6,380 research outputs found

    An Automata-Theoretic Approach to Hardware/Software Co-verification

    Full text link

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed

    On Zone-Based Analysis of Duration Probabilistic Automata

    Full text link
    We propose an extension of the zone-based algorithmics for analyzing timed automata to handle systems where timing uncertainty is considered as probabilistic rather than set-theoretic. We study duration probabilistic automata (DPA), expressing multiple parallel processes admitting memoryfull continuously-distributed durations. For this model we develop an extension of the zone-based forward reachability algorithm whose successor operator is a density transformer, thus providing a solution to verification and performance evaluation problems concerning acyclic DPA (or the bounded-horizon behavior of cyclic DPA).Comment: In Proceedings INFINITY 2010, arXiv:1010.611

    Improving HyLTL model checking of hybrid systems

    Get PDF
    The problem of model-checking hybrid systems is a long-time challenge in the scientific community. Most of the existing approaches and tools are either limited on the properties that they can verify, or restricted to simplified classes of systems. To overcome those limitations, a temporal logic called HyLTL has been recently proposed. The model checking problem for this logic has been solved by translating the formula into an equivalent hybrid automaton, that can be analized using existing tools. The original construction employs a declarative procedure that generates exponentially many states upfront, and can be very inefficient when complex formulas are involved. In this paper we solve a technical issue in the construction that was not considered in previous works, and propose a new algorithm to translate HyLTL into hybrid automata, that exploits optimized techniques coming from the discrete LTL community to build smaller automata.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Model checking Quantitative Linear Time Logic

    Get PDF
    This paper considers QLtl, a quantitative analagon of Ltl and presents algorithms for model checking QLtl over quantitative versions of Kripke structures and Markov chains

    Advanced SPIN Tutorial

    Get PDF
    Spin [9] is a model checker for the verification of distributed systems software. The tool is freely distributed, and often described as one of the most widely used verification systems. The Advanced Spin Tutorial is a sequel to [7] and is targeted towards intermediate to advanced Spin users

    LTLf and LDLf Monitoring: A Technical Report

    Get PDF
    Runtime monitoring is one of the central tasks to provide operational decision support to running business processes, and check on-the-fly whether they comply with constraints and rules. We study runtime monitoring of properties expressed in LTL on finite traces (LTLf) and in its extension LDLf. LDLf is a powerful logic that captures all monadic second order logic on finite traces, which is obtained by combining regular expressions and LTLf, adopting the syntax of propositional dynamic logic (PDL). Interestingly, in spite of its greater expressivity, LDLf has exactly the same computational complexity of LTLf. We show that LDLf is able to capture, in the logic itself, not only the constraints to be monitored, but also the de-facto standard RV-LTL monitors. This makes it possible to declaratively capture monitoring metaconstraints, and check them by relying on usual logical services instead of ad-hoc algorithms. This, in turn, enables to flexibly monitor constraints depending on the monitoring state of other constraints, e.g., "compensation" constraints that are only checked when others are detected to be violated. In addition, we devise a direct translation of LDLf formulas into nondeterministic automata, avoiding to detour to Buechi automata or alternating automata, and we use it to implement a monitoring plug-in for the PROM suite
    • …
    corecore