306 research outputs found

    Numerical methods for viscous fluid flows in sectors, cones, and domains with corners

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Finite Element Simulation of Dynamic Wetting Flows as an\ud Interface Formation Process

    Get PDF
    A mathematically challenging model of dynamic wetting as a process of interface formation has been, for the first time, fully incorporated into a numerical code based on the finite element method and applied, as a test case, to the problem of capillary rise. The motivation for this work comes from the fact that, as discovered experimentally more than a decade ago, the key variable in dynamic wetting flows — the dynamic contact angle — depends not just on the velocity of the three-phase contact line but on the entire flow field/geometry. Hence, to describe this effect, it becomes necessary to use the mathematical model that has this dependence as its integral part. A new physical effect, termed the ‘hydrodynamic resist to dynamic wetting’, is discovered where the influence of the capillary’s radius on the dynamic contact angle, and hence on the global flow, is computed. The capabilities of the numerical framework are then demonstrated by comparing the results to experiments on the unsteady capillary rise, where excellent agreement is obtained. Practical recommendations on the spatial resolution required by the numerical scheme for a given set of non-dimensional similarity parameters are provided, and a comparison to asymptotic results available in limiting cases confirms that the code is converging to the correct solution. The appendix gives a userfriendly step-by-step guide specifying the entire implementation and allowing the reader to easily reproduce all presented results, including the benchmark calculations

    Tidal Energy and Coastal Models: Improved Turbine Simulation

    Get PDF
    Marine renewable energy is a continually growing topic of both commercial and academic research sectors. While not as developed as other renewable technologies such as those deployed within the wind sector, there is substantial technological crossover coupled with the inherent high energy density of water, that has helped push marine renewables into the wider renewable agenda. Thus, an ever expanding range of projects are in various stages of development.As with all technological developments, there are a range of factors that can con-tribute to the rate of development or eventual success. One of the main difficulties, when looking at marine renewable technologies in a comparative view to other en-ergy generation technologies, is that the operational environment is physically more complex: Energy must be supplied in diverse physical conditions, that temporally fluctuate with a range of time scales. The constant questions to the iteration to the local ecology. The increased operational fatigue of deployed devices. The financial risk associated within a recent sector.This work presents the continual research related to the computational research development of different marine renewable technologies that were under develop-ment of several institutional bodies at the time of writing this document.The scope has a wide envelopment as the nature of novel projects means that the project failure rate is high. Thus, forced through a combination of reasons related to financial, useful purpose and intellectual property, the research covers distinct projects

    Flows of viscoplastic fluids

    Get PDF

    Annual Research Briefs: 1995

    Get PDF
    This report contains the 1995 annual progress reports of the Research Fellows and students of the Center for Turbulence Research (CTR). In 1995 CTR continued its concentration on the development and application of large-eddy simulation to complex flows, development of novel modeling concepts for engineering computations in the Reynolds averaged framework, and turbulent combustion. In large-eddy simulation, a number of numerical and experimental issues have surfaced which are being addressed. The first group of reports in this volume are on large-eddy simulation. A key finding in this area was the revelation of possibly significant numerical errors that may overwhelm the effects of the subgrid-scale model. We also commissioned a new experiment to support the LES validation studies. The remaining articles in this report are concerned with Reynolds averaged modeling, studies of turbulence physics and flow generated sound, combustion, and simulation techniques. Fundamental studies of turbulent combustion using direct numerical simulations which started at CTR will continue to be emphasized. These studies and their counterparts carried out during the summer programs have had a noticeable impact on combustion research world wide

    Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science

    Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science
    corecore