110 research outputs found

    Named Entity Recognition using Neural Networks for Clinical Notes

    Get PDF
    International audienceCurrently, the best performance for Named Entity Recognition in medical notes is obtained by systems based on neural networks. These supervised systems require precise features in order to learn well fitted models from training data, for the purpose of recognizing medical entities like medication and Adverse Drug Events (ADE). Because it is an important issue before training the neural network, we focus our work on building comprehensive word representations (the input of the neural network), using character-based word representations and word representations. The proposed representation improves the performance of the baseline LSTM. However, it does not reach the performances of the top performing contenders in the challenge for detecting medical entities from clinical notes.Actuellement, la meilleure performance pour la reconnaissance de l'entité nommée dans les notes médicales est obtenue par des systèmes basés sur des réseaux de neurones. Ces systèmes supervisés nécessitent des caractéristiques précises afin d'apprendre des modèles bien ajustés à partir des données de formation, dans le but de reconnaître les entités médicales comme les médicaments et les événements indésirables liés aux médicaments (EIM). Parce qu'il s'agit d'une question importante avant la formation du réseau neuronal, nous concentrons notre travail sur la construction de représentations complètes de mots (l'entrée du réseau neuronal), en utilisant des représentations de mots basés sur des caractères et des représentations de mots. La représentation proposée améliore la performance de la LSTM de référence. Cependant, il n'atteint pas les performances des concurrents les plus performants dans le challenge de détection d'entités médicales à partir de notes cliniques

    BERT Based Clinical Knowledge Extraction for Biomedical Knowledge Graph Construction and Analysis

    Full text link
    Background : Knowledge is evolving over time, often as a result of new discoveries or changes in the adopted methods of reasoning. Also, new facts or evidence may become available, leading to new understandings of complex phenomena. This is particularly true in the biomedical field, where scientists and physicians are constantly striving to find new methods of diagnosis, treatment and eventually cure. Knowledge Graphs (KGs) offer a real way of organizing and retrieving the massive and growing amount of biomedical knowledge. Objective : We propose an end-to-end approach for knowledge extraction and analysis from biomedical clinical notes using the Bidirectional Encoder Representations from Transformers (BERT) model and Conditional Random Field (CRF) layer. Methods : The approach is based on knowledge graphs, which can effectively process abstract biomedical concepts such as relationships and interactions between medical entities. Besides offering an intuitive way to visualize these concepts, KGs can solve more complex knowledge retrieval problems by simplifying them into simpler representations or by transforming the problems into representations from different perspectives. We created a biomedical Knowledge Graph using using Natural Language Processing models for named entity recognition and relation extraction. The generated biomedical knowledge graphs (KGs) are then used for question answering. Results : The proposed framework can successfully extract relevant structured information with high accuracy (90.7% for Named-entity recognition (NER), 88% for relation extraction (RE)), according to experimental findings based on real-world 505 patient biomedical unstructured clinical notes. Conclusions : In this paper, we propose a novel end-to-end system for the construction of a biomedical knowledge graph from clinical textual using a variation of BERT models

    Linking social media, medical literature, and clinical notes using deep learning.

    Get PDF
    Researchers analyze data, information, and knowledge through many sources, formats, and methods. The dominant data format includes text and images. In the healthcare industry, professionals generate a large quantity of unstructured data. The complexity of this data and the lack of computational power causes delays in analysis. However, with emerging deep learning algorithms and access to computational powers such as graphics processing unit (GPU) and tensor processing units (TPUs), processing text and images is becoming more accessible. Deep learning algorithms achieve remarkable results in natural language processing (NLP) and computer vision. In this study, we focus on NLP in the healthcare industry and collect data not only from electronic medical records (EMRs) but also medical literature and social media. We propose a framework for linking social media, medical literature, and EMRs clinical notes using deep learning algorithms. Connecting data sources requires defining a link between them, and our key is finding concepts in the medical text. The National Library of Medicine (NLM) introduces a Unified Medical Language System (UMLS) and we use this system as the foundation of our own system. We recognize social media’s dynamic nature and apply supervised and semi-supervised methodologies to generate concepts. Named entity recognition (NER) allows efficient extraction of information, or entities, from medical literature, and we extend the model to process the EMRs’ clinical notes via transfer learning. The results include an integrated, end-to-end, web-based system solution that unifies social media, literature, and clinical notes, and improves access to medical knowledge for the public and experts

    A two-stage deep learning approach for extracting entities and relationships from medical texts

    Get PDF
    This Work Presents A Two-Stage Deep Learning System For Named Entity Recognition (Ner) And Relation Extraction (Re) From Medical Texts. These Tasks Are A Crucial Step To Many Natural Language Understanding Applications In The Biomedical Domain. Automatic Medical Coding Of Electronic Medical Records, Automated Summarizing Of Patient Records, Automatic Cohort Identification For Clinical Studies, Text Simplification Of Health Documents For Patients, Early Detection Of Adverse Drug Reactions Or Automatic Identification Of Risk Factors Are Only A Few Examples Of The Many Possible Opportunities That The Text Analysis Can Offer In The Clinical Domain. In This Work, Our Efforts Are Primarily Directed Towards The Improvement Of The Pharmacovigilance Process By The Automatic Detection Of Drug-Drug Interactions (Ddi) From Texts. Moreover, We Deal With The Semantic Analysis Of Texts Containing Health Information For Patients. Our Two-Stage Approach Is Based On Deep Learning Architectures. Concretely, Ner Is Performed Combining A Bidirectional Long Short-Term Memory (Bi-Lstm) And A Conditional Random Field (Crf), While Re Applies A Convolutional Neural Network (Cnn). Since Our Approach Uses Very Few Language Resources, Only The Pre-Trained Word Embeddings, And Does Not Exploit Any Domain Resources (Such As Dictionaries Or Ontologies), This Can Be Easily Expandable To Support Other Languages And Clinical Applications That Require The Exploitation Of Semantic Information (Concepts And Relationships) From Texts...This work was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R)

    Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning

    Get PDF
    BACKGROUND: Pharmacovigilance and drug-safety surveillance are crucial for monitoring adverse drug events (ADEs), but the main ADE-reporting systems such as Food and Drug Administration Adverse Event Reporting System face challenges such as underreporting. Therefore, as complementary surveillance, data on ADEs are extracted from electronic health record (EHR) notes via natural language processing (NLP). As NLP develops, many up-to-date machine-learning techniques are introduced in this field, such as deep learning and multi-task learning (MTL). However, only a few studies have focused on employing such techniques to extract ADEs. OBJECTIVE: We aimed to design a deep learning model for extracting ADEs and related information such as medications and indications. Since extraction of ADE-related information includes two steps-named entity recognition and relation extraction-our second objective was to improve the deep learning model using multi-task learning between the two steps. METHODS: We employed the dataset from the Medication, Indication and Adverse Drug Events (MADE) 1.0 challenge to train and test our models. This dataset consists of 1089 EHR notes of cancer patients and includes 9 entity types such as Medication, Indication, and ADE and 7 types of relations between these entities. To extract information from the dataset, we proposed a deep-learning model that uses a bidirectional long short-term memory (BiLSTM) conditional random field network to recognize entities and a BiLSTM-Attention network to extract relations. To further improve the deep-learning model, we employed three typical MTL methods, namely, hard parameter sharing, parameter regularization, and task relation learning, to build three MTL models, called HardMTL, RegMTL, and LearnMTL, respectively. RESULTS: Since extraction of ADE-related information is a two-step task, the result of the second step (ie, relation extraction) was used to compare all models. We used microaveraged precision, recall, and F1 as evaluation metrics. Our deep learning model achieved state-of-the-art results (F1=65.9%), which is significantly higher than that (F1=61.7%) of the best system in the MADE1.0 challenge. HardMTL further improved the F1 by 0.8%, boosting the F1 to 66.7%, whereas RegMTL and LearnMTL failed to boost the performance. CONCLUSIONS: Deep learning models can significantly improve the performance of ADE-related information extraction. MTL may be effective for named entity recognition and relation extraction, but it depends on the methods, data, and other factors. Our results can facilitate research on ADE detection, NLP, and machine learning

    Safeguarding Privacy Through Deep Learning Techniques

    Get PDF
    Over the last few years, there has been a growing need to meet minimum security and privacy requirements. Both public and private companies have had to comply with increasingly stringent standards, such as the ISO 27000 family of standards, or the various laws governing the management of personal data. The huge amount of data to be managed has required a huge effort from the employees who, in the absence of automatic techniques, have had to work tirelessly to achieve the certification objectives. Unfortunately, due to the delicate information contained in the documentation relating to these problems, it is difficult if not impossible to obtain material for research and study purposes on which to experiment new ideas and techniques aimed at automating processes, perhaps exploiting what is in ferment in the scientific community and linked to the fields of ontologies and artificial intelligence for data management. In order to bypass this problem, it was decided to examine data related to the medical world, which, especially for important reasons related to the health of individuals, have gradually become more and more freely accessible over time, without affecting the generality of the proposed methods, which can be reapplied to the most diverse fields in which there is a need to manage privacy-sensitive information

    Using Case-Level Context to Classify Cancer Pathology Reports

    Get PDF
    Individual electronic health records (EHRs) and clinical reports are often part of a larger sequence-for example, a single patient may generate multiple reports over the trajectory of a disease. In applications such as cancer pathology reports, it is necessary not only to extract information from individual reports, but also to capture aggregate information regarding the entire cancer case based off case-level context from all reports in the sequence. In this paper, we introduce a simple modular add-on for capturing case-level context that is designed to be compatible with most existing deep learning architectures for text classification on individual reports. We test our approach on a corpus of 431,433 cancer pathology reports, and we show that incorporating case-level context significantly boosts classification accuracy across six classification tasks-site, subsite, laterality, histology, behavior, and grade. We expect that with minimal modifications, our add-on can be applied towards a wide range of other clinical text-based tasks
    • …
    corecore