.77 13.21 64.15 18.87 11.18 

3 1.92 7.69 65.38 25.00 12.46 

4 0.00 13.21 47.17 39.62 14.09 

5 1.89 15.09 56.60 26.42 12.16 

6 0.00 9.43 62.26 28.30 12.92 

7 1.89 9.43 58.49 30.19 13.00 

8 0.00 13.21 60.38 26.42 12.44 

9 1.89 15.09 52.83 30.19 12.63 

10 0.00 13.21 66.04 20.75 11.74 

11 0.00 18.87 49.06 32.08 12.78 

12 0.00 16.98 50.94 32.08 12.91 

13 1.89 11.32 54.72 32.08 13.11 

14 1.89 11.32 56.60 30.19 12.88 

15 1.89 16.98 50.94 30.19 12.51 

16 0.00 13.21 56.60 30.19 12.92 

17 0.00 20.75 50.94 28.30 12.19 

18 0.00 13.21 58.49 28.30 12.68 

19 0.00 7.55 54.72 37.74 14.23 

20 0.00 9.43 60.38 30.19 13.16 

Mean 0.85 12.65 57.33 29.17 12.75 

100% 0.75 13.43 57.09 28.73 12.65 

 

4.2.3 Relationship between Platooning and Disturbance Metrics  

This section discusses the relationships between platooning measures derived as 

expressed above and the disturbances metrics utilized in this study.  The number of vehicles 

in platoon (NVP) was calculated based on Equation 4-4.  The relationships between NVP 

and disturbance metrics were then explored as displayed in Figure 4-7.  
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Figure 4-7: Relationship between Disturbance Metrics with NVP  
 

As can be seen from Figure 4-7, the NVP increases after NO of 10% and TETIndex 

of 0.03. As stated earlier, the values of the TETIndex and NO also start increasing sharply 

at NO greater than 10% and TETIndex higher than 0.03.   The NPV is greater than 15 when 

the NO exceeds 20% and TETIndex exceeds 0.05, which are the values previously reported 

where the traffic condition is in congested region. These results are consistent with 

founding in section 4.1.  

4.3 Safety Measures 

Real-time safety assessment can be used as an important input to traffic 

management and operations.  It is envisioned that when a threshold value of the estimated 

TETIndex and NO as a surrogate measures to safety are exceeded, a central decision 

support system (DSS) will recommend the activation of operational plans on the freeway 

such as metering and/or dynamic speed limit to reduce the probability of crashes.  Thus, 

there is a need to identify the thresholds for these parameters that justify the activation of 

the plans. For this identification, this study uses a visual inspection of the graphical views 

of the relationships between the disturbance metrics and the speed parameters and RCI. 

The relationship between the speed parameters are shown in Figure 4-2. Visual inspection 
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of the relationships of the two disturbance metrics (TETIndex and NO) and the speed 

parameters are shown in Figure 4-3. As it was explained in the section of 4.1, The values 

of the TETIndex and NO at the break point beyond which the two values of the two 

variables increase sharply are about 0.03 and 10%, respectively. Figure 4-3 shows that 

higher values of the disturbance metrics including a TETindex of 0.05 and a NO of 20% 

are clearly in the congestion region of the curves.  Further inspection was done by 

examining the relationship between the TETIndex and NO and a third surrogate measure 

to safety, the RCI plotted in Figure 4-8. According to Oh et al (Oh et al., 2006), RCI values 

less than 0.2 can be considered as acceptable from rear-end crash risk point of view. 

Utilizing RCI value of 0.2 as reference, Figure 4-8 shows that this value is associated with 

TETIndex less than 0.03 and NO less than 10% and thus has an acceptable rear-end crash 

risk. Thus, based on the above, it was decided to use TETIndex of 0.03 and NO of 10% in 

this study, as the thresholds to determine unsafe conditions and potentially activate 

strategies to mitigate these conditions.  

 

                       (a)                                                                            (b) 

Figure 4-8: The Relationship between RCI and (a) TETIndex and (b) NO 
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4.3.1 Developying Model to Estimate TETindex at Low Market Penetration of CV Data 

 

As mentioned earlier, the TETIndex is not obtainable from small samples of data.  

Thus, regression analyses were conducted to derive the relationship between the TETIndex 

as the dependent variable and speed, SDv, and SDt, as the independent variables based on 

the full set of simulation results.  The first step was to examine any collinearity in the data 

by producing the correlation matrix among the three variables.  In addition, factor analysis 

was used to investigate how the variable values cluster to eliminate the impacts of 

independent variables correlating strongly with each other without significantly deteriorating 

the model fit of the data. Based on this analysis, it was determined that due to the relatively 

high correlation, the SDv variable can be either eliminated or respecified by utilizing a new 

variable that is a function of SDv (Johnson & Wichern, 2007). The respecification was done 

by dividing SDv by speed. The resulting new variable was then used as an independent 

variable. This new variable is actually the coefficient of variation of the speed of individual 

vehicles. Several linear and non- linear functions between the TETIndex, Mean Speed (S), 

SDv and SDt were tested using multivariate regression analyses using the statistical software 

R. However, the best fit was found when using  a machine-learning regression method 

referred to as Partial Least Square (PLS) regression, which is a robust method in prediction 

and can handle data, which are strongly collinear and noisy (Johnson & Wichern, 2007; 

Wang, et al., 2008). The resulting equation is provided below: 

                        TETIndex= β0+β1 SDt+β2 (SDv /S)                                          (4-5) 

where, 𝛽𝑖 are the regression coefficients, and the other variables are as defined before. The 

unit of speed parameters is fps. The PLS regression result is in Table 4-6. The quality of the 

model shows an acceptable R-squared (the coefficient of determination) and Q-squared (the 
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cross validated value which is calculated on the basis of the cross-validation). The error of 

the model based on the comparison of the estimated and observed TETIndex in the 

simulation is 14%. Substituting the previously identified critical values of SDv , SDt and 

mean speed of 2 fps, 8 fps and 65 fps respectively, in  Equation 4-5, result in TETIndex of 

0.03, which is the critical value identified for this parameter earlier, further confirming that 

this model produce reasonable value. 

Table 4-6: Coefficients and Quality of The TETIndex Estimation Based on PLS 

Regression  

 *SD: Standard Deviation                          

To validate the performance of the regression model presented in Equation 4-5, the 

model was tested for two locations with real-world data collected as part of the NGSIM 

program (I-80 and US101).  This testing was conducted to assess the transferability of the 

regression model developed based on simulation data to other locations not used in the 

calibration of the simulation model. The model was tested under different sample size of 

data. The vehicles that were assumed to be equipped with technology that provides their 

trajectories for use in the model application were selected randomly from all vehicles in the 

traffic stream.  Since the accuracy of the estimation is expected to depend on the random 

selection, a Monte Carlo analysis was used to account for the stochasticity by randomly 

selecting different vehicles from the traffic stream for each Monte Carlo run. Twenty Monte 

Variable Coefficient SD Lower bound (95%) Upper bound (95%) 

β0 0.010621 0.001 0.009 0.012 

β1 0.000241  0.0001    0.00007 0.001 

β2 0.637769 0.008 0.621 0.655 

The Quality of the Model: 

Statistic Comp1 Comp2 

Q² cum 0.79 0.88 

R² cum 0.79 0.88 

MAPE= 14% 
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Carlo runs were conducted for each investigated market penetration of data, and the 

TETIndex was estimated based on speed parameters using Equation 4-5. Statistical tests 

indicated that 20 runs are sufficient.  The results obtained with each market penetration were 

compared with the base value, which is the TETIndex calculated using Equation 3-5 based 

on the full NGSIM data. The MAPE and SDPE (Equations 4-2 and 4-3) used to assess the 

quality of the estimation. 

The error of the model based on the MAPE and SDPE are reported in Table 4-7 for 

the two NGSIM datasets. As can be seen from Table 4-7, the developed regression model 

based on simulation was able to predict the TETIndex at an accuracy of 15% to 20% for 

locations that are different from the location used in the simulation.   

Table 4-7: The Quality of Estimations of the Developed Regression Model for Different 

Sample based on NGSIM Data 
Accuracy Measure 

(Mean Value) 

Sample Size 

5% 10% 20% 100% 

I-80 MAPE 20% 19.8% 19.6% 19% 

SDPE 0.78 0.51 0.45 0.29 

US101 MAPE 16% 15.5% 15.8% 15% 

SDPE 0.55 0.35 0.28 0.18 

 

4.3.2 Real World CV Data Analysis 

As mentioned earlier, CV data was extracted to evaluate the performance of the 

application of the model for a freeway segment in Michigan. The data indicates that the speed 

on the segment varied between 45 fps and 120 fps, and the peak period was between 3:00 

P.M. and 5:00 P.M. The data was aggregated for each 5-minute interval. Then, the mean 

speed, average SDv, SDt and NO parameters were calculated based on vehicle trajectories 

for each interval.  Since the TETIndex cannot be measured at low market penetrations of CV, 
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Equation 4-5 was used to calculate the TETIndex based on speed parameters. Descriptive 

statistics of the measured traffic parameters for the segment were shown in Table 3-1. 

Test location crash data for the year 2013 was also obtained and integrated with the 

traffic data for the time interval prior to crash occurrence. Crash was used as a binary 

dependent variable. A total of 35 crashes occurred in the test location in 2013. It is interesting 

that all crashes happened at TETindex values greater than 0.025. More sever crashes 

happened at TETIndex higher than 0.03 and more property damage crashes happened at 

TETIndex higher than 0.05, where the traffic conditions become congested.  

Before applying statistical model to the crash, the Random Forest (RF) was used to 

rank the important variables on crash occurrences. RF is a non-parametric statistical method 

that is based on decision trees (Bishop, 2006). The R package “randomforest’(Liaw, 2002) 

was used to select the important variables. A higher accuracy represents a higher variable 

importance. The results are shown in Figure 4-9. As can be seen, the most important variables 

in predicting the occurrence of crashes are the TETIndex and NO. 

 

Figure 4-9: Variable Importance as Identified by the Random Forest  
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Since some important variables identified by RF technique are correlated with each 

other, first, the Principal Component Analysis (PCA) was utilized to reduce the 

dimensionality of data and handle the collinearity between variables. The utilized number of 

components was selected based on the number of input features and projected variance 

(Krauss et al., 1997). 

The Random Forest technique was used to fit a crash model to the data using the 

scikit-learn library in Python. The values of each input feature were standardized before use. 

As data samples are small, all data were used as a training dataset and k-fold cross validation 

was used to estimate the accuracy of the model with 5-fold. Fine-tuning of model parameters 

was done using the Grid Search in the utilized tool, to tune the model by searching for the 

best hyper parameters and keeping the classifier with the highest accuracy. The overall 

accuracy with different utilized variables along with the tuned parameters are reported in 

Table 4-8. As can be seen, the developed model of the crash frequency for the Michigan test 

segment corresponds more with adding disturbance metrics to input variables than excluding 

them. This indicates that the utilized disturbances metrics are good indicators of traffic safety 

and they can use as inputs to predict crash in real-time operations. 

Table 4-8: Summary of Tuned Parameters and Model Accuracy with Different Input 

Variables 
Evaluation  All Variables All Variables without Disturbance Metrics 

Overall Accuracy (SD) 0.82 (+/- 0.15) 0.78 (+/- 0.21) 

Tuned 

Parameters 

max_depth 3 3 

max_features 1 1 

n_estimators 100 100 

*SD=Standard Deviation 

* n_estimators are the number of trees used in the ensemble, max_depth controls the depth of each 

tree and max_feature is the size of the random subsets of features to consider when splitting a node 
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4.4 Traffic State Identification 

This section describes the method developed for traffic state recognition 

(identification) from traffic operation point of view. Prior to conducting clustering for the 

purpose of traffic state recognition, the study performed an initial exploration of the three 

fundamental macroscopic variables (flow, density, and speed), for the simulated data as 

presented by the fundamental diagrams and shown in Figure 4-1. As mentioned in section 

4.1, a Change-Point Regression with Gaussian Mixture Analysis was conducted using speed 

and occupancy data and the critical speed at capacity was found to be 65 fps. However, the 

fundamental diagram, shown in Figure 4-1 indicates that the relationships between the three 

fundamental macroscopic traffic features are very scattered and that the critical speed is 

somewhere between 50 fps and 70 fps and the critical density is between 40 vpml to 60 vpml. 

This further indicates the need to use clustering and consider the microscopic features to 

identify breakdown. 

As mentioned earlier, the GMM clustering was used to identify the uncertain traffic 

condition phase when the three macroscopic features (traffic flow, speed and density) were 

used in the clustering. Different numbers of components based on LOS (two to six) were 

used in the GMM clustering, and the SC was checked to determine the best number of 

components.  It was found that the GMM with two components is the best investigated 

option. When examining the resulting GMM clusters, it was found that 365 datasets out of 

the 2997 are overlapping between two clusters and have probability of greater than zero to 

being on another cluster. Interestingly, these datasets are all in the mean speed range between 

50 fps to 70 fps. This confirms the stochasticity observed in the fundamental diagrams in 

Figure 4-1.  
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The next step was to cluster the data in the uncertain traffic condition phase based on 

different combinations of macroscopic and microscopic features using the K-Means 

clustering algorithm. The results were then examined to determine the best combinations of 

features in separating the traffic state into two clusters of “breakdown” and “non-

breakdown”. Please note that the goal of the study was defining traffic sate regarding 

breakdown, however, different number of clusters (k) was also attempted and the optimum 

number of clusters was found to be two. 

The percentages of the data in the “breakdown” and “non-breakdown” clusters 

obtained using different combinations of features in the K-Means clustering and also those 

separated by the deterministic value of speed at capacity are shown in Table 4-9 based on 

whole dataset.  As shown in Table 4-9, the percentage of the data in the breakdown cluster 

ranges from 32% to 42% depending on the utilized features.   

The next step is to assess the results from the K-Means clustering presented in Table 

4-9. First, the results were examined to determine the ability of different combinations to 

represent certain state correctly. Certain states were defined as speed lower than 50 fps and 

greater than 70 fps as the congested and uncongested conditions respectively. The percentage 

errors on certain conditions were then reported and are shown in Table 4-10. It can be seen 

that only five of the sixteen investigated combinations of the features produced zero errors 

in certain conditions. Note that additional combinations with flow and density, speed and 

flow and adding the SDt to the combinations were tried but were not reported in Table 4-9 

and Table 4-10, since they did not produce improvements to the analysis.  

Further examination was done by visually inspecting examples of trajectory data to 

determine the ability of the above options to isolate stop-and-go conditions from other 
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conditions.  Two random examples were selected to illustrate this visual inspection (Figure 

4-10). Examples (a) and (b) have speed less than 65 fps and should be categorized as 

breakdown according to the change-point regression based on the speed-occupancy 

relationship. However, Example (a) is stable while Example (b) is unstable (have stop-and-

go conditions). 

 
(a) Mean Speed=56.6 fps                            (b) Mean Speed=51.8 fps 

TETIndex= 0.03                                          TETIndex=0.05 

NO= 9%                                                      NO=20% 

 

Figure 4-10: Time-Space for the Two Examples of the Visual Inspection  

Based on the results presented above regarding the error in assigning data to the 

congested /uncongested conditions in relation to speed, visual inspection, and the average 

SC; as shown in Table 4-10, it was determined that clustering with the “TETIndex, NO, 

Mean Speed and Occupancy” features, is the best clustering option among the investigated 

ones.  The performance of utilizing the clustering based on these features (TETIndex, NO, 

Mean Speed and Occupancy), referred to as the “selected clustering” in the rest of this 

document, to identify “breakdown” and “non- breakdown” conditions was further compared 

to the utilization of clustering based on speed and occupancy only and also to using the 65 

fps deterministic threshold determined according to the change-point regression. The results
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Table 4-9: Percentage of Traffic States in the Breakdown Cluster (Group1) and Non-Breakdown Cluster (Group2) when 

Using Different Combinations of Features 
 

 

*S=Space Mean Speed, Oc=Occupancy, D=Density, SDv=Average of standard deviations of individual vehicle’s speeds, NO=Number of 

oscillations, TET=TETIndex 

 

Clusters  Features Utilized in K-Means Clustering 

S< 

65 

fps 

 

TET

- 

S- 

Oc-

SDv 

 

NO- 

S- 

Oc-

SDv 

 

S-

Oc-

SDv 

TET

-S-

Oc 

TET

-S-

Oc-

NO 

S-

Oc-

NO 

S-

Oc 

TET SDv NO S-

TET-

Flow 

S-

SDv-

Flow 

S-

NO-

Flow 

D-

Flow

-SDv 

D- 

Flow

-NO 

D- 

Flow

-TET 

Group 1 (%) 35.2 35.8 36.1 37.4 31.8 32.0 33.8 34.1 23.0 42.0 25.9 36.2 41.7 37.3 41.0 36.3 33.9 

 

Group 2 (%) 64.7 64.2 63.8 62.5 68.1 68.0 66.1 65.8 74.0 58.0 74.1 63.7 58.3 62.7 59.0 63.7 66.1 
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Table 4-10: Evaluations of the Derived Clusters 
 Features Utilized in K-Means Clustering 

 S< 

65 

fps 

 

TET- 

S- 

Oc-

SDv 

 

NO- 

S- 

Oc-

SDv 

 

S-

Oc-

SDv 

TET

-S-

Oc 

TET

-S-

Oc-

NO 

S-

Oc-

NO 

S-

Oc 

TET SDv NO S-

TET-

Flow 

S-

SDv-

Flow 

S-NO-

Flow 

D-

Flow

-SDv 

D- 

Flow

-NO 

D- 

Flow-

TET 

Percent Error 

in Certain 

Congested 

0 0 0 0 0.1 0 1.2 0 10.6 0 12.2 0.1 0 0.1 0.4 0.1 0.6 

Percent Error 

in Certain 

Uncongested 

0 0.1 0.1 0.48 0 0 0 0 0 7.3 0 0.8 6.29 1.29 5.9 1.7 0.64 

Breakdown evaluation based on the three examples (corresponding with Figure 2) 

Example (a) N N N N Y Y Y N Y N Y Y N N N Y Y 

Example (b) N N N N N N N N Y N Y Y N N Y N N 

Average 

Silhouette 

- 0.67 0.7 0.69 0.7 0.69 0.68 0.71 0.73 0.77 0.76 0.53 0.56 0.54 0.53 0.52 0.51 

**S=Space Mean Speed, Oc=Occupancy, D=Density, SDv=Average standard deviations of individual vehicle’s speeds, NO=Number of 

oscillations, TET=TETIndex 

** Bold colors shows clustering options that passed the evaluation correctly 

*** Y=stable condition (non- breakdown) N=unstable condition (breakdown)  

**** Certain congested is defined condition of speed lower than 50 fps and certain  

 uncongested is defined conditions of speed greater than 70 fps 
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are reported in Table 4-11 and show that the clustering based on the four macroscopic and 

microscopic features can better account for the number of disturbance and disturbance 

duration that reflect the slow and go operations compared to the other two options. As can 

be seen from Table 4-11, the clustering with the “TETIndex, NO, Mean Speed and 

Occupancy”, captures more disturbances in the breakdown cluster compared to using the 

deterministic value of speed at capacity and the clustering based on speed and occupancy. 

This selected clustering also reports the highest percentage of “non-breakdown” conditions 

for the whole dataset.  It also clusters 56.1% of the uncertain phase (the measurements with 

speed between 50 fps and 70 fps) as breakdown. Using the deterministic value of speed 

suggests 79.2% of the uncertain phase is in breakdown. It can be seen that the total 

improvement of the selected clustering compared to the clustering with the deterministic 

speed at capacity and with clustering with speed and occupancy are about 30% and 20%, 

respectively. This means that 30% of the data in the uncertain phase considered as 

congested condition when using the deterministic value of a speed of 65 fps are actually 

stable.  

Table 4-11: Comparison of the Selected Clustering with a Deterministic Value of 

Speed and with Clustering based on Speed-Occupancy in Capturing the Amount of 

Disturbances in the Uncertain Phase (50 fps<Mean Speed<70 fps) 
Condition in the Uncertain Phase  

(385 dataset out of 2997) 

Mean Speed< 

65 fps 

 

Mean 

Speed and 

Occupancy 

TET, NO, 

Mean 

Speed, and 

Occupancy 

Breakdown Condition (%)  79.2 70.6 56.1 

% of Reading NO>20%  in cluster of breakdown 71.8 69.1 82.8 

% of Reading TET>0.05 in cluster of breakdown 33.4   32.35 44.9 

 

Moreover, it was found that in the breakdown cluster, the value of TETIndex is 

greater than 0.05 and the NO is greater than 20%. These two microscopic features could 

be considered together to decide if traffic flow perturbation could grow leading to 
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breakdown or not. As described earlier. Table 4-12 shows the percentage of the captured 

disturbances from the selected clustering. As can be seen, the TETIndex of higher than 

0.05 and NO higher than 20% can capture disturbances fully in breakdown conditions, 

while using the TETIndex and NO separately fails to identify the instability fully. 

Table 4-12: The Results of Selected Clustering in Capturing Disturbances in Cluster 

of Breakdown 
Defined Traffic Conditions % of Reading 

TETIndex>0.05 

% of Reading 

NO>20% 

% of Reading 

TETIndex>0.05 

And NO>20%  

Certain Congested  91.7 95.2 100% 

Breakdown  

(Uncertain Phase) 

44.9 82.8 100% 

Non-breakdown  

(Uncertain Phase) 

   7.05 38.2 0% 

Certain Uncongested   0.1    0.85 0% 
*From whole dataset 13% are in uncertain phase and 25% and 62% are in congested and uncongested 

conditions, respectively 

 

 The TETIndex of 0.05 and NO of 20% are also identified as values representing 

breakdown conditions based on the visualization from Figure 4-11.  Figure 4-11 shows the 

relationship between the TETIndex and NO with the SDv, based on simulation results and 

NGSIM data (from US 101 in California). As can be seen, a TETIndex of 0.05 and NO of 

20% are the change points where the diagrams bend and start a sharp increase further 

indicating that these values are good indicators of breakdown.  Please note that although 

Figure 4-11 shows dataset from both VISSIM and NGSIM, only VISSIM data was used to 

develop the method and the NGSIM data was used to test the method. 
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Figure 4-11: The Relationship between Disturbances with SDv 

Testing the Method with Trajectory Data of NGSIM US 101: 

The NGSIM dataset of US 101 in California was also used to test the proposed 

method. Although this dataset does not cover the different traffic states, the study 

investigated the inclusion of capturing the traffic disturbances in the traffic state 

identification. To be consistent with study by Lu et al. (2009) on NGSIM US 101 dataset 
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about analyzing fundamental diagram, the same segment and same time window of one 

second was selected. The test segment is located in the upstream section of US101 in lane 

one which is about 550 feet long and for time period of 7:50 ~ 8:05 A.M. Lu et al( Lu et 

al., 2009) defined the critical density of around 95 vpml. As described in proposed method, 

first, the GMM clustering with macroscopic features was used and uncertain phase was 

identified. This uncertain phase located between density of 85 vpml and 100 vpml. The 

identified uncertain traffic condition phase from the GMM analysis is then further analyzed 

using the K-Means clustering based on “TETIndex, NO, Mean Speed and Occupancy” to 

classify the uncertain phase into two clusters. The results are shown in Figure 4-12. The 

examination of Cluster 1 and Cluster 2 show that the TETIndex is between 0.06 to 0.099 

in cluster 1 and is between 0.095 to 0.125 in Cluster 2.  This indicates that this method not 

only can be used to identify breakdown from non-breakdown conditions, but also can be 

used to identify the level of congestion in the breakdown phase. 

 

 

Figure 4-12: Data Clusters in the Test Segment of the NGSIM US101 Dataset 
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4.5 Traffic Flow Breakdown Prediction 

As stated earlier, the results of clustering discussed in the previous section, was 

used as a binary label to build the breakdown prediction model utilizing three machine 

learning methods that can act as classifiers of traffic patterns in real-time operations.  

Before applying a model to predict breakdown, the RF approach was used to rank the 

importance of the variables.  RF is a non-parametric method that is based on decision trees 

(Liu et al., 2016).  The R package “randomforest’ was used to identify the importance of 

the variables.  The RF was grown by building 200 decision trees and by randomly selecting 

two predictor variables at each split since this number of variables results in the minimum 

Out Of Bag (OOB) error.   The assessment of the results was made using a metric referred 

to as Mean Decrease Accuracy.  The results are shown in Figure 4-13. A higher accuracy 

value in the figure represents a higher variable importance.  As can be seen in Figure 4-13 

(a), the four most important variables in breakdown prediction are the mean speed, the 

TETIndex, NO, and occupancy. The RF was also applied to the real-world CV dataset. The 

results shown in Figure 4-13 (b) show that the four most important features to predict 

breakdown are the same four features identified for the simulation data. 
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       (a) 

 

(b) 

Figure 4-13: Variable Importance Ranking Using Random Forest Technique (a) 

The Simulation Dataset (b) The Real-World CV Dataset 
 

The next step is to use the three selected machine learning methods (the SVM, RF, 

and XGB) to develop models for real-time applications.  The simulated data were split to 

training and testing datasets in 8:2 ratio with a random selection algorithm to make sure 

each dataset represent the maximum variance of data and to minimize having a biased 

dataset. For the real-world CV data, considering that the sample size is small, all data were 

used in the training and the k-fold cross validation was used to estimate the accuracy of the 

model with 5-folds.  
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The features were temporally lagged for two 5-minute time intervals to allow the 

prediction of the traffic state in the following 5-minute interval. This means that the feature 

values estimated for the past two five minutes are used as inputs to the machine learning.  

The output is the predicted binary label of breakdown/non-breakdown for the next five 

minutes. To assess the effect of utilizing the defined disturbance and safety metrics in 

clustering and classification machine learning approaches on the accuracy of state 

prediction, two scenarios were studied as follows. 

Scenario (A) involved the use of macroscopic and microscopic features as inputs 

to the machine learning. The utilized metrics are the flow, mean speed, occupancy, SDv, 

SDt, NO and TETIndex.  In addition, the binary label obtained from clustering using the 

microscopic and macroscopic features, as discussed earlier, was used as a label that was 

also used in the training. 

Scenario (B) involved all features in Scenario (A) without the two disturbance and 

safety metrics.  Thus, the utilized metrics are the flow, mean speed, occupancy, SDv, and 

SDt.  In addition, instead of using the binary label resulting from clustering, the binary 

label was assigned using the critical speed at capacity threshold for use as in the training. 

Fine-tuning of the model parameters was done for each scenario and each method 

using the Grid Search, to tune the models by searching for the best hyper parameters and 

keeping the classifier with the highest accuracy. The final selected model parameters for 

each machine learning approach and each of the two scenarios (A and B) are reported in 

Table 4-13. In Table 4-13, the parameter C is the cost parameter of the error and shows the 

strength of the regularization. Gamma is a parameter for non-linear SVM, n_estimators is 

the number of trees used in each of the two ensembles (RF and XGB), learning _rate 
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controls is used in fixing the error from the previous iteration, max_depth controls the depth 

of each tree and max_feature is the size of the random subsets of features to consider when 

splitting a node. 

Table 4-13: Summary of Tuned Parameters with Three Scenarios for Each Classifier 

with Two Dataset 
Model Scenarios C gamma kernel learning

_rate 

 

max_

depth 

 

max_ 

features 

 

n_estimators 

 

Simulated Data 

SVM A 1 NA Linear NA NA NA NA 

B 10 0.1 RBF NA NA NA NA 

RF A NA NA NA NA 7 3 50 

B NA NA NA NA 7 2 150 

XGB A NA NA NA 0.1 5 1 200 

B NA NA NA 0.01 5 1 150 

Real-World CV Data 

SVM A 0.1 NA Linear NA NA NA NA 

B 0.1 NA Linear NA NA NA NA 

RF A NA NA NA NA 3 2 20 

B NA NA NA NA 3 1 20 

XGB A NA NA NA 0.01 3 2 200 

B NA NA NA 0.5 5 1 150 

* RBF= Radial Basis Function kernel SVM 

The performance of each of the classifiers in the prediction in each scenario were 

assessed in terms of the overall accuracy, recall, precision, balanced accuracy, F1 Score, 

and confusion matrix, as reported in Table 4-14. In the confusion matrix, the rows are the 

predicted state and the columns are the actual state.  The higher are the numbers on the 

diagonal of the matrix, the more accurate is the estimation.  The other goodness of the 

models used in this study are defined below (Bishop, 2006). 

The accuracy score is the number of the correct predictions made by the model. It 

indicates the overall performance of the model showing the fraction of the correct 

predictions (ŷ) over nsamples and is computed as: 

              Accuracy (y, ŷ) =
1

nsamples
∑ 1(ŷi = yi)

nsamples−1

i=0
                            (4-6) 
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Precision, computed as below, is a measure of how accurate the positive predictions 

are. A high precision index indicates that most of the exampled labeled as positive are 

actually positive. 

                                           Precision =
TP

TP+FP
                                                  (4-7) 

Recall refers to the coverage of the actual positive sample. In other words, a high 

recall index indicates that a class is correctly recognized. 

                                             Recall =
TP

TP+FN
                                                    (4-8) 

In the above equations, TP are the true positives, TN are the true negatives, FP are 

the false positives (Type I error), and FN are the false negatives (Type II error). 

The F1 score is a hybrid metric useful for unbalanced classes. The F1 score is 

computed as the harmonic mean of the precision and recall indices. It complements the 

precision index and is especially useful when uneven class distribution is present. 

F1 score = 2 ×
Precision×Recall

Precision+Recall
                                   (4-9) 

When comparing the results of the evaluations in Table 4-14, it can be seen that 

Scenario (A) produced better results than Scenario (B) when used with all machine learning 

methods, confirming that the state estimation based on disturbance metrics combined with 

macroscopic metrics produce better results. All three investigated machine learning 

methods produced good accuracy with the RF approach producing somewhat better results 

than the other two methods.  

The above results show the accuracy metrics for the overall prediction accuracy. 

However, this study also assessed the accuracy for a particular condition that is of specific 

importance to traffic management. This measure assesses the accuracy of the prediction of 
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the occurrence of breakdown in the next five minutes when the states of the two previous 

five minutes are non-breakdown.  This is very important to allow the activation of new 

management plans to address the breakdown before it occurs.  Table 4-14 shows the 

accuracy of this prediction as the “% Error in Predicting Transition to Congestion.”  Again, 

Scenario (A) produced better results with this metric compared to Scenario (B) for all 

investigated conditions. Also, the RF method appears from the results in Table 4-14 to 

produce somewhat better results than the other methods. 

Table 4-14: Performance of the Three Classifiers in State Prediction based on 

Simulation Data  
Model Scenarios Overall 

Accuracy 

Precision  Recall Balanced  

Accuracy 

 

F1 Confusion  

Matrix 

% Error in  

Predicting 

Transition to  

Congestion 

SVM A 0.939 0.939 0.939 0.922 0.939 [130   4] 

[  8   56] 

7 

B 

 

0.924 

 

0.924 

 

0.924 

 

0.906 

 

0.924 [126   5] 

[ 10  57] 

14 

RF A 

 
0.954 

 

0.954 0.954 0.941 

 

0.954 [131   3] 

[ 6    58] 
5 

B 

 

0.934 

 

0.935 

 

0.934 

 

0.913 

 

0.940 [128   3] 

[ 10  57] 

9 

XGB A 0.949 0.950 0.949 0.930 0.949 [132   2] 

[  8   56] 

7 

B 0.924 0.924 0.924 0.901 0.924 [125   3] 

[ 12  58] 

19 

 *Note that the whole simulated dataset was 2968 data points where 20% was taken as test set with 

random selection. As the study considered 3 sequences of 3 time-interval of each 5 minutes, so the 

predicted size is about 198. 

The method and scenarios tested using simulation trajectories as described earlier 

were also tested using CV-data from a low market penetration deployment. As mentioned 

earlier, the evaluation in this study also utilizes CV data that was extracted to evaluate the 

performance of the application of the model for a freeway segment. The data indicates that 

the speed on the segment varied between 45 fps and 120 fps, and the peak period was 

between 3:00 P.M. and 5:00 P.M. The results from applying the three machine learning 
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techniques with Scenario (A) and Scenario (B) were evaluated using the 5-Fold cross 

validation. Table 4-15 shows the results from the evaluation. As with the simulated data, 

Table 4-15 shows that Scenario (A) had higher accuracy compared to Scenario (B) 

indicating the benefit of using the microscopic metrics. However, the machine learning 

algorithm that performed the best in this case was the XGB model. 

Table 4-15: Performance of the Three Classifiers in State Prediction based on Real-

World CV Data 
Model Scenarios Overall Accuracy (SD) 

SVM A 0.94 (+/- 0.15) 

B 0.91 (+/- 0.15) 

RF A 0.91 (+/- 0.14) 

B 0.90 (+/- 0.15) 

XGB A 0.95 (+/- 0.13) 

B 0.90 (+/- 0.12) 

*SD=Standard Deviation 

 

4.6 Summary 

This chapter presented an exploration of the relationship between macroscopic and 

microscopic traffic parameters that are candidate for the recognition and prediction of the 

traffic operation and safety states. It then described the applications of the developed 

methodology in this study to estimate platooning, safety state and traffic operation state 

identification and prediction. In summary, it was found that adding the disturbance 

measures in the data clustering when identifying the traffic states will result in better traffic 

state recognition and prediction of the traffic flow state by capturing the disturbances in 

the traffic stream. Also, the study showed that the investigated disturbance measures and 

associated models and thresholds are significantly related to crash frequencies. The 

accuracy of developed models was also tested at low market penetration of real-world CV 

data. 
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CHAPTER V 

CONCLUSIONS 

 

This chapter summarizes the findings of this research and outlines the precincts for 

future research.  

5.1 Summary and Conclusions 

This study proposed a methodology for the estimation and prediction of new 

measures based on CV data for potential use in off-line planning and in real-time 

management of traffic operations and safety. These measures include platooning measures, 

traffic disturbance measures, and safety surrogate measures. The percentage of platooned 

vehicles and the distribution of the platoon size were estimated based on surrogate 

measures that can be assessed using CV data at relatively low market penetrations of 

connected vehicles. The utilized measures are SDv and SDt. Relationships between the 

surrogate measures and the platooning measures were identified and utilized based on 

available trajectories data for different market penetrations of CV. The results show that 

the percentage of vehicles in the platoon can be accurately and reliably estimated at 

relatively low CV market penetrations. For the platoon size distribution estimation, a low 

market penetration of 5% is adequate when using the data for planning purposes based on 

multiple days. However, a minimum of 20% market penetration of CV is needed to 

estimate the platoon distribution for individual day operations.  

This study also defined disturbance metrics and examined utilizing them as traffic 

safety and stability indicators for potential use in real-time operations. These disturbances 

metrics are the number of oscillations (NO) and a measure of disturbance durations index 

in terms of the time exposed time-to-collisions (TETIndex).  The TET parameter has been 
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used in the past as a safety surrogate measure. This study introduced its use for the first 

time as an indicator of traffic breakdown analysis and traffic safety analysis. Since 

TETIndex estimation cannot be measured at low market penetration of CV data, a 

regression model was derived based on speed parameters to estimate this parameter.  

Statistical testing of the model and associated parameters indicate that the model is 

significant and has a mean absolute percent error of 14%. Then, the developed regression 

model was further validated using real-world trajectory data collected by the NGSIM 

program from two locations that were not used in the calibration of the simulation model. 

The results showed that the TETIndex can be estimated with low samples of trajectory data 

(e.g., data from low market penetration of trajectory connected vehicles) based on speed 

parameters with an error of around 15%-20%.   

The application of the model to estimate safety risk utilizing trajectory data from a 

real-world deployment with low market penetration of CV data showed that including the 

utilized disturbance metrics allow better recognition of the crash risk. The study also 

confirmed that a TETIndex of 0.03 with NO of 10% can be used as thresholds above which 

the probability of perturbation growth and crash occurrence increase. This study found that 

that the investigated disturbance metrics can be use as indicators of unsafe conditions as 

part of decision support tools that include the activation of transportation management 

strategies to reduce the probability of unsafe traffic and ease traffic disturbances that have 

adverse impacts on traffic safety. 

This study also utilized the defined microscopic disturbance and surrogate safety 

measures and examined the benefit of utilizing them in traffic state classification and 

prediction in combination with macroscopic traffic parameters. The combined macroscopic 
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and microscopic measures are the TETIndex, NO, SDv, SDt, mean speed, traffic flow rate, 

and occupancy. The measures were used as inputs to a hybrid unsupervised clustering and 

three different supervised classifiers (SVM, RF, and XGB). The results indicate that the 

utilization of macroscopic measures by themselves in the traffic state estimation creates 

uncertainty with regard to traffic performance based on microscopic characteristics. This 

uncertainty covers in a relatively wide range of speed around the transition from the 

uncongested to the congested traffic conditions. The results of the evaluation performed in 

this study indicate that the combination of features that produced the best categorization of 

traffic state using clustering are the NO, TETIndex, average speed, and occupancy. The 

clustering results were compared to those obtained using a deterministic value of speed at 

capacity, derived using change-point regression and the results from clustering based only 

on speed and occupancy. It was also found that a TETIndex greater than 0.05 And NO 

greater than 20% can be used as criteria in the breakdown identification. The method was 

tested utilizing real-world NGSIM dataset. It was concluded that the proposed method of 

using the traffic disturbance parameters can also be used to categorize different levels of 

congestion.  

  The utilization of TETIndex and NO as disturbance metrics in combination with 

other metrics also increases the accuracy of traffic state prediction based on the results from 

the application of three supervised machine learning classifiers from both simulated 

trajectory dataset and real-world CV dataset. All three machine learning approaches 

investigated in this study (the SVM and two tree ensembles) performed well with slight 

variations in performance, depending on the specific case study data used in the 

investigation. It can be concluded that the investigated disturbance and surrogate metrics 
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can be used as inputs to machine learning to predict traffic flow breakdown in terms of 

mobility and safety in real-time traffic operations.  Such use is recommended as part of 

decision support tools that recommend the activation of transportation management 

strategies to reduce the probability of traffic breakdown and ease traffic disturbances.  

5.2 Research Contributions 

This research presented the shortcomings of current existing measurements and 

presented the estimation and prediction of new performance measures using trajectory data.  

The new performance measures were developed to estimate traffic safety and mobility by 

allowing the capture of disturbances by individual vehicles. The study reformed existing 

safety surrogate measures and defined disturbance metrics that reflect the stop-and-go or 

slow-and-go conditions by assessing the number of oscillations and TETIndex. TET has 

been widely used as a safety surrogate measure, but no one defined thresholds associated 

with this measure to activate transportation management strategies. For the first time, this 

research used the defined disturbance metrics as input variables to predict traffic safety and 

traffic flow breakdown. The Highway Capacity Manual (HCM) procedure for basic 

freeway segments categorizes the traffic states into six levels of service (LOS), and analysts 

have generally assumed that the breakdown occurs in the threshold between LOS E and F, 

where the demand exceeds capacity of the freeway segment. However, the breakdown can 

happen stochastically and not at a deterministic value of capacity. This study recommends 

adding the disturbance metrics in data clustering for better traffic state recognition and 

traffic flow breakdown prediction. 
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5.3 Limitation of the Research 

The outputs of this dissertation are limited to the data that are used in this study. To 

make any definite statement, researchers might need additional data from different places 

and different time periods. However, the developed methodologies are applicable to other 

locations to achieve the stated objectives. 

5.4 Recommendations for Future Research 

Future studies to extend this research could include the following: 

 This research developed several performance measurements for measuring traffic 

safety and mobility on freeways using trajectory data. A future study will 

investigate performance measurements for signalized arterial streets.  

 This study introduced new performance measurements to activate transportation 

management strategies. A future extension of this research can be the examination 

of the effectiveness of the management strategies on traffic operations from both 

the highway and vehicle sides. Transportation management strategies from the 

highway side can be ramp metering and variable speed limit to harmonize speed. 

To ease stop-and-go operations, the transportation management strategies from the 

vehicle (CV/CAV) side can include finding the optimum gap and speed of the 

vehicle to interact with the lead vehicle. 

 In addition, in the coming years a proportion of the vehicles will be equipped with 

automated vehicle technologies. These technologies will impact the estimation of 

measures based on CV data. The described methodology in this research is also 

applicable to CAV. However, since the performance of automated vehicles will not 
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reflect the performance of the rest of the traffic components, it is important to 

categorize traffic into vehicles without automation and vehicles with automation 

when calculating performance measures. 
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