44,515 research outputs found

    Proposing a secure component-based-application logic and system’s integration testing approach

    Get PDF
    Software engineering moved from traditional methods of software enterprise applications to com-ponent based development for distributed system’s applications. This new era has grown up forlast few years, with component-based methods, for design and rapid development of systems, butfact is that , deployment of all secure software features of technology into practical e-commercedistributed systems are higher rated target for intruders. Although most of research has been con-ducted on web application services that use a large share of the present software, but on the otherside Component Based Software in the middle tier ,which rapidly develops application logic, alsoopen security breaching opportunities .This research paper focus on a burning issue for researchersand scientists ,a weakest link in component based distributed system, logical attacks, that cannotbe detected with any intrusion detection system within the middle tier e-commerce distributed ap-plications. We proposed An Approach of Secure Designing application logic for distributed system,while dealing with logically vulnerability issue

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    BlackWatch:increasing attack awareness within web applications

    Get PDF
    Web applications are relied upon by many for the services they provide. It is essential that applications implement appropriate security measures to prevent security incidents. Currently, web applications focus resources towards the preventative side of security. Whilst prevention is an essential part of the security process, developers must also implement a level of attack awareness into their web applications. Being able to detect when an attack is occurring provides applications with the ability to execute responses against malicious users in an attempt to slow down or deter their attacks. This research seeks to improve web application security by identifying malicious behaviour from within the context of web applications using our tool BlackWatch. The tool is a Python-based application which analyses suspicious events occurring within client web applications, with the objective of identifying malicious patterns of behaviour. This approach avoids issues typically encountered with traditional web application firewalls. Based on the results from a preliminary study, BlackWatch was effective at detecting attacks from both authenticated, and unauthenticated users. Furthermore, user tests with developers indicated BlackWatch was user friendly, and was easy to integrate into existing applications. Future work seeks to develop the BlackWatch solution further for public release

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    Towards operational measures of computer security

    Get PDF
    Ideally, a measure of the security of a system should capture quantitatively the intuitive notion of ‘the ability of the system to resist attack’. That is, it should be operational, reflecting the degree to which the system can be expected to remain free of security breaches under particular conditions of operation (including attack). Instead, current security levels at best merely reflect the extensiveness of safeguards introduced during the design and development of a system. Whilst we might expect a system developed to a higher level than another to exhibit ‘more secure behaviour’ in operation, this cannot be guaranteed; more particularly, we cannot infer what the actual security behaviour will be from knowledge of such a level. In the paper we discuss similarities between reliability and security with the intention of working towards measures of ‘operational security’ similar to those that we have for reliability of systems. Very informally, these measures could involve expressions such as the rate of occurrence of security breaches (cf rate of occurrence of failures in reliability), or the probability that a specified ‘mission’ can be accomplished without a security breach (cf reliability function). This new approach is based on the analogy between system failure and security breach. A number of other analogies to support this view are introduced. We examine this duality critically, and have identified a number of important open questions that need to be answered before this quantitative approach can be taken further. The work described here is therefore somewhat tentative, and one of our major intentions is to invite discussion about the plausibility and feasibility of this new approach

    Unsupervised Anomaly-based Malware Detection using Hardware Features

    Get PDF
    Recent works have shown promise in using microarchitectural execution patterns to detect malware programs. These detectors belong to a class of detectors known as signature-based detectors as they catch malware by comparing a program's execution pattern (signature) to execution patterns of known malware programs. In this work, we propose a new class of detectors - anomaly-based hardware malware detectors - that do not require signatures for malware detection, and thus can catch a wider range of malware including potentially novel ones. We use unsupervised machine learning to build profiles of normal program execution based on data from performance counters, and use these profiles to detect significant deviations in program behavior that occur as a result of malware exploitation. We show that real-world exploitation of popular programs such as IE and Adobe PDF Reader on a Windows/x86 platform can be detected with nearly perfect certainty. We also examine the limits and challenges in implementing this approach in face of a sophisticated adversary attempting to evade anomaly-based detection. The proposed detector is complementary to previously proposed signature-based detectors and can be used together to improve security.Comment: 1 page, Latex; added description for feature selection in Section 4, results unchange
    corecore