



# University of Dundee

## An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows

Shapeev, Alexander V.; Lin, Ping

Published in: SIAM Journal on Scientific Computing

DOI: 10.1137/080719145

Publication date: 2009

Document Version Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):

Shapeev, A. V., & Lin, P. (2009). An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows. SIAM Journal on Scientific Computing, 31(3), 1874-1900. DOI: 10.1137/080719145

#### **General rights**

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain.
You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

## AN ASYMPTOTIC FITTING FINITE ELEMENT METHOD WITH EXPONENTIAL MESH REFINEMENT FOR ACCURATE COMPUTATION OF CORNER EDDIES IN VISCOUS FLOWS\*

ALEXANDER V. SHAPEEV<sup> $\dagger$ </sup> AND PING LIN<sup> $\ddagger$ </sup>

Abstract. It is well known that any viscous fluid flow near a corner consists of infinite series of eddies with decreasing size and intensity, unless the angle is larger than a certain critical angle [H. K. Moffat, J. Fluid Mech., 18 (1964), pp. 1–18]. The objective of the current work is to simulate such infinite series of eddies occurring in steady flows in domains with corners. The problem is approached by high-order finite element method with exponential mesh refinement near the corners, coupled with analytical asymptotics of the flow near the corners. Such approach allows one to compute position and intensity of the eddies near the corners in addition to the other main features of the flow. The method was tested on the problem of the lid-driven cavity flow as well as on the problem of the backward-facing step flow. The results of computations of the lid-driven cavity problem show that the proposed method computes the central eddy with accuracy comparable to the best of existing methods. The results also indicate that the relative error of finding the eddies' intensity and position decreases uniformly for all the eddies as the mesh is refined (i.e., the relative error in computation of different eddies does not depend on their size).

 ${\bf Key}$  words. finite element method, asymptotic expansion matching, Moffatt eddies near sharp corners

AMS subject classifications. 76D05, 76M10, 65M60

DOI. 10.1137/080719145

1. Introduction. The two-dimensional flow of a viscous fluid near the corner between two steady rigid planes was first examined by Moffatt [28]. He established that when the angle between planes is less than a certain critical angle, any flow near the corner consists of infinite series of eddies with decreasing size and intensity as the corner point is approached.

One of the most famous examples of flow in domain with corners is a flow in the lid-driven cavity. The lid-driven cavity problem has become a benchmark problem for researchers to test the performance of numerical methods designed for computation of viscous fluid flow. Particularly, among other criteria, the researchers examine the accuracy of their methods based on how accurately they can compute the corner eddies. However, in the previous works only a few eddies were computed (maximum four corner eddies [4, 18] for certain Reynolds numbers). In addition, the accuracy of finding intensity and position of the smaller eddies was less than the accuracy for the larger eddies.

The only attempt known to the authors to compute a large number of corner eddies for the lid-driven cavity problem is the work of Gustafson and Leben [25]. They

<sup>\*</sup>Received by the editors March 24, 2008; accepted for publication (in revised form) December 1, 2008; published electronically March 13, 2009. This research is partially supported by the Singapore Academic Research Funds R-146-000-064-112 and R-146-000-099-112.

http://www.siam.org/journals/sisc/31-3/71914.html

<sup>&</sup>lt;sup>†</sup>Department of Mathematics, National University of Singapore, 2, Science Drive 2, Singapore 117543. Current address: Lavrentyev Institute of Hydrodynamics SB RAS, 15 Lavrentyev pr., Novosibirsk, Russia, 630090 (alexander@shapeev.com).

<sup>&</sup>lt;sup>‡</sup>Department of Mathematics, National University of Singapore, 2, Science Drive 2, Singapore 117543. Current address: Division of Mathematics, University of Dundee, 23 Perth Road, Dundee, Scotland DD1 4HN, UK (plin@maths.dundee.ac.uk).

computed a large number of eddies (up to ten) for the Stokes flow (Re = 0) on a sequence of subregions contracting to a corner point, setting the boundary conditions for the smaller subregion by interpolation of solution on the larger subregions. However, their method starts with a large error due to initial grid being coarse, and this error does not decrease when interpolating the solution onto the finer grids. Gustafson and Leben pointed out that "Global interaction with the coarser grids is needed to improve the solutions on all levels." However, no works implementing this are known to the authors of the present work.

Flows near the corner between two steady rigid planes have a weak singularity near the corner: Flows of such type decay at a rate proportional to some power of distance to the corner point. Therefore, the derivatives of sufficiently high degree are not bounded in the neighborhood of the corner point. Because of these properties, special treatment of singularities might be required to solve numerically the problem with corner singularities.

It has been noticed that the solutions in domains with corners for problems of fluid mechanics as well as in other disciplines have singularities which cause a slow convergence rate (or sometimes divergence) of numerical methods. It has been found out that local mesh refinement near corners and use of analytical formulas of asymptotic solution near corners produce better results for problems with corner singularities. Some of the popular techniques to overcome slow convergence are as follows: singular function method [19, 35], singular complement method [2], dual singular function method [6, 7, 10, 11], introduction of analytical constraints to finite element formulation [33], truncation of corners and introduction of Dirichlet-to-Neumann boundary conditions for domains with truncated corners [21], and other methods based on the similar ideas [26, 34]. Also, various methods based solely on mesh refinement (without using asymptotic expansion of the solution) were developed (see, for example, [1, 3, 14, 30, 31]). Mesh refinement for biharmonic boundary-value problems is discussed in [5]. Most of the works devoted to solving problems with singularities at corners, however, either used unrefined mesh [2, 6, 10, 11], or algebraically refined mesh [1, 3, 14, 21, 30, 31].

The aim of this paper is not simply to obtain better results, but to develop a systematic method that can accurately compute position and intensity of infinite series of eddies in addition to computing the other main features of flow in domains with corners. The proposed method is based on the techniques developed for problems with corner singularities, namely: Local mesh refinement near the corners and use of asymptotic solution. The proposed local mesh refinement is exponential in the polar radius r and uniform in the polar angle  $\theta$ . A standard C<sup>1</sup>-continuous finite element discretization (namely, Argyris elements) was applied to the stream function equation. Theoretical and numerical justification of the proposed method is provided. The proposed method was applied to the lid-driven cavity problem as well as to the backward-facing step problem. The computations indicate that the proposed method allows one to accurately compute the infinite series of eddies, with the relative error of finding intensity and position of different eddies being independent of their size. The words "asymptotic fitting" in the name of our method are motivated by the longexisting exponential fitting method which is designed to uniformly resolve exponential layers in singular perturbation problems (see a collection of such methods in [32]).

In this paper, by computing an infinite series of eddies we mean producing an approximate formula of computing eddies' intensity and position depending on the number of the eddy. However, strictly speaking, the number of eddies we can practically compute is limited by floating point arithmetic.

Downloaded 10/27/16 to 134.36.50.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

### ALEXANDER V. SHAPEEV AND PING LIN

The structure of the paper is as follows. In section 2 we give the problem formulation and discuss the properties of flows with infinite series of eddies. In section 3 we describe the proposed method for computing the infinite series of eddies. In section 4 we present and discuss the results of computation of two problems: The liddriven cavity problem and the backward-facing step problem. Finally, the concluding remarks are given in section 5.

**2.** Problem formulation. The problem of viscous fluid flow in domain  $\Omega$  is governed by the Navier–Stokes equations, which in 2D can be written in the form of a single equation for the stream function  $\varphi$ :

(2.1) 
$$\Delta\Delta\varphi + \operatorname{Re}\left(\frac{\partial\Delta\varphi}{\partial x}\frac{\partial\varphi}{\partial y} - \frac{\partial\Delta\varphi}{\partial y}\frac{\partial\varphi}{\partial x}\right) = 0, \quad (x,y) \in \Omega,$$

where Re is the Reynolds number. This equation will be referred to as the stream function formulation of the Navier–Stokes equations. For simplicity, we consider only the Dirichlet boundary conditions, which cover nonslip, moving wall, and inlet/outlet boundary conditions:

(2.2) 
$$\varphi|_{\partial\Omega} = \varphi_0, \quad \frac{\partial\varphi}{\partial n}\Big|_{\partial\Omega} = \varphi_1, \quad (x,y) \in \partial\Omega$$

where  $\partial\Omega$  is the boundary of  $\Omega$ , and  $\frac{\partial}{\partial n}$  is the outward normal derivative on  $\partial\Omega$ . The variational formulation of (2.1) and (2.2) is: Find  $\varphi \in H^2(\Omega)$  such that

$$(2.3) \begin{cases} \operatorname{Re} \int_{\Omega} \left( \frac{\partial \varphi}{\partial x} \frac{\partial \varphi}{\partial y} \left( \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial y^2} \right) - \left( \left( \frac{\partial \varphi}{\partial x} \right)^2 - \left( \frac{\partial \varphi}{\partial y} \right)^2 \right) \frac{\partial^2 \psi}{\partial x \partial y} \right) dx dy \\ + \int_{\Omega} \Delta \varphi \Delta \psi dx dy = 0 \quad \left( \forall \psi \in H_0^2(\Omega) \right), \\ \varphi|_{\partial\Omega} = \varphi_0, \quad \frac{\partial \varphi}{\partial n} \Big|_{\partial\Omega} = \varphi_1. \end{cases}$$

The structure of the flow depends on the problem under consideration. Our particular interest is the structure of the flow in the vicinity of the corners. As was found by Moffatt, any flow near the corner with angle smaller than the critical one consists of a series of eddies with decreasing size and intensity as the corner point is approached [28]. The first (i.e., largest) eddies can be affected by the flow far from the corner as well as by the nonlinear forces. However, such impact on the smaller eddies can be neglected, and therefore their behavior is expected to be close to the behavior of the family of asymptotic solutions. To summarize, the flow domain consists of

- 1. the part without the corner eddies,
- 2. the part with the relatively large corner eddies that might not be well described by the asymptotic solution due to the impact of the flow far from the corner as well as the impact of the nonlinear forces, and finally,
- 3. the part with the relatively small eddies that are well described by the asymptotic solution.

To compute such structure of the flow, the computational method should have specific properties. Namely, in the first part of the domain the mesh can be uniform (unless there are other singular features of the solution that are of interest); in the second part the mesh should be refined in such a way that all the eddies are represented with approximately the same number of triangles in order to compute the eddies uniformly accurately; in the third part the asymptotic solution itself can be used as a discretization.

To derive the asymptotics for the solution near the corner, following the work of Moffatt [28], we can neglect the nonlinear terms because the velocity near the corner between two rigid planes tends to zero. The polar coordinates, with the corner point as the origin, can be separated in (2.1), and hence the main term in the asymptotic solution can be found as the real part of the following complex-valued function:

(2.4) 
$$\varphi = Cr^{\lambda} f_{\lambda}(\theta),$$

where

$$f_{\lambda}(\theta) = d_1 \cos(\lambda \theta) + d_2 \sin(\lambda \theta) + d_3 \cos((\lambda - 2)\theta) + d_4 \sin((\lambda - 2)\theta).$$

Parameters  $d_1$ ,  $d_2$ ,  $d_3$ , and  $d_4$  are found from the nonslip boundary conditions and  $\lambda$  is defined to satisfy the Stokes equation. Particularly, for the case of right angle

(2.5) 
$$f_{\lambda}(\theta) = \sin \theta \, \sin \left( (\pi/2 - \theta) \, (\lambda - 1) \right) + \sin \left( \pi/2 - \theta \right) \, \sin \left( \theta \, (\lambda - 1) \right),$$

and  $\lambda \approx 3.74 + 1.12i$ . See [8, 27] for a rigorous mathematical theory on asymptotic expansion of the biharmonic equation near a corner.

This asymptotic solution allows one to find the asymptotic ratio of eddies' position and intensity, which are defined as position and value of stream function  $\varphi$  at a local extrema. However, absolute position and intensity of eddies depend on the complexvalued constant C which depends on the particular problem. This constant can be found numerically for each corner of the domain. By finding the constant C, we can compute position and intensity of the infinite series of eddies in each corner of the domain in the following way.

We find position  $(\theta_k, r_k)$  and intensity  $(\varphi_k)$  of the eddies as local extrema of the real part of  $\varphi$  in (2.4):

$$\frac{\partial \Re(\varphi)}{\partial r} = 0, \quad \frac{\partial \Re(\varphi)}{\partial \theta} = 0,$$

or after substituting (2.4):

(2.6) 
$$\Re \left( C\lambda r^{\lambda-1} f_{\lambda}(\theta) \right) = 0,$$

(2.7) 
$$\Re\left(Cr^{\lambda}\frac{d}{d\theta}f_{\lambda}(\theta)\right) = 0.$$

Here  $\Re$  denotes the real part of a complex number. Simple analysis shows that these equations can be satisfied only on the bisector  $\theta = \pi/4$ , in which case (2.7) is satisfied automatically. Hence r can be found by substituting  $\theta = \pi/4$  into (2.6):

$$\Re\left(r^{\lambda-1} C\lambda f_{\lambda}(\pi/4)\right) = 0.$$

Taking into account that  $f_{\lambda}(\pi/4) \neq 0$  and

$$r^{\lambda-1} = e^{(\lambda-1)\ln r} = e^{(\Re(\lambda)-1)\ln r} (\cos\left(\Im(\lambda)\ln r\right) + i\sin\left(\Im(\lambda)\ln r\right)),$$

where  $\Im$  is the imaginary part of a complex number, we can write position  $(r_k, \theta_k)$  of the eddies as

(2.8) 
$$\theta_k = \frac{\pi}{4}, \quad r_k = e^{\Im(\lambda) \left(-\pi k + \operatorname{arccot}\left(\arg\left(C\lambda f_\lambda(\frac{\pi}{4})\right)\right)\right)},$$

## Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

where the eddies are numbered with  $k = k_0, k_0 + 1, ...$  in order of decreasing size. Finally, to find intensity of the eddies  $\varphi_k$  we substitute  $(r_k, \theta_k)$  into (2.4):

$$\varphi_k = r_k^{\Re(\lambda)} \left| C\lambda f(\pi/4) \right| \Im\left(\frac{1}{\lambda}\right) = e^{\Re(\lambda)\Im(\lambda)\left(-\pi k + \operatorname{arccot}\left(\arg\left(C\lambda f_\lambda(\frac{\pi}{4})\right)\right)\right)} \left| C\lambda f\left(\frac{\pi}{4}\right) \right| \Im\left(\frac{1}{\lambda}\right)$$
(2.9)

In practice, we can find the constant C only approximately. It means that in computations, there will be some error in eddies' intensity and positions computed by (2.8) and (2.9) due to the error in C. However, we can deduce from formulas (2.8) and (2.9) that the relative error of computing the eddies does not depend on k, because k appears in the formula only as some factor which does not involve C. Indeed, if we denote  $\tilde{C}$  to be the approximation to C with the relative error  $\delta C = \frac{\tilde{C}-C}{C}$ , and  $\tilde{\theta}_k$ ,  $\tilde{r}_k$ ,  $\tilde{\varphi}_k$  to be approximate position and intensity of the eddies, computed by (2.8) and (2.9) with approximate  $\tilde{C}$  instead of exact C, then the relative error of eddies' position and intensity will be the following:

$$\begin{cases} \delta\theta_k = 0, \\ \delta r_k = e^{\Im(\lambda)\left(\operatorname{arccot}\left(\operatorname{arg}\left(\tilde{C}\lambda f_\lambda(\frac{\pi}{4})\right)\right) - \operatorname{arccot}\left(\operatorname{arg}\left(C\lambda f_\lambda(\frac{\pi}{4})\right)\right)\right)} - 1 = -\Im(\delta C) + O(\delta C)^2, \\ \delta\varphi_k = \frac{|\tilde{C}|}{C} e^{\Re(\lambda)\Im(\lambda)\left(\operatorname{arccot}\left(\operatorname{arg}\left(\tilde{C}\lambda f_\lambda(\frac{\pi}{4})\right)\right) - \operatorname{arccot}\left(\operatorname{arg}\left(C\lambda f_\lambda(\frac{\pi}{4})\right)\right)\right)} - 1 \\ = \Re(\delta C) - \Im(\delta C)\Re(\lambda)\Im(\lambda) + O(\delta C)^2. \end{cases}$$

$$(2.10)$$

The formulas (2.10) are derived by substitution  $C = \tilde{C} + \delta C$ ,  $\theta_k = \tilde{\theta}_k + \delta \theta_k$ ,  $r_k = \tilde{r}_k + \delta r_k$ , and  $\varphi_k = \tilde{\varphi}_k + \delta \varphi_k$  into (2.8) and (2.9), and eliminating  $\tilde{\theta}_k$ ,  $\tilde{r}_k$ , and  $\tilde{\varphi}_k$  computed by formulas (2.8) and (2.9) with exact C substituted by approximate  $\tilde{C}$ . The formulas (2.10) present the major term in Taylor expansion of  $\delta \theta_k$ ,  $\delta r_k$ ,  $\delta \varphi_k$  with respect to  $\delta C$ . Thus, as we can see, the relative error of different eddies depends only on C (particularly, it does not depend on k) and converges to zero as  $\delta C \to 0$ .

By approximately finding the constant C, it is possible to have the uniform relative error for all the eddies in a numerical method. However, to our knowledge, no existing methods can attain it. Our method introduced in this paper attains the uniform relative error, which is numerically demonstrated in section 4. Particularly, we will observe that the relative error of finding eddies' intensity and position decreases uniformly for all the eddies as the mesh is refined (i.e., the relative error in computation of different eddies does not depend on their size).

**3.** Computational method. The discretization of the stream function formulation of the Navier–Stokes equations in variational form (2.3) is based on Argyris elements. In order to compute the corner eddies uniformly accurately, a special mesh and basis functions are constructed near the corners. The nonlinear system of algebraic equations resulted from the discretization of (2.3) is solved using Newton's iteration. The linearized system of algebraic equations is solved by the unsymmetric multifrontal method [16, 17] implemented in UMFPACK software package.

Analysis of the literature dedicated to numerical solution of the lid-driven cavity problem indicates that the methods with nonuniform mesh refinement near the boundaries generally produce more accurate results for the corner eddies, though the primary eddy might be computed as accurately as when using uniform meshes. However, in the literature on the lid-driven cavity problem, the mesh refinement function (grading function) is usually fixed to be piecewise polynomial in each Cartesian coordinate, and it is usually not discussed what is the optimal mesh refinement to resolve the eddy structure. A number of works [1, 3, 14, 30, 31] used algebraic mesh refinement near corners in the other applications. Algebraic mesh refinement is used to preserve the convergence rate of the solution globally (the convergence rate is otherwise reduced due to corner singularities). However, it is usually not discussed what mesh refinement should be used in order to accurately resolve singularities near corners.

To accurately resolve the eddy structure near a corner, one should compute a complex-valued constant C in the asymptotic solution (2.4). Having found the constant C, one can compute the eddy structure near the corner by formulas (2.8) and (2.9).

Finding constants of asymptotic expansion of the solution near corners has important applications in elasticity and fracture mechanics, as well as in electromagnetism. A number of methods have been proposed for computing the constants of asymptotic expansion (called "stress intensity factors" in elasticity). Most of the works considered only linear problems [2, 7, 10, 11, 19, 21, 26, 33, 35]. Blum [6] discussed application of dual singular function method to semilinear biharmonic equations, such as the Navier–Stokes equations or the von Kármán equations, however, presenting the numerical results only for linear problems. Shi et al. proposed a method that combines asymptotics of the solution and local mesh refinement near a corner for solution of the Navier–Stokes equations [34]. The authors of [34] mentioned using a local block mesh refinement, which seems to be equivalent to algebraic mesh refinement.

Hawa and Rusak used both exponential local grid refinement and asymptotics of the solution for their finite difference method applied to the backward-facing step flow [26]. They reported improvement of accuracy of the solution near the expansion corner. However, the grid was refined in such a way that if we fix a small region  $r_1 < r < r_2$  near the corner, the number of grid nodes in this region will be the same for the coarse and for the refined grid.

In the proposed method, we use the exponential mesh refinement near the corners. With exponential mesh refinement, each corner eddy large enough to be resolved on a given mesh has approximately equal number of triangles for its representation. The mesh is refined in both radial and angular directions, so that the number of triangles for representation of corner eddies is increased with each mesh refinement, thus increasing accuracy of computing the corner eddies. In addition, we assume that in the triangle adjacent to the corner, size and intensity of the eddies are small enough so that the flow in that triangle is well represented by the analytical asymptotics.

The ideas of using such grid refinement are contained in the work of Gustafson and Leben [25]. Their computational procedure consisted in computing the solution on a uniform grid in the whole domain and then projecting it on finer local grids near the corner. The solution on a uniform grid contains a large error originating from corner singularity, and this error does not decrease when the solution is projected on the finer grids. Gustafson and Leben pointed out that "Global interaction with the coarser grids is needed to improve the solutions on all levels." A method with such global interaction, augmented with fitting the numerical solution to the exact asymptotics, would in a certain way be equivalent to the method proposed in the present work. However, no works implementing such kind of methods are known to the authors of the present work.

To construct a mesh, the domain is decomposed into several subdomains according to the structure of the flow: The main subdomain without the corner eddies, the near-corner subdomains with the relatively large corner eddies, and the corner subdomains with the small eddies. Thus, the domain is decomposed into  $1 + 2N_c$ subdomains, where  $N_c$  is the number of corners between rigid walls (the corners ad-



FIG. 3.1. Domain decomposition near the corner.

jacent to inlets/outlets are not counted since infinite series of eddies do not occur there). A typical domain decomposition near a corner is shown in Figure 3.1. There is one main subdomain (tagged with "M" in Figure 3.1), one near-corner subdomain per each corner between rigid walls (tagged with "NC" in Figure 3.1), and one corner subdomain per each corner between rigid walls (tagged with "C" in Figure 3.1).

In the present method, the constant C of the asymptotic solution (2.4) near the corners is embedded into the finite element discretization: Its real and imaginary parts are found simply as the coefficients of the expansion of the numerical solution in the finite element basis.

Apart from infinite series of eddies, there can be other singularities in the flow at the corners. For example, in the lid-driven cavity problem, there are singularities at the corners between the moving lid and the side walls (see [24] for details):

(3.1) 
$$\varphi = \frac{2r}{\pi^2 - 4} \left( (\pi - 2\theta) \sin(\theta) - \pi\theta \cos(\theta) \right) + O(r^2),$$

where r > 0 and  $0 < \theta < \pi/2$  are polar coordinates, chosen so that the origin is in the upper corner of the cavity and  $\theta = \pi/2$  corresponds to the cavity lid. In the backward-facing step problem, there is a singularity at the backward-facing corner (see [26])

(3.2) 
$$\varphi = C_1 f_{\lambda_1}(\theta) r^{\lambda_1} + C_2 f_{\lambda_2}(\theta) r^{\lambda_2} + O(r^{\lambda_3}),$$

where  $\lambda_1 \approx 1.54$ ,  $\lambda_2 \approx 1.91$ , and  $\lambda_3 \approx 2.63 + 0.23i$ . It was previously found out that a special treatment of these singularities can produce better results [9, 26]. The technique we use to treat the corner singularities is similar to the technique we use to compute the corner eddies. Namely, we perform the same mesh refinement and we match the asymptotic expansion (3.1) or (3.2) at the corner triangle with the solution at the near-corner subdomain.

The organization of the rest of the section follows the proposed structure of the domain. First, the discretization in the main subdomain is specified (subsection 3.1). Second, the discretization in the near-corner subdomains is described (subsection 3.2). Last, the discretization in the corner subdomains is derived (subsection 3.3).

**3.1. Discretization in the main subdomain.** The discretization of the stream function formulation of the Navier–Stokes equations in variational form (2.3) in the main subdomain is done on the uniform mesh and is based on Argyris elements, which are the standard  $C^1$ -continuous,  $P_5$  finite elements on a triangular mesh:

$$V_h = \{ \varphi : \varphi \text{ is } C^1 \text{-continuous, } \varphi \in P_5(T) \text{ for each triangle T} \}.$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



FIG. 3.2. Argyris elements.



FIG. 3.3. Trapezia splitting of the near-corner subdomain.

Argyris elements are schematically shown in Figure 3.2. The basis functions for such finite element discretization are determined by 21 degrees of freedom: Six degrees of freedom at each vertex of the triangle corresponding to the values of  $\varphi$  and its first and second derivatives, and one degree of freedom corresponding to the normal derivative at the middle point of each edge [15, p. 44]:

$$\varphi(v_i), \ \frac{\partial \varphi}{\partial x}(v_i), \ \frac{\partial \varphi}{\partial y}(v_i), \ \frac{\partial^2 \varphi}{\partial x^2}(v_i), \ \frac{\partial^2 \varphi}{\partial x \partial y}(v_i), \ \frac{\partial^2 \varphi}{\partial y^2}(v_i), \quad (i = 1, 2, 3);$$
$$\frac{\partial \varphi}{\partial n}(v_{ij}), \quad (i, j = 1, 2, 3, \ i < j).$$

Here  $v_i$  are the vertices of the triangle and  $v_{ij}$  are the midpoints of the edges (Figure 3.2).

**3.2.** Discretization in the near-corner subdomains. The discretization of (2.3) in the near-corner subdomain (trapezium *ABGF* in Figure 3.1) is also based on Argyris elements and is done on the exponentially graded mesh. The mesh is chosen to be conforming with the mesh in the main subdomain, and therefore no additional techniques are involved to couple the solutions in these two subdomains.

To construct the mesh, the region ABGF is split into the smaller trapezia (Figure 3.3) by introducing a series of line segments parallel to AB (denoted as  $F_1G_1, \ldots, F_mG_m$  on the Figure 3.3) and another series of segments of the lines whose extensions cross at the corner point O (these lines are denoted as  $OD_1, \ldots, OD_n$  in Figure 3.3). Position of the lines crossing at O is induced by the triangulation in the main subdomain: These lines contain the nodes of the triangulation on the line segment AB.

1881



FIG. 3.4. Triangular mesh of the near-corner subdomain.

The distances between the lines parallel to AB are chosen to satisfy the exponential refinement property: The ratio of lengths of the adjacent intervals on AF and BG is constant:

$$\frac{F_2F_1}{F_1A} = \frac{F_3F_2}{F_2F_1} = \dots = \frac{F_mF_{m-1}}{F_{m-1}F_{m-2}} = \frac{FF_m}{F_mF_{m-1}} = k.$$
$$\frac{G_2G_1}{G_1B} = \frac{G_3G_2}{G_2G_1} = \dots = \frac{G_mG_{m-1}}{G_{m-1}G_{m-2}} = \frac{GG_m}{G_mG_{m-1}} = k.$$

The constant k is chosen as

$$(3.3) k = 2^{-1/n}$$

to agree with the mesh in the main subdomain and to avoid triangles with small angles. Here m is the number of subdivisions of GB (hereinafter referred as the number of radial subdivisions), and n is the number of subdivisions of AB (hereinafter referred as the number of angular subdivisions).

Finally, after splitting the near-corner subdomain into trapezia, each trapezium is divided into two triangles avoiding obtuse triangles (Figure 3.4). These triangles form the triangulation in the near-corner subdomain.

**3.3.** Discretization in the corner subdomains. We assume that in the corner subdomain (triangle OFG in Figure 3.1), the asymptotics (2.5) give a sufficiently accurate approximation to the exact solution. Therefore, the solution basis in the corner triangle OFG is chosen to be a set of only two functions, namely real and imaginary part of the function  $r^{\lambda}f_{\lambda}(\theta)$  in (2.5):

$$(3.4) \quad V_h(\triangle_{OFG}) = \{\varphi_1|_{\triangle_{OFG}}, \varphi_2|_{\triangle_{OFG}}\} = \left\{ \Re \left( r^\lambda f_\lambda \right) \Big|_{\triangle_{OFG}}, \Im \left( r^\lambda f_\lambda \right) \Big|_{\triangle_{OFG}} \right\}.$$

In this case finding the constant C of asymptotics (2.4) is equivalent to finding the coefficients of expansion of the numerical solution in the basis (3.4):

$$\varphi = \Re \left( Cr^{\lambda} f_{\lambda} \right) = \Re(C) \Re \left( r^{\lambda} f_{\lambda} \right) - \Im(C) \Im \left( r^{\lambda} f_{\lambda} \right) = \Re(C) \varphi_1 - \Im(C) \varphi_2$$

inside  $\triangle_{OFG}$ .

For the overall finite element discretization to be conforming, the basis functions should be  $C^1$ -continuous across the interface FG; that is, the jumps of any basis

1883



FIG. 3.5. Basis function near the edge  $A_1A_2$  (1st function, mesh M0).

function  $\varphi_k$  and its normal derivative should be equal to zero along FG:

(3.5) 
$$[\varphi_k]_{FG} = 0, \quad \left[\frac{\partial \varphi_k}{\partial n}\right]_{FG} = 0.$$

These conditions, however, cannot be satisfied since the basis functions in FGBA are piecewise polynomials, whereas the basis functions in OFG are not piecewise polynomials. Therefore, we satisfy the interface conditions (3.5) approximately as described below.

If the values of a basis function in OFG were fixed, then the interface conditions (3.5) would be nothing but the Dirichlet conditions at the segment FG. Therefore, we treat the interface conditions (3.5) like the regular Dirichlet boundary conditions: We set the jumps of the function and its first tangential, second tangential, normal, and mixed derivatives to be equal to zero at the mesh points. In addition, we set the jumps of the normal derivative to be equal to zero at the midpoints of the edges. More precisely, if the triangle  $v_1v_2v_3$  has the edge  $v_1v_2$  on the interface FG, then the interface conditions are written as

$$[\varphi_k(v_i)]_{FG} = 0, \ \left[\frac{\partial \varphi_k}{\partial s}(v_i)\right]_{FG} = 0, \ \left[\frac{\partial \varphi_k}{\partial n}(v_i)\right]_{FG} = 0,$$
(3.6)
$$\left[\frac{\partial^2 \varphi_k}{\partial s^2}(v_i)\right]_{FG} = 0, \ \left[\frac{\partial^2 \varphi_k}{\partial n \partial s}(v_i)\right]_{FG} = 0, \quad (i = 1, 2);$$

$$\left[\frac{\partial \varphi_k}{\partial n}(v_{12})\right]_{FG} = 0.$$

The finite element basis constructed in this way approximately satisfies the interface conditions (3.5). Examples of the basis functions are illustrated in Figures 3.5, 3.6, 3.7, and 3.8.

One important remark needs to be made regarding refining the mesh. When refining the mesh by a factor of 2, we expect the error to decrease at most by a factor of  $2^6$  (since the basis functions are 5th degree polynomials). Then we also should shrink the domain OFG as the mesh is refined in order to reduce the error of representation of the solution with its asymptotics (2.5). This will expand the nearcorner domain FGBA. The factor of shrinking of the corner domain OFG needs to be chosen in such a way that on the one hand, the error of representation of the solution



FIG. 3.6. Basis function near the edge  $A_1A_2$  (2nd function, mesh M0).



FIG. 3.7. Basis function near the edge  $A_1A_2$  (1st function, mesh M1).



FIG. 3.8. Basis function near the edge  $A_1A_2$  (2nd function, mesh M1).

with its asymptotics is not dominating, and on the other hand, the number degrees of freedom of the discretization is not too large. From the numerical experiments (see subsection 4.2 for details), it was established that a shrinking factor of 4 is close to the optimal value for computation of the corner eddies. The examples of the meshes in the main and near-corner subdomains for the lid-driven cavity problem are shown in Figure 3.9. The bold lines are the interfaces between subdomains.

4. Results of computations and discussion. The present method was applied to two problems: The lid-driven cavity problem, and the backward-facing step problem. Since the lid-driven cavity problem is the most widely used benchmark problem, the main focus was to compute the infinite series of eddies for the lid-driven cavity flow and compare the data with the results available in the literature (subsection 4.1). Also, different shrinking factors of corner subdomain were tested to confirm that the factor of 4 is close to the optimal value (subsection 4.2). The backward-facing step problem was also computed and compared with the available results (subsection 4.3).

1884

1885



FIG. 3.9. Main subdomain mesh examples for the lid-driven cavity problem (meshes M0 and M1).



FIG. 4.1. Schematic structure of the eddies for the lid-driven cavity flow.

**4.1. Lid-driven cavity problem.** The lid-driven cavity flow is described by the following boundary-value problem:

$$\begin{cases} \Delta\Delta\varphi + \operatorname{Re}\left(\frac{\partial\Delta\varphi}{\partial x}\frac{\partial\varphi}{\partial y} - \frac{\partial\Delta\varphi}{\partial y}\frac{\partial\varphi}{\partial x}\right) = 0,\\ \varphi|_{\partial\Omega} = 0,\\ \frac{\partial\varphi}{\partial n}\Big|_{\partial\Omega} = u_s, \end{cases}$$

where the domain  $\Omega$  is the unit square  $\Omega = (0, 1) \times (0, 1)$ , and  $u_s$  is a tangential velocity on the boundary:  $u_s = 1$  for y = 1, and  $u_s = 0$  otherwise. The general structure of the lid-driven cavity flow is sketched in Figure 4.1. The flow consists of the primary eddy (denoted as PE), a series of bottom left corner eddies (denoted as BL1, BL2, ..., BLk, ...), and a series of bottom right corner eddies (denoted as BR1, BR2, ..., BRk, ...). The eddies are numbered in order of decreasing size. For high Reynolds numbers, the top left eddies (TL1 and TL2) can also appear in the flow. It is generally agreed among researchers that the steady flow is stable for small and moderate Reynolds numbers. However, there has been no agreement regarding the stability of the flow for higher Reynolds numbers (although, we must admit, a number of latest works, see [12] and references therein, suggest that the lid-driven cavity flow looses its stability at Re  $\approx 8000$ ). We compare our high-Re results with one of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



FIG. 4.2. Streamlines for cavity flow for Re = 2500.

most accurate results available in the literature, namely with the work of Barragy and Carey [4], who found the numerical solution to be stable up to Re = 12500. Also, we present our results for higher Re in order to illustrate the capability of the present method to compute the infinite series of eddies for higher Re, as well as to make it possible to compare the present results with other works.

The figures with the streamlines of the lid-driven cavity flow for Re = 2500 are presented in Figure 4.2. The upper image contains the eddies PE, TL1, BL1, BR1, and also the small eddies BL2 and BR2. The two lower images contain BL2, BL3 and BR2,

1886

| TAI        | BLE | 2.4.1  |       |  |
|------------|-----|--------|-------|--|
| Parameters | of  | meshes | used. |  |

1887

|   | Mesh | Triangles | DOF    | Reduced<br>DOF | Corner triangle size $(OG)$ | Near-corner radial subdivisions $(m)$ | Near-corner<br>angular<br>subdivisions $(n)$ |
|---|------|-----------|--------|----------------|-----------------------------|---------------------------------------|----------------------------------------------|
| Γ | M0   | 68        | 414    | 210            | 0.063                       | 2                                     | 1                                            |
|   | M1   | 388       | 2078   | 1490           | 0.016                       | 9                                     | 3                                            |
|   | M2   | 2052      | 10126  | 8578           | 0.0039                      | 27                                    | 7                                            |
|   | M3   | 10244     | 48334  | 44482          | 0.00098                     | 71                                    | 15                                           |
|   | M4   | 49156     | 226574 | 217346         | 0.00024                     | 175                                   | 31                                           |

BR3, respectively. The images for the smaller eddies are almost not distinguishable from the lower two images and therefore are not presented in the paper.

The lid-driven cavity problem was computed using the method described above. The computations were done on five different meshes, denoted as M0, M1, M2, M3, and M4. The meshes M0 and M1 are shown in Figure 3.9. The parameters such as number of triangles, number of degrees of freedom (DOF), size of a leg of the corner triangle (i.e., length of OG in Figure 3.4), and the number of radial and angular subdivisions of near-corner subdomains (i.e., the numbers m and n introduced in section 3.2) are presented in Table 4.1. The fourth column (reduced DOF) is the number of degrees of freedom after application of the boundary conditions and the matching conditions on the interface between corner and near-corner subdomains. The results on the mesh M0 are substantially underresolved for Re  $\geq$  1000 and therefore are not presented here.

Comparison of the results of the present work on different meshes with the works [9, 13, 18, 20, 22, 29] in the literature was carried out for Re = 1000. The results are presented in Table 4.2 (only the works that produce at least one of the two second corner eddies, BR2 or BL2, were included in the table). The first column of the table indicates the work (the present work or the existing work we compare with). The type of method used and its spatial accuracy are presented in the second column. The abbreviations FE, Sp, and FD denote finite element, spectral, and finite difference method, respectively. The third column indicates the grid (or mesh) used and the number of degrees of freedom in the discretization. The rest of the columns contain intensity ( $\varphi$ ) and position (x, y) of the respective eddies.

The best agreement of our results for Re = 1000 is with the results of Botella and Peyret [9], which seem to have the most accurate results for Re = 1000 available in the literature. The absolute difference in stream function at the location of eddies between our work and [9] is less than  $10^{-7}$ . As can be seen from Table 4.2 (rows 5 and 6), the results on the meshes  $128 \times 128$  and  $160 \times 160$  are very close to each other and are very close to the results of the present work. The absolute difference in intensity of the primary eddy (PE) is less than  $10^{-7}$  and the difference for BL2 is  $6 \cdot 10^{-11}$ . However, the relative difference between computations on these two meshes is less than  $10^{-6}$  for the primary eddy, and is approximately 0.01 for BL2. This is the common feature of most of the other methods: The relative accuracy of computation of the corner eddies is less than the accuracy for the primary eddy; the smaller the eddy is, the less the relative accuracy is. On the contrary, for the present method the relative difference between solutions on the meshes M3 and M4 for PE is approximately  $1.68 \cdot 10^{-7}$ , for BL1 is  $1.47 \cdot 10^{-6}$ , and for BL2 is  $1.49 \cdot 10^{-6}$ . This indicates that the proposed method allows one to compute the infinite number of eddies with the relative error of

| Work          | Method           | Grid             |                  | ЪЕ           | BR1         | BL1          | BR2                       | BL2                       |
|---------------|------------------|------------------|------------------|--------------|-------------|--------------|---------------------------|---------------------------|
|               | (accur.)         | (DOF)            |                  |              |             |              |                           |                           |
| present       | FЕ               | M1               | 9                | -0.118968144 | 0.001850227 | 0.0002241393 | $-5.419591 \cdot 10^{-8}$ | $-6.139487 \cdot 10^{-9}$ |
| 4             | (9)              | (2078)           | $\cdot x$        | 0.530196950  | 0.86028885  | 0.08276962   | 0.992144034               | 0.0048090691              |
|               | к.<br>У          |                  | у                | 0.566473209  | 0.11366291  | 0.077479611  | 0.007855935               | 0.0048090691              |
| present       | ЪĘ               | M2               | 9                | -0.118941452 | 0.001730255 | 0.0002334403 | $-5.041120 \cdot 10^{-8}$ | $-6.398213 \cdot 10^{-9}$ |
| 4             | (9)              | (10126)          | . <i>x</i>       | 0.530791378  | 0.86404158  | 0.08327453   | 0.992324269               | 0.0048428003              |
|               | ~                | ~                | у                | 0.565248546  | 0.11182323  | 0.078097763  | 0.007651558               | 0.0048453434              |
| present       | ЪĘ               | M3               | 9                | -0.118936631 | 0.001729707 | 0.0002334532 | $-5.039348 \cdot 10^{-8}$ | $-6.398563 \cdot 10^{-9}$ |
| I             | (9)              | (48334)          | $\cdot x$        | 0.530790147  | 0.86404026  | 0.08327321   | 0.992324863               | 0.0048426989              |
|               |                  |                  | у                | 0.565240564  | 0.11180605  | 0.078095777  | 0.007650968               | 0.0048452431              |
| present       | FE               | M4               | Э                | -0.118936611 | 0.001729717 | 0.0002334529 | $-5.039380 \cdot 10^{-8}$ | $-6.398554 \cdot 10^{-9}$ |
| 1             | (9)              | (226574)         | x                | 0.530790112  | 0.86404006  | 0.08327318   | 0.992324852               | 0.0048426963              |
|               |                  |                  | $\boldsymbol{y}$ | 0.565240557  | 0.11180617  | 0.078095725  | 0.007650979               | 0.0048452406              |
| Botella and   | $_{\rm Sp}$      | $128 \times 128$ | Э                | -0.1189366   | 0.00172971  | 0.0002334528 | $-5.03992 \cdot 10^{-8}$  | $-6.33255 \cdot 10^{-9}$  |
| Peyret [9]    |                  | (48644)          | x                | 0.5308       | 0.8640      | 0.0833       | 0.99232                   | 0.00490                   |
|               |                  |                  | у                | 0.5652       | 0.1118      | 0.0781       | 0.00765                   | 0.00482                   |
| Botella and   | $_{\mathrm{Sp}}$ | 160 	imes 160    | Э                | -0.1189366   | 0.00172971  | 0.0002334528 | $-5.03944 \cdot 10^{-8}$  | $-6.39800 \cdot 10^{-9}$  |
| Peyret [9]    |                  | (76164)          | x                | 0.5308       | 0.8640      | 0.0833       | 0.99232                   | 0.00484                   |
|               |                  |                  | $\boldsymbol{y}$ | 0.5652       | 0.1118      | 0.0781       | 0.00765                   | 0.00484                   |
| Erturk        | FD               | $601 \times 601$ | Э                | 6 - 0.118781 | 0.0017281   | 0.00023261   | $-5.4962 \cdot 10^{-8}$   | $-8.4221 \cdot 10^{-9}$   |
| et al. $[18]$ | (2)              | (722402)         | x                | 0.5300       | 0.8633      | 0.0833       | 0.9917                    | 0.0050                    |
|               |                  |                  | $\boldsymbol{y}$ | 0.5650       | 0.1117      | 0.0783       | 0.0067                    | 0.0050                    |
| Nishida and   | FD               | $129 \times 129$ | Э                | -0.119004    | 0.00172787  | 0.000233520  | $-5.48624 \cdot 10^{-8}$  |                           |
| Satofuka [29] | (8)              | (33282)          | x                | 0.5313       | 0.8594      | 0.0859       | 0.9922                    |                           |
|               |                  |                  | $\boldsymbol{y}$ | 0.5625       | 0.1094      | 0.0781       | 0.0078                    |                           |
| Ghia          | FD               | $129 \times 129$ | Э                | -0.117929    | 0.00175102  | 0.000231129  | $-9.31929 \cdot 10^{-8}$  |                           |
| et al. $[20]$ | (2)              | (33282)          | x                | 0.5313       | 0.8594      | 0.0859       | 0.9922                    |                           |
|               |                  |                  | $\boldsymbol{y}$ | 0.5625       | 0.1094      | 0.0781       | 0.0078                    |                           |
| Goyon [22]    | FD               | $129 \times 129$ | Э                | -0.1157      | 0.00163     | 0.000211     | $-8.79 \cdot 10^{-8}$     |                           |
|               | (2)              | (33282)          | x                | 0.5312       | 0.8671      | 0.0859       | 0.9921                    |                           |
|               |                  |                  | $\boldsymbol{y}$ | 0.5625       | 0.1171      | 0.0871       | 0.0078                    |                           |
| Bruneau and   | FD               | $257 \times 257$ | Э                | -0.1163      | 0.00191     | 0.000325     | $-3.06\cdot10^{-8}$       |                           |
| Jouron [13]   | (2)              | (198147)         | x                | 0.5313       | 0.8711      | 0.0859       | 0.9961                    |                           |
|               |                  |                  | у                | 0.5586       | 0.1094      | 0.0820       | 0.0039                    |                           |

TABLE 4.2 Comparison of results for Re = 1000.

Downloaded 10/27/16 to 134.36.50.219. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

## ALEXANDER V. SHAPEEV AND PING LIN

computation of the corner eddies being essentially independent of their size. We will observe this feature of the proposed method in more detail below.

The results for higher Reynolds numbers were compared with the results of Barragy and Carey [4], which were found to be the most accurate results containing up to the fourth corner eddies. The absolute difference between the present work and [4] in stream function at the location of the eddies is less than  $10^{-5}$ . Intensity and position of some of the eddies for the present computations for the different mesh refinements and the results of Barragy and Carey [4] are presented in Tables 4.3 and 4.4 (for Re = 2500 and Re = 12500, respectively).

Table 4.3 indicates that the present results for Re = 2500 are more accurate for all the eddies than the results of Barragy and Carey. The results for Re = 12500(Table 4.4) on the mesh M4 seem to be of comparable accuracy for the primary eddy and first three corner eddies (BL1-BL3, BR1-BR3). However, the present method produces better results for the fourth corner eddies (BL4 and BR4) than the method of Barragy and Carey [4]. The deterioration of the accuracy of the present method for high Reynolds numbers is attributed to the uniform mesh being used in the main subdomain in the present method. Barragy and Carey used the graded mesh which might resolve the boundary layers near the walls better.

It is also interesting to examine the relative error of finding intensity and position of different corner eddies depending on the mesh. As can be observed from Table 4.3 (Re = 2500), the difference in eddies' intensity and position between computations on two consecutive meshes M3 and M4 decreases by a large factor (the difference between M3 and M4 is about 30 times smaller than the difference between M2 and M3). This indicates fast convergence of the numerical solution. Hence, we can estimate the error of the solution on M1, M2, and M3 as the difference with the solution on M4. Also, since the difference between the results of Barragy and Carey and the present results on the mesh M4 is much larger than the difference between M3 and M4, we can also estimate the error of Barragy and Carey's solution as the difference between their solution and the present solution on M4. The estimated relative error thus computed for the eddies BL1-BL4 is presented in Table 4.5. As can be seen from Table 4.5, the method of Barragy and Carey (as well as all the methods available in the literature and known to us) produces the relative error which increases for the smaller eddies. On the contrary, the present method allows one to compute the whole infinite series of eddies, and the relative error of finding the eddies' intensity and position decrease uniformly for all the eddies as the mesh is refined. That is, there is a bound on the relative error of finding the eddies' intensity and position; this bound is independent of size and intensity of the particular eddy and decreases as the mesh is refined. This is a distinctive feature of the proposed method, which is a result of appropriate mesh refinement near the corners as well as coupling the approximate solution with the exact asymptotics.

One of the reasons for uniform accuracy of computing corner eddies is the ability of the method to accurately compute the complex-valued constant C in the asymptotic solution (2.4). Table 4.6 presents the computed values of the constant C at the bottom-left and the bottom-right corners. It can be seen that the values of C also converge fast as the mesh is refined. Estimates (2.10) guarantee that once the error of finding C is small, the relative error of position and intensity of the eddies near the corner is also small and is independent of the size of eddy.

Intensity and position of all the eddies present in the flow were computed for Re = 1000, 2500, 5000, 7500, 10000, 12500, 20000, and 25000. The fifth corner eddies (BL5 and BR5) as well as the smaller eddies (sixth, seventh, etc.) were computed for

TABLE 4.3 Comparison of different eddies for Re = 2500 for different refinements with Barragy and Carey [4].

|   | $\rm PE$              | arphi                                              | x              | y                      |
|---|-----------------------|----------------------------------------------------|----------------|------------------------|
|   | M1                    | -0.1229531                                         | 0.5232264      | 0.5433070              |
|   | M2                    | -0.1214925                                         | 0.5197949      | 0.5439642              |
|   | M3                    | -0.1214695                                         | 0.5197760      | 0.5439257              |
|   | M4                    | -0.1214690                                         | 0.5197769      | 0.5439244              |
|   | Barragy&Carey         | -0.1214621                                         | 0.5188822      | 0.5434181              |
| Ì | BL1                   | (0                                                 | r              | 21                     |
|   | M1                    | $\frac{\varphi}{0.0008580064}$                     | 0.08486407     | <u> </u>               |
|   | MO                    | 0.0000310561                                       | 0.08428356     | 0.1124200              |
|   | M2                    | 0.0009319301                                       | 0.08428550     | 0.1110020              |
|   | MA                    | 0.0009311170                                       | 0.08424150     | 0.1110051              |
|   | M4<br>Downowsel-Conor | 0.0009511474<br>0.0000210542                       | 0.00424101     | 0.1110001<br>0.1100646 |
|   | Darragy&Carey         | 0.0009310342                                       | 0.06459557     | 0.1109040              |
|   | BL2                   | $\varphi$                                          | x              | y                      |
|   | M1                    | $-2.561365 \cdot 10^{-8}$                          | 0.006180366    | 0.006180366            |
|   | M2                    | $-2.813986 \cdot 10^{-8}$                          | 0.006133761    | 0.006162933            |
|   | M3                    | $-2.811056 \cdot 10^{-8}$                          | 0.006129657    | 0.006158771            |
|   | M4                    | $-2.811158 \cdot 10^{-8}$                          | 0.006129716    | 0.006158831            |
|   | Barragy&Carey         | $-2.809461 \cdot 10^{-8}$                          | 0.006023922    | 0.006211389            |
| I | BL3                   | $\varphi$                                          | x              | y                      |
|   | M1                    | $7.062414 \cdot 10^{-13}$                          | 0.0003730432   | 0.0003730432           |
|   | M2                    | $7.758873 \cdot 10^{-13}$                          | 0.0003711063   | 0.0003711063           |
|   | M3                    | $7.750788 \cdot 10^{-13}$                          | 0.0003708568   | 0.0003708568           |
|   | M4                    | $7.751069 \cdot 10^{-13}$                          | 0.0003708612   | 0.0003708595           |
|   | Barragy&Carey         | $7.595817 \cdot 10^{-13}$                          | 0.0003884944   | 0.0003884944           |
| Ì | DD1                   | 11000011 10                                        |                | 0.0000001011           |
|   | M1                    | $\varphi$ 0.001720286                              | x<br>0.8540160 | <i>y</i><br>0.08762500 |
|   | MD                    | 0.001759580                                        | 0.8349109      | 0.00703599             |
|   | M2                    | 0.002039379                                        | 0.8340474      | 0.09063711             |
|   | Ma                    | 0.002002008                                        | 0.8343901      | 0.09075600             |
|   | M4<br>Downogy & Conor | 0.002002432                                        | 0.8249224      | 0.09075092             |
|   | Darragy&Carey         | 0.002002249                                        | 0.0342324      | 0.09075121             |
|   | BR2                   | $\varphi$                                          | x              | y                      |
|   | M1                    | $-6.107748 \cdot 10^{-8}$                          | 0.9922088      | 0.007791156            |
|   | M2                    | $-1.223342 \cdot 10^{-7}$                          | 0.9904728      | 0.009371962            |
|   | M3                    | $-1.226814 \cdot 10^{-7}$                          | 0.9904590      | 0.009384841            |
|   | M4                    | $-1.226678 \cdot 10^{-7}$                          | 0.9904594      | 0.009384439            |
|   | Barragy&Carey         | $-1.226317 \cdot 10^{-7}$                          | 0.9903702      | 0.009321324            |
|   | BR3                   | arphi                                              | x              | y                      |
|   | M1                    | $1.684081 \cdot 10^{-12}$                          | 0.9995297      | 0.0004702695           |
|   | M2                    | $3.372570 \cdot 10^{-12}$                          | 0.9994297      | 0.0005702880           |
|   | M3                    | $3.382143 \cdot 10^{-12}$                          | 0.9994289      | 0.0005710936           |
|   | M4                    | $3.381770 \cdot 10^{-12}$                          | 0.9994289      | 0.0005710737           |
|   | Barragy&Carey         | $3.366884 \cdot 10^{-12}$                          | 0.9994164      | 0.0005836428           |
| ĺ | BR4                   | (0                                                 | x              | 11                     |
|   | M1                    | 4 643402 . 10-17                                   | 0.0000716      | 0 00002838518          |
|   | M2                    | $-4.045492 \cdot 10$<br>$-9.200140 \cdot 10^{-17}$ | 0.9999710      | 0.00002838318          |
|   | M2                    | $-9.299140 \cdot 10$<br>0.225525 10-17             | 0.9999000      | 0.00003442224          |
|   | M4                    | $-9.323335 \cdot 10$<br>0.324506 $\cdot 10^{-17}$  | 0.9999000      | 0.00003447087          |
|   | BarraguliCarou        | $-9.524500 \cdot 10$<br>5.045803 $\cdot 10^{-16}$  | 0.9999000      | 0.00003440337          |
|   | Darragy&Carey         | -0.940000 * 10                                     | 0.3333304      | 0.00000458151          |
| ļ | TLI                   | $\varphi$                                          | x              | <i>y</i>               |
| ļ | M1                    | 0.0002137404                                       | 0.03705343     | 0.8860543              |
| ļ | M2                    | 0.0003454710                                       | 0.04307404     | 0.8893125              |
| ļ | M3                    | 0.0003434614                                       | 0.04300269     | 0.8893601              |
| ļ | M4                    | 0.0003434479                                       | 0.04300225     | 0.8893601              |
|   | Barragy&Carey         | 0.0003433099                                       | 0.04329169     | 0.8890354              |

TABLE 4.4

Comparison of different eddies for Re = 12500 for different refinements with Barragy and Carey [4].

| $\rm PE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.1245284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5166685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5257130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.1223875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5109497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5288917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.1223661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5110722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5288052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.1223584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5113304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5283202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\psi}{0.001525008}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05467608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9<br>0.1707522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| M2<br>M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.001555998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05407003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1797522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.001002001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05549707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1075715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| M14<br>DownowserverConorr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001007850<br>0.001667752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05552996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1073200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Баггаду&Сагеу                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001007732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05541802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.1080841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BL2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-4.078831 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02505156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03127547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-6.622290 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02661348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03251247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-6.789915 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02678565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03269075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-6.787536 \cdot 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02655169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03282161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BL3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.093344 \cdot 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001669520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001669520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.783343 \cdot 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001759045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001000020<br>0.001760104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1.828845 \cdot 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001769764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001770830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $1.828415 \cdot 10^{-10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.001767080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001767080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Durfugy@etarey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.020110 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001101000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001101000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| BL4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-3.014661 \cdot 10^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001007712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0001007712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-4.917188 \cdot 10^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001062069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0001062069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-5.042648 \cdot 10^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001068540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0001068540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $-4.384933 \cdot 10^{-15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0001292307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00006458191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.002106801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7972048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05290622                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.003123291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7594222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05435194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.003100299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7598890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05417034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003099803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7603326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05407320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | arphi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BR2<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\varphi}{-0.00004778892}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $x \\ 0.9458347$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{y}{0.04838712}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BR2<br>M2<br>M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \varphi \\ -0.00004778892 \\ -0.0002608272 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x = 0.9458347 = 0.9272493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{y}{0.04838712}\\0.08172105$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BR2<br>M2<br>M3<br>M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \varphi \\ -0.00004778892 \\ -0.0002608272 \\ -0.0002559075 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08114478 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \varphi \\ -0.00004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} y\\ 0.04838712\\ 0.08172105\\ 0.08114478\\ 0.08121944 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{y}{0.04838712}\\ 0.08172105\\ 0.08112105\\ 0.08114478\\ 0.08121944\\ y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.08121944 \\ \hline y \\ 0.003073027 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \end{array}$ $\begin{array}{c} \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9951967 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08114478 \\ 0.08121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \end{array}$ $\begin{array}{c} \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.08121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \end{array}$ $\begin{array}{c} \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.7590350 \cdot 10^{-9} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.08121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004798437 \\ 0.004899706 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.08121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004798437 \\ 0.004899706 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ 2.596002  10^{-14} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.0008145 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.08121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.001854712 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M2<br>M2<br>M2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ 2.180624  10^{-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9959262 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9007002 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.002006978 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M3<br>M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ 2 120270 \cdot 10^{-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9959262 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9997093 \\ 0.9097111 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{r} y\\ 0.04838712\\ 0.08172105\\ 0.08112105\\ 0.081121944\\ \hline y\\ 0.003073027\\ 0.004828739\\ 0.004798437\\ 0.004899706\\ \hline y\\ 0.0001854712\\ 0.0002906878\\ 0.0002906878\\ 0.0002906878\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy (Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ 2.077842 \cdot 10^{-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9959262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9096764 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} y\\ 0.04838712\\ 0.08172105\\ 0.08112105\\ 0.081121944\\ \hline y\\ 0.003073027\\ 0.004828739\\ 0.004798437\\ 0.004899706\\ \hline y\\ 0.0001854712\\ 0.0002906878\\ 0.0002888828\\ 0.0002888828\\ 0.0002888828\\ 0.0002888828\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9959262 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002888228 \\ 0.0002587290 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.0002505 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.9959262 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ c 0.000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y<br>0.04838712<br>0.08172105<br>0.08114478<br>0.08121944<br>y<br>0.003073027<br>0.004828739<br>0.004798437<br>0.004899706<br>y<br>0.0001854712<br>0.0002906878<br>0.000288828<br>0.0002587290<br>y<br>0.015570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.00027527 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ 0.9969275 \\ 0.99592875 \\ \hline 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ 0.07126436 \\ 0.071126436 \\ 0.072126436 \\ \hline 0.0721264 \\ \hline 0.07212$                                                 | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08112105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.0002888228 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.09117728 \\ 0.002014 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.003017535 \\ \hline 0.002659272 \\ \hline 0.003017535 \\ \hline 0.00262920 \\ \hline \end{array}$ | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \hline 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.07126436 \\ 0.07416998 \\ 0.07416998 \\ 0.07416998 \\ 0.07416998 \\ \hline 0.0724636 \\ \hline 0.07416998 \\ \hline 0.0741698 \\ \hline 0.07$ | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.0002888828 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.010314 \\ 0.010314 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.003017535 \\ 0.003006600 \\ 0.0002659272 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \hline 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.07126436 \\ 0.07416998 \\ 0.07406084 \\ 0.07406084 \\ 0.07406084 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.00022888288 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.9104110 \\ 0.9104110 \\ 0.9104110 \\ 0.9104128 \\ \hline y \\ 0.9104110 \\ 0.9104128 \\ \hline y \\ 0.9104128 \\ \hline y \\ 0.9104128 \\ \hline y \\ 0.9104110 \\ 0.9104128 \\ \hline y \\ y \\$ |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{r} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.003017535 \\ 0.003006600 \\ 0.003006256 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \hline 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.07126436 \\ 0.07416998 \\ 0.07406084 \\ 0.07407443 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.0002288828 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.9103214 \\ 0.9104110 \\ 0.9100436 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR4<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.003017535 \\ 0.003006600 \\ 0.003006256 \\ \hline \varphi \\ \end{array}$                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \hline 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.07126436 \\ 0.07416998 \\ 0.07406084 \\ 0.07407443 \\ \hline x \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.0002288828 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.9103214 \\ 0.9104110 \\ 0.9100436 \\ \hline y \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} \varphi \\ \hline -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ \hline 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ \hline -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ \hline 0.002659272 \\ 0.003017535 \\ 0.003006600 \\ 0.003006256 \\ \hline \varphi \\ \hline -2.128141 \cdot 10^{-7} \\ \end{array}$                                                                                                                                                                                                                                                              | $\begin{array}{r} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \hline 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.07126436 \\ 0.07416998 \\ 0.07406084 \\ 0.07406084 \\ 0.07407443 \\ \hline x \\ 0.003520221 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121945 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.0002288828 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.9104110 \\ 0.9100436 \\ \hline y \\ 0.8342278 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>M3<br>M4<br>Barragy&Carey<br>M3<br>M4<br>Barragy&Carey<br>M3<br>M4<br>Barragy&Carey<br>M3<br>M4<br>Barragy&Carey<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M4<br>Barragy<br>M3<br>M3<br>M4<br>Barragy<br>M3<br>M3<br>M4<br>Barragy<br>M3<br>M3<br>M4<br>Barragy<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3<br>M3 | $\begin{array}{r} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.003017535 \\ 0.003006600 \\ 0.003006256 \\ \hline \varphi \\ -2.128141 \cdot 10^{-7} \\ -1.809690 \cdot 10^{-6} \\ \end{array}$                                                                                                                                                                                                                                                                      | $\begin{array}{r} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ \hline 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.07126436 \\ 0.07416998 \\ 0.07406084 \\ 0.0740084 \\ 0.07407443 \\ \hline x \\ \hline 0.003520221 \\ 0.007213993 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121945 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.00022888288 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.9104110 \\ 0.9100436 \\ \hline y \\ 0.8342278 \\ 0.8302868 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BR2<br>M2<br>M3<br>M4<br>Barragy&Carey<br>BR3<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL1<br>M2<br>M3<br>M4<br>Barragy&Carey<br>TL2<br>M2<br>M3<br>M4<br>Barragy&Carey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{r} \varphi \\ -0.0004778892 \\ -0.0002608272 \\ -0.0002559075 \\ -0.0002558322 \\ \hline \varphi \\ 1.304507 \cdot 10^{-9} \\ 7.941352 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.759087 \cdot 10^{-9} \\ 7.750350 \cdot 10^{-9} \\ \hline \varphi \\ -3.596902 \cdot 10^{-14} \\ -2.189624 \cdot 10^{-13} \\ -2.139370 \cdot 10^{-13} \\ -2.077842 \cdot 10^{-13} \\ \hline \varphi \\ 0.002659272 \\ 0.003017535 \\ 0.003006600 \\ 0.003006256 \\ \hline \varphi \\ -2.128141 \cdot 10^{-7} \\ -1.809690 \cdot 10^{-6} \\ -1.716189 \cdot 10^{-6} \\ \end{array}$                                                                                                                                                                                                                                           | $\begin{array}{r} x \\ 0.9458347 \\ 0.9272493 \\ 0.9273684 \\ 0.9273684 \\ 0.9275135 \\ \hline x \\ \hline 0.9969275 \\ 0.9951967 \\ 0.9952262 \\ 0.9952875 \\ \hline x \\ 0.9998145 \\ 0.9997093 \\ 0.9997093 \\ 0.9997093 \\ 0.9997111 \\ 0.9996764 \\ \hline x \\ \hline 0.007126436 \\ 0.07416998 \\ 0.07406084 \\ 0.07407443 \\ \hline x \\ \hline 0.003520221 \\ 0.007213993 \\ 0.007084863 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} y \\ 0.04838712 \\ 0.08172105 \\ 0.08172105 \\ 0.081121944 \\ \hline y \\ 0.003073027 \\ 0.004828739 \\ 0.004798437 \\ 0.004899706 \\ \hline y \\ 0.0001854712 \\ 0.0002906878 \\ 0.0002906878 \\ 0.0002288828 \\ 0.0002587290 \\ \hline y \\ 0.9117728 \\ 0.9103214 \\ 0.9103214 \\ 0.9104110 \\ 0.9100436 \\ \hline y \\ 0.8342278 \\ 0.8302868 \\ 0.8305045 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Copyright  ${\tt O}$  by SIAM. Unauthorized reproduction of this article is prohibited.

TABLE 4.5 Estimated relative error of finding eddies' intensity for Re = 2500.

|               | BL1         | BL2         | BL3         | BL4         |
|---------------|-------------|-------------|-------------|-------------|
| present, M1   | 0.077583    | 0.088858    | 0.088846    | 0.088846    |
| present, M2   | 0.00086856  | 0.0010060   | 0.0010069   | 0.0010069   |
| present, M3   | 0.000031924 | 0.000036335 | 0.000036188 | 0.000036189 |
| Barragy&Carey | 0.00010006  | 0.00060359  | 0.020030    | -           |

TABLE 4.6 Computed constant C at the bottom-left and the bottom-right corner for Re = 2500.

|    | C at the bottom-left corner | C at the bottom-right corner |
|----|-----------------------------|------------------------------|
| M1 | -1.797421 - 1.623831i       | -2.159776 - 1.1121433i       |
| M2 | -2.002861 - 1.830731i       | -2.286023 - 0.6074848i       |
| M3 | -2.004432 - 1.834939i       | -2.281396 - 0.6023984i       |
| M4 | -2.004452 - 1.834918i       | -2.281486 - 0.6025412i       |

TABLE 4.7Primary eddy and top left eddies.

| Re = 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PE                                                                                                                                                                      | TL1                                                                                                                                                                                                                                                                              | TL2                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1189366                                                                                                                                                              | -                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                         |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5307901                                                                                                                                                               | -                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                         |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5652406                                                                                                                                                               | _                                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                                                                         |
| Re = 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PE                                                                                                                                                                      | TL1                                                                                                                                                                                                                                                                              | TL2                                                                                                                                                                                                                                                       |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1214690                                                                                                                                                              | 0.0003434479                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                         |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5197769                                                                                                                                                               | 0.04300225                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                         |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5439244                                                                                                                                                               | 0.8893601                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                         |
| Re = 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PE                                                                                                                                                                      | TL1                                                                                                                                                                                                                                                                              | TL2                                                                                                                                                                                                                                                       |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1222259                                                                                                                                                              | 0.001447836                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                         |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5150937                                                                                                                                                               | 0.06335428                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                         |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5352620                                                                                                                                                               | 0.9092566                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                         |
| Re = 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PE                                                                                                                                                                      | TL1                                                                                                                                                                                                                                                                              | TL2                                                                                                                                                                                                                                                       |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.1223867                                                                                                                                                              | 0.002134683                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                         |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5130967                                                                                                                                                               | 0.06665739                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                         |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5318922                                                                                                                                                               | 0.9114901                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                           |
| Re = 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PE                                                                                                                                                                      | TL1                                                                                                                                                                                                                                                                              | TL2                                                                                                                                                                                                                                                       |
| $\frac{\text{Re} = 10000}{\varphi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PE<br>-0.1223999                                                                                                                                                        | TL1<br>0.002630798                                                                                                                                                                                                                                                               | TL2                                                                                                                                                                                                                                                       |
| $\begin{array}{c} \text{Re} = 10000 \\ \varphi \\ x \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PE<br>-0.1223999<br>0.5119015                                                                                                                                           | TL1<br>0.002630798<br>0.07047748                                                                                                                                                                                                                                                 | TL2<br>                                                                                                                                                                                                                                                   |
| $\begin{array}{c} \text{Re} = 10000 \\ \varphi \\ x \\ y \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PE<br>-0.1223999<br>0.5119015<br>0.5300262                                                                                                                              | TL1<br>0.002630798<br>0.07047748<br>0.9105943                                                                                                                                                                                                                                    | TL2<br>-<br>-<br>-                                                                                                                                                                                                                                        |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 12500 \end{array}$                                                                                                                                                                                                                                                                                                                                                                               | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE                                                                                                                        | TL1<br>0.002630798<br>0.07047748<br>0.9105943<br>TL1                                                                                                                                                                                                                             | TL2<br><br><br>TL2                                                                                                                                                                                                                                        |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ \operatorname{Re} = 12500 \\ \varphi \end{array}$                                                                                                                                                                                                                                                                                                                                                         | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661                                                                                                          | TL1<br>0.002630798<br>0.07047748<br>0.9105943<br>TL1<br>0.003006600                                                                                                                                                                                                              | $\begin{array}{c} \text{TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                            |
| $\begin{tabular}{c} $\mathbf{Re} = 10000$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 12500$ \\ $\varphi$ \\ $x$ \\ \hline $x$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                         | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722                                                                                             | TL1<br>0.002630798<br>0.07047748<br>0.9105943<br>TL1<br>0.003006600<br>0.07406084                                                                                                                                                                                                | $\begin{array}{r} \text{TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                            |
| $\begin{tabular}{c} $\mathbf{Re} = 10000$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 12500$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $y$ \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                         | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052                                                                                | $\begin{array}{r} {\rm TL1} \\ 0.002630798 \\ 0.07047748 \\ 0.9105943 \\ \hline {\rm TL1} \\ 0.003006600 \\ 0.07406084 \\ 0.9104110 \\ \end{array}$                                                                                                                              | $\begin{array}{c} \text{TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                            |
| $\begin{tabular}{c} $\mathbf{Re} = 10000$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 12500$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 20000$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE                                                                          | TL1<br>0.002630798<br>0.07047748<br>0.9105943<br>TL1<br>0.003006600<br>0.07406084<br>0.9104110<br>TL1                                                                                                                                                                            | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                             |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ r \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 20000 \\ \varphi \\ \end{array}$                                                                                                                                                                                                                    | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE<br>-0.1222021                                                            | TL1<br>0.002630798<br>0.07047748<br>0.9105943<br>TL1<br>0.003006600<br>0.07406084<br>0.9104110<br>TL1<br>0.003758370                                                                                                                                                             | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                             |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 12500 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 20000 \\ & \varphi \\ & x \\ \end{array}$                                                                                                                                                                                                                                                                                                           | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE<br>-0.1222021<br>0.5095672                                               | $\begin{array}{r} {\rm TL1} \\ 0.002630798 \\ 0.07047748 \\ 0.9105943 \\ \hline {\rm TL1} \\ 0.003006600 \\ 0.07406084 \\ 0.9104110 \\ \hline {\rm TL1} \\ \hline 0.003758370 \\ 0.08031964 \\ \end{array}$                                                                      | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                             |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 12500 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 20000 \\ & \varphi \\ & x \\ & y \\ \end{array}$                                                                                                                                                                                                                                                                                                    | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE<br>-0.1222021<br>0.5095672<br>0.5267332                                  | $\begin{array}{r} {\rm TL1} \\ 0.002630798 \\ 0.07047748 \\ 0.9105943 \\ \hline {\rm TL1} \\ 0.003006600 \\ 0.07406084 \\ 0.9104110 \\ \hline {\rm TL1} \\ \hline 0.003758370 \\ 0.08031964 \\ 0.9116668 \\ \hline \end{array}$                                                  | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ \end{array} \\ \hline {\rm TL2} \\ -1.716189 \cdot 10^{-6} \\ 0.007084863 \\ 0.8305045 \\ \hline {\rm TL2} \\ \hline {\rm TL2} \\ - 0.00007281184 \\ 0.02460025 \\ 0.8193362 \\ \end{array}$ |
| $\begin{tabular}{c} $\mathbf{Re} = 10000$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 12500$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 20000$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re} = 25000$ \\ \hline $\mathbf{Re} = 25000$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                     | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE<br>-0.1222021<br>0.5095672<br>0.5267332<br>PE                            | TL1<br>0.002630798<br>0.07047748<br>0.9105943<br>TL1<br>0.003006600<br>0.07406084<br>0.9104110<br>TL1<br>0.003758370<br>0.08031964<br>0.9116668<br>TL1                                                                                                                           | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                             |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ z \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 20000 \\ \varphi \\ \varphi \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ \varphi \\ \end{array}$ | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE<br>-0.1222021<br>0.5095672<br>0.5267332<br>PE<br>-0.1220905              | $\begin{array}{r} {\rm TL1} \\ 0.002630798 \\ 0.07047748 \\ 0.9105943 \\ \hline {\rm TL1} \\ 0.003006600 \\ 0.07406084 \\ 0.9104110 \\ \hline {\rm TL1} \\ \hline 0.003758370 \\ 0.08031964 \\ 0.9116668 \\ \hline {\rm TL1} \\ \hline 0.004104536 \\ \hline \end{array}$        | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                             |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 12500 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 20000 \\ & \varphi \\ & x \\ & y \\ \hline \operatorname{Re} = 25000 \\ & \varphi \\ & x \\ \hline \end{array}$                                                                                                                                                                                                                                     | PE<br>-0.1223999<br>0.5119015<br>0.5300262<br>PE<br>-0.1223661<br>0.5110722<br>0.5288052<br>PE<br>-0.1222021<br>0.5095672<br>0.5267332<br>PE<br>-0.1220905<br>0.5089511 | $\begin{array}{r} {\rm TL1} \\ 0.002630798 \\ 0.07047748 \\ 0.9105943 \\ \hline {\rm TL1} \\ 0.003006600 \\ 0.07406084 \\ 0.9104110 \\ \hline {\rm TL1} \\ 0.003758370 \\ 0.08031964 \\ 0.9116668 \\ \hline {\rm TL1} \\ \hline 0.004104536 \\ 0.08268173 \\ \hline \end{array}$ | $\begin{array}{c} {\rm TL2} \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $                                                                                                                                                                             |

1893

| Re = 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BL1                                                                                                                                                                                                                                                              | BL2                                                                                                                                                                                                                                                                                                        | BL3                                                                                                                                                                                                                                                                                                                             | BL4                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0002334529                                                                                                                                                                                                                                                     | $-6.398554 \cdot 10^{-9}$                                                                                                                                                                                                                                                                                  | $1.764264 \cdot 10^{-13}$                                                                                                                                                                                                                                                                                                       | $-4.864580 \cdot 10^{-18}$                                                                                                                                                                                                                                                                                                                                                 |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08327318                                                                                                                                                                                                                                                       | 0.004842696                                                                                                                                                                                                                                                                                                | 0.0002923789                                                                                                                                                                                                                                                                                                                    | 0.00001764782                                                                                                                                                                                                                                                                                                                                                              |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07809572                                                                                                                                                                                                                                                       | 0.004845241                                                                                                                                                                                                                                                                                                | 0.0002923791                                                                                                                                                                                                                                                                                                                    | 0.00001764782                                                                                                                                                                                                                                                                                                                                                              |
| Re = 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BL1                                                                                                                                                                                                                                                              | BL2                                                                                                                                                                                                                                                                                                        | BL3                                                                                                                                                                                                                                                                                                                             | BL4                                                                                                                                                                                                                                                                                                                                                                        |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0009311474                                                                                                                                                                                                                                                     | $-2.811158\cdot 10^{-8}$                                                                                                                                                                                                                                                                                   | $7.751069 \cdot 10^{-13}$                                                                                                                                                                                                                                                                                                       | $-2.137191 \cdot 10^{-17}$                                                                                                                                                                                                                                                                                                                                                 |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08424181                                                                                                                                                                                                                                                       | 0.006129716                                                                                                                                                                                                                                                                                                | 0.0003708612                                                                                                                                                                                                                                                                                                                    | 0.00002238491                                                                                                                                                                                                                                                                                                                                                              |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1110061                                                                                                                                                                                                                                                        | 0.006158831                                                                                                                                                                                                                                                                                                | 0.0003708595                                                                                                                                                                                                                                                                                                                    | 0.00002238491                                                                                                                                                                                                                                                                                                                                                              |
| Re = 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BL1                                                                                                                                                                                                                                                              | BL2                                                                                                                                                                                                                                                                                                        | BL3                                                                                                                                                                                                                                                                                                                             | BL4                                                                                                                                                                                                                                                                                                                                                                        |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001376674                                                                                                                                                                                                                                                      | $-6.667657 \cdot 10^{-8}$                                                                                                                                                                                                                                                                                  | $1.838104 \cdot 10^{-12}$                                                                                                                                                                                                                                                                                                       | $-5.068178 \cdot 10^{-17}$                                                                                                                                                                                                                                                                                                                                                 |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07285071                                                                                                                                                                                                                                                       | 0.007849997                                                                                                                                                                                                                                                                                                | 0.0004781458                                                                                                                                                                                                                                                                                                                    | 0.00002886038                                                                                                                                                                                                                                                                                                                                                              |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1370629                                                                                                                                                                                                                                                        | 0.007996012                                                                                                                                                                                                                                                                                                | 0.0004781386                                                                                                                                                                                                                                                                                                                    | 0.00002886038                                                                                                                                                                                                                                                                                                                                                              |
| Re = 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BL1                                                                                                                                                                                                                                                              | BL2                                                                                                                                                                                                                                                                                                        | BL3                                                                                                                                                                                                                                                                                                                             | BL4                                                                                                                                                                                                                                                                                                                                                                        |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001536609                                                                                                                                                                                                                                                      | $-2.044008 \cdot 10^{-7}$                                                                                                                                                                                                                                                                                  | $5.623333 \cdot 10^{-12}$                                                                                                                                                                                                                                                                                                       | $-1.550514 \cdot 10^{-16}$                                                                                                                                                                                                                                                                                                                                                 |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06425712                                                                                                                                                                                                                                                       | 0.01106468                                                                                                                                                                                                                                                                                                 | 0.0006880910                                                                                                                                                                                                                                                                                                                    | 0.00004153326                                                                                                                                                                                                                                                                                                                                                              |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1529439                                                                                                                                                                                                                                                        | 0.01177737                                                                                                                                                                                                                                                                                                 | 0.0006881077                                                                                                                                                                                                                                                                                                                    | 0.00004153326                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                            |
| Re = 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BL1                                                                                                                                                                                                                                                              | BL2                                                                                                                                                                                                                                                                                                        | BL3                                                                                                                                                                                                                                                                                                                             | BL4                                                                                                                                                                                                                                                                                                                                                                        |
| $\frac{\text{Re} = 10000}{\varphi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BL1<br>0.001619610                                                                                                                                                                                                                                               | BL2<br>$-1.133848 \cdot 10^{-6}$                                                                                                                                                                                                                                                                           | BL3<br>$3.077281 \cdot 10^{-11}$                                                                                                                                                                                                                                                                                                | BL4<br>$-8.484942 \cdot 10^{-16}$                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c} \text{Re} = 10000 \\ \varphi \\ x \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BL1<br>0.001619610<br>0.05881864                                                                                                                                                                                                                                 | $\frac{BL2}{-1.133848 \cdot 10^{-6}} \\ 0.01720079$                                                                                                                                                                                                                                                        | $\begin{array}{r} \text{BL3} \\ 3.077281 \cdot 10^{-11} \\ 0.001119863 \end{array}$                                                                                                                                                                                                                                             | $\begin{array}{r} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \end{array}$                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c} \text{Re} = 10000 \\ \varphi \\ x \\ y \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BL1<br>0.001619610<br>0.05881864<br>0.1622506                                                                                                                                                                                                                    | $\begin{array}{c} {\rm BL2} \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \end{array}$                                                                                                                                                                                                            | $\begin{array}{c} \text{BL3} \\ 3.077281 \cdot 10^{-11} \\ 0.001119863 \\ 0.001120185 \end{array}$                                                                                                                                                                                                                              | $\begin{array}{c} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ 0.00006760397 \end{array}$                                                                                                                                                                                                                                                                    |
| $Re = 10000$ $\varphi$ $x$ $y$ $Re = 12500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1                                                                                                                                                                                                             | $\begin{array}{c} \text{BL2} \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \text{BL2} \end{array}$                                                                                                                                                                                             | BL3<br>3.077281 · 10 <sup>-11</sup><br>0.001119863<br>0.001120185<br>BL3                                                                                                                                                                                                                                                        | $\begin{array}{r} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ 0.00006760397 \\ \text{BL4} \end{array}$                                                                                                                                                                                                                                                      |
| $ \begin{array}{c} \mathrm{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array} \\  \begin{array}{c} \mathrm{Re} = 12500 \\ \varphi \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856                                                                                                                                                                                              | $\begin{array}{c} {\rm BL2} \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \\ {\rm BL2} \\ -6.789915 \cdot 10^{-6} \end{array}$                                                                                                                                                                 | $\begin{array}{c} \text{BL3}\\ 3.077281\cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\ \hline\\ \text{BL3}\\ 1.828845\cdot 10^{-10}\\ \end{array}$                                                                                                                                                                                 | $\begin{array}{r} & \text{BL4} \\ & -8.484942 \cdot 10^{-16} \\ & 0.00006760397 \\ & 0.00006760397 \\ & \text{BL4} \\ & -5.042648 \cdot 10^{-15} \end{array}$                                                                                                                                                                                                              |
| $ \begin{array}{c} \mathrm{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array} \\  \begin{array}{c} \mathrm{Re} = 12500 \\ \varphi \\ x \end{array} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998                                                                                                                                                                                | $\begin{array}{r} & \text{BL2} \\ & -1.133848 \cdot 10^{-6} \\ & 0.01720079 \\ & 0.02033695 \\ \hline \\ & \text{BL2} \\ & -6.789915 \cdot 10^{-6} \\ & 0.02678565 \end{array}$                                                                                                                            | $\begin{array}{c} {\rm BL3}\\ 3.077281\cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\ \hline\\ {\rm BL3}\\ 1.828845\cdot 10^{-10}\\ 0.001769764\\ \end{array}$                                                                                                                                                                     | $\begin{array}{r} & \text{BL4} \\ \hline -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ \hline 0.00006760397 \\ \hline \text{BL4} \\ \hline -5.042648 \cdot 10^{-15} \\ 0.0001068540 \end{array}$                                                                                                                                                                            |
| $ \begin{array}{c} \mathrm{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array} \\  \begin{array}{c} \mathrm{Re} = 12500 \\ \varphi \\ x \\ y \\ \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260                                                                                                                                                                   | $\begin{array}{r} & BL2 \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \hline \\ BL2 \\ -6.789915 \cdot 10^{-6} \\ 0.02678565 \\ 0.03269075 \\ \end{array}$                                                                                                                                     | $\begin{array}{c} {\rm BL3}\\ 3.077281\cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\\\\hline {\rm BL3}\\ 1.828845\cdot 10^{-10}\\ 0.001769764\\ 0.001770830\\\\\hline \end{array}$                                                                                                                                                | $\begin{array}{r} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ \hline 0.00006760397 \\ \hline \text{BL4} \\ -5.042648 \cdot 10^{-15} \\ 0.0001068540 \\ \hline 0.0001068540 \\ \hline \end{array}$                                                                                                                                                           |
| $\begin{tabular}{c} $\mathbf{Re}=10000$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re}=12500$ \\ $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathbf{Re}=20000$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260<br>BL1                                                                                                                                                            | $\begin{array}{r} & \text{BL2} \\ & -1.133848 \cdot 10^{-6} \\ & 0.01720079 \\ & 0.02033695 \\ \hline \\ & \text{BL2} \\ & -6.789915 \cdot 10^{-6} \\ & 0.02678565 \\ & 0.03269075 \\ \hline \\ & \text{BL2} \end{array}$                                                                                  | $\begin{array}{c} {\rm BL3}\\ 3.077281\cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\ \hline\\ {\rm BL3}\\ 1.828845\cdot 10^{-10}\\ 0.001769764\\ 0.001770830\\ \hline\\ {\rm BL3}\\ \end{array}$                                                                                                                                  | $\begin{array}{r} & \text{BL4} \\ & -8.484942 \cdot 10^{-16} \\ & 0.00006760397 \\ & 0.00006760397 \\ \hline & \text{BL4} \\ & -5.042648 \cdot 10^{-15} \\ & 0.0001068540 \\ & 0.0001068540 \\ \hline & \text{BL4} \end{array}$                                                                                                                                            |
| $ \begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ Re = 12500 \\ \varphi \\ x \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ Re = 20000 \\ \varphi \\ \end{array} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260<br>BL1<br>0.001640946                                                                                                                                             | $\begin{array}{r} & BL2 \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \hline \\ BL2 \\ -6.789915 \cdot 10^{-6} \\ 0.02678565 \\ 0.03269075 \\ \hline \\ BL2 \\ -0.00008582766 \\ \end{array}$                                                                                                  | $\begin{array}{r} & BL3 \\ \hline 3.077281 \cdot 10^{-11} \\ 0.001119863 \\ \hline 0.001120185 \\ \hline \\ BL3 \\ \hline 1.828845 \cdot 10^{-10} \\ 0.001769764 \\ \hline 0.001770830 \\ \hline \\ BL3 \\ 2.444284 \cdot 10^{-9} \end{array}$                                                                                  | $\begin{array}{r} & \text{BL4} \\ & -8.484942 \cdot 10^{-16} \\ & 0.00006760397 \\ & 0.00006760397 \\ \hline \\ & \text{BL4} \\ & -5.042648 \cdot 10^{-15} \\ & 0.0001068540 \\ & 0.0001068540 \\ \hline \\ & \text{BL4} \\ & -6.739573 \cdot 10^{-14} \end{array}$                                                                                                        |
| $\begin{aligned} & \operatorname{Re} = 10000 \\ & \varphi \\ & x \\ & y \\ & \\ & \operatorname{Re} = 12500 \\ & \varphi \\ & x \\ & y \\ & \\ & \\ & \operatorname{Re} = 20000 \\ & \varphi \\ & x \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260<br>BL1<br>0.001640946<br>0.04796285                                                                                                                               | $\begin{array}{r} & \text{BL2} \\ & -1.133848 \cdot 10^{-6} \\ & 0.01720079 \\ & 0.02033695 \\ \hline \\ & \text{BL2} \\ & -6.789915 \cdot 10^{-6} \\ & 0.02678565 \\ & 0.03269075 \\ \hline \\ & \text{BL2} \\ & -0.00008582766 \\ & 0.05946492 \\ \end{array}$                                           | $\begin{array}{r} & BL3 \\ \hline 3.077281 \cdot 10^{-11} \\ 0.001119863 \\ \hline 0.001120185 \\ \hline BL3 \\ \hline 1.828845 \cdot 10^{-10} \\ 0.001769764 \\ \hline 0.001770830 \\ \hline BL3 \\ \hline 2.444284 \cdot 10^{-9} \\ \hline 0.003474268 \\ \hline \end{array}$                                                 | $\begin{array}{r} & \text{BL4} \\ \hline -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ \hline 0.00006760397 \\ \hline & \text{BL4} \\ \hline -5.042648 \cdot 10^{-15} \\ 0.0001068540 \\ \hline & \text{0.0001068540} \\ \hline & \text{BL4} \\ \hline -6.739573 \cdot 10^{-14} \\ 0.0002094783 \\ \hline \end{array}$                                                      |
| $ \begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \operatorname{Re} = 12500 \\ \varphi \\ x \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ z \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ z \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ r \\ z \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\ r \\ z \\ y \\ \end{array} \\ \begin{array}{c} \varphi \\ r \\$ | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260<br>BL1<br>0.001640946<br>0.04796285<br>0.1831827                                                                                                                  | $\begin{array}{r} & BL2 \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \hline \\ BL2 \\ -6.789915 \cdot 10^{-6} \\ 0.02678565 \\ 0.03269075 \\ \hline \\ BL2 \\ -0.00008582766 \\ 0.05946492 \\ 0.05454304 \\ \end{array}$                                                                      | $\begin{array}{r} & BL3 \\ \hline 3.077281 \cdot 10^{-11} \\ 0.001119863 \\ \hline 0.001120185 \\ \hline \\ BL3 \\ \hline 1.828845 \cdot 10^{-10} \\ 0.001769764 \\ \hline 0.001770830 \\ \hline \\ BL3 \\ \hline \\ 2.444284 \cdot 10^{-9} \\ \hline \\ 0.003474268 \\ \hline \\ 0.003466804 \\ \hline \end{array}$            | $\begin{array}{r} & \text{BL4} \\ & -8.484942 \cdot 10^{-16} \\ & 0.00006760397 \\ & 0.00006760397 \\ \hline & \text{BL4} \\ & -5.042648 \cdot 10^{-15} \\ & 0.0001068540 \\ & 0.0001068540 \\ \hline & \text{BL4} \\ & -6.739573 \cdot 10^{-14} \\ & 0.0002094783 \\ & 0.0002094795 \\ \hline \end{array}$                                                                |
| $\begin{tabular}{ c c c c } \hline $\mathrm{Re}=10000$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=12500$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=20000$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=25000$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260<br>BL1<br>0.001640946<br>0.04796285<br>0.1831827<br>BL1                                                                                                           | $\begin{array}{r} & \text{BL2} \\ & -1.133848 \cdot 10^{-6} \\ & 0.01720079 \\ & 0.02033695 \\ \hline \\ & \text{BL2} \\ & -6.789915 \cdot 10^{-6} \\ & 0.02678565 \\ & 0.03269075 \\ \hline \\ & \text{BL2} \\ & -0.00008582766 \\ & 0.05946492 \\ & 0.05454304 \\ \hline \\ & \text{BL2} \\ \end{array}$ | $\begin{array}{c} {\rm BL3}\\ 3.077281 \cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\ \hline\\ {\rm BL3}\\ 1.828845 \cdot 10^{-10}\\ 0.001769764\\ 0.001770830\\ \hline\\ {\rm BL3}\\ 2.444284 \cdot 10^{-9}\\ 0.003474268\\ 0.003466804\\ \hline\\ {\rm BL3}\\ \end{array}$                                                      | $\begin{array}{r} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ 0.00006760397 \\ \hline \\ \text{BL4} \\ -5.042648 \cdot 10^{-15} \\ 0.0001068540 \\ \hline \\ 0.0001068540 \\ \hline \\ \text{BL4} \\ -6.739573 \cdot 10^{-14} \\ 0.0002094783 \\ 0.0002094795 \\ \hline \\ \hline \\ \text{BL4} \\ \end{array}$                                             |
| $\begin{tabular}{ c c c c } \hline Re &= 10000 \\ \hline \varphi \\ x \\ y \\ \hline Re &= 12500 \\ \hline \varphi \\ x \\ y \\ \hline Re &= 20000 \\ \hline \varphi \\ x \\ y \\ \hline Re &= 25000 \\ \hline \varphi \\ \hline \varphi \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BL1           0.001619610           0.05881864           0.1622506           BL1           0.001667856           0.05552998           0.1675260           BL1           0.001640946           0.04796285           0.1831827           BL1           0.001579721 | $\begin{array}{r} & BL2 \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \hline \\ BL2 \\ -6.789915 \cdot 10^{-6} \\ 0.02678565 \\ 0.03269075 \\ \hline \\ BL2 \\ -0.00008582766 \\ 0.05946492 \\ 0.05454304 \\ \hline \\ BL2 \\ -0.0001442676 \\ \hline \end{array}$                             | $\begin{array}{c} {\rm BL3}\\ 3.077281 \cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\ \hline\\ {\rm BL3}\\ 1.828845 \cdot 10^{-10}\\ 0.001769764\\ 0.001770830\\ \hline\\ {\rm BL3}\\ 2.444284 \cdot 10^{-9}\\ 0.003474268\\ 0.003474268\\ 0.003466804\\ \hline\\ {\rm BL3}\\ 4.490552 \cdot 10^{-9}\\ \end{array}$               | $\begin{array}{r} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ 0.00006760397 \\ \hline \\ \text{BL4} \\ -5.042648 \cdot 10^{-15} \\ 0.0001068540 \\ \hline \\ 0.0001068540 \\ \hline \\ \text{BL4} \\ -6.739573 \cdot 10^{-14} \\ 0.0002094783 \\ 0.0002094783 \\ \hline \\ 0.0002094795 \\ \hline \\ \text{BL4} \\ -1.238149 \cdot 10^{-13} \\ \end{array}$ |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ r \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 12500 \\ \varphi \\ r \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 20000 \\ \varphi \\ r \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 25000 \\ \varphi \\ r \\ x \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BL1<br>0.001619610<br>0.05881864<br>0.1622506<br>BL1<br>0.001667856<br>0.05552998<br>0.1675260<br>BL1<br>0.001640946<br>0.04796285<br>0.1831827<br>BL1<br>0.001579721<br>0.04370035                                                                              | $\begin{array}{r} & BL2 \\ -1.133848 \cdot 10^{-6} \\ 0.01720079 \\ 0.02033695 \\ \hline \\ BL2 \\ -6.789915 \cdot 10^{-6} \\ 0.02678565 \\ 0.03269075 \\ \hline \\ BL2 \\ -0.00008582766 \\ 0.05946492 \\ 0.05454304 \\ \hline \\ BL2 \\ -0.0001442676 \\ 0.06897488 \\ \hline \end{array}$               | $\begin{array}{c} {\rm BL3}\\ 3.077281 \cdot 10^{-11}\\ 0.001119863\\ 0.001120185\\ \hline\\ {\rm BL3}\\ 1.828845 \cdot 10^{-10}\\ 0.001769764\\ 0.001770830\\ \hline\\ {\rm BL3}\\ 2.444284 \cdot 10^{-9}\\ 0.003474268\\ 0.003474268\\ 0.003466804\\ \hline\\ {\rm BL3}\\ 4.490552 \cdot 10^{-9}\\ 0.004061093\\ \end{array}$ | $\begin{array}{r} \text{BL4} \\ -8.484942 \cdot 10^{-16} \\ 0.00006760397 \\ 0.00006760397 \\ \hline \\ \text{BL4} \\ -5.042648 \cdot 10^{-15} \\ 0.0001068540 \\ \hline \\ 0.0001068540 \\ \hline \\ \text{BL4} \\ -6.739573 \cdot 10^{-14} \\ 0.0002094783 \\ 0.0002094795 \\ \hline \\ \text{BL4} \\ -1.238149 \cdot 10^{-13} \\ 0.0002443891 \\ \hline \end{array}$    |

TABLE 4.8First four secondary bottom-left eddies.

the first time in the present work. The results of the computations on the finest mesh (4th refinement) are presented in Tables 4.7–4.10. Table 4.7 presents the results for the primary eddy (PE) and the top-left eddies (TL1 and TL2). Intensity and position of the first four secondary bottom-left eddies (BL1, BL2, BL3, and BL4) and the first four secondary bottom-right eddies (BL1, BR2, BR3, and BR4) are given in Tables 4.8 and 4.9, respectively. Table 4.10 presents the subsequent secondary bottom-left and bottom-right eddies (BLk, BRk for  $k = 5, 6, 7, \ldots$ ). As was mentioned earlier, the solution for Re = 20000 and Re = 25000 might not be stable; the results for Re = 20000 and Re = 25000 are presented to demonstrate the capability of the present method to compute infinite series of eddies for high Reynolds numbers.

The secondary eddies starting from the fifth one (Table 4.10) are computed for the first time in the present work. The relative difference between computations of these eddies on the meshes M3 and M4 was found to be relatively small (from  $10^{-7}$ for Re = 1000, to 0.02 for Re = 12500, to 0.2 for Re = 25000). This suggests that the present results are very accurate for small and moderate Reynolds numbers, relatively accurate for high Reynolds numbers, and have the correct order of magnitude for very high Reynolds numbers.

## ALEXANDER V. SHAPEEV AND PING LIN

| Re = 1000  | BR1                      | BR2                        | BR3                                                                | BR4                                     |
|------------|--------------------------|----------------------------|--------------------------------------------------------------------|-----------------------------------------|
| $\varphi$  | 0.001729717              | $-5.039380 \cdot 10^{-8}$  | $1.389493 \cdot 10^{-12}$                                          | $-3.831230 \cdot 10^{-17}$              |
| x          | 0.8640401                | 0.9923249                  | 0.9995375                                                          | 0.9999721                               |
| y          | 0.1118062                | 0.007650979                | 0.0004625364                                                       | 0.00002791836                           |
| Re = 2500  | BR1                      | BR2                        | BR3                                                                | BR4                                     |
| $\varphi$  | 0.002662432              | $-1.226678 \cdot 10^{-7}$  | $3.381770 \cdot 10^{-12}$                                          | $-9.324506 \cdot 10^{-17}$              |
| x          | 0.8344014                | 0.9904594                  | 0.9994289                                                          | 0.9999655                               |
| y          | 0.09075692               | 0.009384439                | 0.0005710737                                                       | 0.00003446937                           |
| Re = 5000  | BR1                      | BR2                        | BR3                                                                | BR4                                     |
| $\varphi$  | 0.003073769              | $-1.428840 \cdot 10^{-6}$  | $3.895301 \cdot 10^{-11}$                                          | $-1.074046 \cdot 10^{-15}$              |
| x          | 0.8046254                | 0.9783735                  | 0.9987908                                                          | 0.9999270                               |
| y          | 0.07274733               | 0.01877724                 | 0.001208945                                                        | 0.00007297819                           |
| Re = 7500  | BR1                      | BR2                        | BR3                                                                | BR4                                     |
| $\varphi$  | 0.003227365              | -0.00003281339             | $8.935022 \cdot 10^{-10}$                                          | $-2.463641 \cdot 10^{-14}$              |
| x          | 0.7903051                | 0.9515559                  | 0.9972834                                                          | 0.9998361                               |
| y          | 0.06516917               | 0.04215257                 | 0.002715411                                                        | 0.0001639360                            |
| Re = 10000 | BR1                      | BR2                        | BR3                                                                | BR4                                     |
| $\varphi$  | 0.003191794              | -0.0001405298              | $3.958172 \cdot 10^{-9}$                                           | $-1.091380 \cdot 10^{-13}$              |
| x          | 0.7750779                | 0.9351074                  | 0.9959780                                                          | 0.9997570                               |
| y          | 0.05927927               | 0.06783312                 | 0.004028554                                                        | 0.0002429611                            |
| Re = 12500 | BR1                      | BR2                        | BR3                                                                | BR4                                     |
| $\varphi$  | 0.003100299              | -0.0002559075              | $7.759087 \cdot 10^{-9}$                                           | $-2.139370 \cdot 10^{-13}$              |
| x          | 0.7598890                | 0.9273684                  | 0.9952262                                                          | 0.9997111                               |
| y          | 0.05417034               | 0.08114478                 | 0.004798437                                                        | 0.0002888828                            |
| Re = 20000 | BR1                      | BR2                        | BR3                                                                | BR4                                     |
| $\varphi$  | 0.002804680              | -0.0004631796              | $2.751310 \cdot 10^{-8}$                                           | $-7.583167 \cdot 10^{-13}$              |
| x          | 0.7229077                | 0.9304323                  | 0.9931888                                                          | 0.9995836                               |
| y          | 0.04314560               | 0.1049409                  | 0.006989903                                                        | 0.0004163614                            |
| Re = 25000 | BR1                      | BR2                        | BR3                                                                | BR4                                     |
|            |                          |                            | 0                                                                  | 10                                      |
| $\varphi$  | 0.002626643              | -0.0005697908              | $9.317143 \cdot 10^{-8}$                                           | $-2.560741 \cdot 10^{-12}$              |
| arphi x    | 0.002626643<br>0.7039900 | -0.0005697908<br>0.9326059 | $\begin{array}{c} 9.317143 \cdot 10^{-8} \\ 0.9904202 \end{array}$ | $-2.560741 \cdot 10^{-12} \\ 0.9994010$ |

TABLE 4.9First four secondary bottom-right eddies.

4.2. Corner subdomain shrinking factor. In order to find an optimal shrinking factor of the corner subdomain, computation of the corner eddies for the lid-driven cavity problem with shrinking factors of  $2^{3/2} \approx 2.8$ ,  $2^2 = 4$ , and  $2^{5/2} \approx 5.7$  was done. Figure 4.3 shows the relative error of computation of the fourth left corner eddy (BL4) plotted against the number of degrees of freedom (DOF). Computations were done on the meshes M0, M1, M2, and M3. As earlier, the error was approximately computed as the difference with the solution on the mesh M4. The continuous line on graph 4.3 corresponds to the shrinking factors of  $2^{3/2}$  and  $2^{5/2}$ , respectively.

As can be seen from the graph, the error for the shrinking factor of  $2^{3/2}$  is insignificantly less for DOF  $\approx 2000$  and is greater for the solution with more degrees of freedom. The error for the shrinking factor of  $2^{5/2}$  is close to the error for the factor of 4 for the same mesh refinement, which makes the shrinking factor of  $2^{5/2}$ less preferable because of larger degrees of freedom for the same mesh refinement. Thus, the solution for the shrinking factor of 4 generally performs better than for the factors of  $2^{3/2}$  and  $2^{5/2}$ , since, generally, it has the smaller error for the same number of degrees of freedom. Therefore, we can conclude that the shrinking factor of 4 is close to the optimal value.

|     | TABLE 4.10                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------|
|     | kth secondary bottom-left and bottom-right eddy (k = 5, 6, 7,). Here $\Phi_{\lambda} \approx -0.000027572858$ |
| and | $R_{\lambda} \approx 0.060359400.$                                                                            |

| Re = 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(1.341304 \cdot 10^{-22}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(1.056380 \cdot 10^{-21}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1.065212 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1 - (1.685136 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1.065212\cdot 10^{-6})R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(1.685136 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Re = 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(5.892847 \cdot 10^{-22}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(2.571033 \cdot 10^{-21}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1.351140 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1 - (2.080551 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1.351140 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(2.080551\cdot 10^{-6})R_\lambda^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Re = 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| arphi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(1.397442 \cdot 10^{-21}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(2.961451 \cdot 10^{-20}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1.741995 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1-(4.404920\cdot 10^{-6})R_\lambda^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(1.741995 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(4.404920 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Re = 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BLk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(4.275209 \cdot 10^{-21}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(6.792962 \cdot 10^{-19}) \Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(2.506923 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $1 - (9.895086 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(2.506923 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $(9.895086 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Re = 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BLk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BRk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{\text{Re} = 10000}{\varphi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BLk<br>(2.339541 · 10 <sup>-20</sup> ) $\Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BRk<br>(3.009246 · 10 <sup>-18</sup> ) $\Phi_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\begin{array}{c} \text{Re} = 10000 \\ \\ \varphi \\ \\ x \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BLk<br>(2.339541 $\cdot$ 10 <sup>-20</sup> ) $\Phi_{\lambda}^{k-5}$<br>(4.080535 $\cdot$ 10 <sup>-6</sup> ) $R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BRk<br>(3.009246 · 10 <sup>-18</sup> ) $\Phi_{\lambda}^{k-5}$<br>1 - (0.00001466503) $R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $Re = 10000$ $\varphi$ $x$ $y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLk $(2.339541 \cdot 10^{-20}) \Phi_{\lambda}^{k-5}$ $(4.080535 \cdot 10^{-6}) R_{\lambda}^{k-5}$ $(4.080535 \cdot 10^{-6}) R_{\lambda}^{k-5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & (3.009246 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \\ & & 1 - (0.00001466503)  R_{\lambda}^{k-5} \\ & & (0.00001466503)  R_{\lambda}^{k-5} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Re = 10000$ $\varphi$ $x$ $y$ $Re = 12500$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BLk $(2.339541 \cdot 10^{-20}) \Phi_{\lambda}^{k-5}$ $(4.080535 \cdot 10^{-6}) R_{\lambda}^{k-5}$ $(4.080535 \cdot 10^{-6}) R_{\lambda}^{k-5}$ BLk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BRk<br>$(3.009246 \cdot 10^{-18}) \Phi_{\lambda}^{k-5}$ $1 - (0.00001466503) R_{\lambda}^{k-5}$ $(0.00001466503) R_{\lambda}^{k-5}$ BRk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \\ \varphi \\ \\ x \\ y \\ \\ \\ \operatorname{Re} = 12500 \\ \\ \varphi \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \text{BLk} \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ \text{BLk} \\ (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{Rk}{(3.009246 \cdot 10^{-18}) \Phi_{\lambda}^{k-5}} \\ 1 - (0.00001466503) R_{\lambda}^{k-5}} \\ (0.00001466503) R_{\lambda}^{k-5}} \\ \frac{Rk}{(5.898856 \cdot 10^{-18}) \Phi_{\lambda}^{k-5}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} & \varphi \\ & x \\ \end{array}$ $\begin{array}{c} & \varphi \\ & \varphi \\ & x \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} & \text{BLk} \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$                                                                                       |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ \operatorname{Re} = 12500 \\ \varphi \\ x \\ y \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \text{BLk} \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |
| $\begin{tabular}{ c c c c } \hline $\mathrm{Re}=10000$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=12500$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=20000$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \text{BLk} \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ \text{BLk} \\ (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ \text{BLk} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$                                                                                      |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ \operatorname{Re} = 12500 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \operatorname{Re} = 20000 \\ \varphi \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} & \text{BLk} \\ \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \\ \hline \\ & \text{BLk} \\ \\ (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ \hline \\ & \text{BLk} \\ \hline \\ (1.858293 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \end{array}$                                                                                                                                                                                                                                             | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ |
| $\begin{tabular}{ c c c c } \hline $\mathrm{Re} = 10000$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re} = 12500$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re} = 20000$ \\ \hline $\varphi$ \\ $x$ \\ $x$ \\ \hline x$ \hline x$$ | $\begin{array}{c} & \text{BLk} \\ & (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & \hline \\ & \text{BLk} \\ & (1.858293 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \\ & (0.00001264402)  R_{\lambda}^{k-5} \end{array}$                                                                                                                                                                                               | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$                                                                                      |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ r \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ r \\ y \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} & \text{BLk} \\ \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ \\ (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ \hline \\ & \text{BLk} \\ \\ (1.858293 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \\ (0.00001264402)  R_{\lambda}^{k-5} \\ \hline \\ & (0.00001264402)  R_{\lambda}^{k-5} \\ \hline \end{array}$                                                                                                                                     | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$                                                                                      |
| $\begin{tabular}{ c c c c } \hline $\mathrm{Re}=10000$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=12500$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=20000$ \\ \hline $\varphi$ \\ $x$ \\ $y$ \\ \hline $\mathrm{Re}=25000$ \\ \hline $\mathrm{Re}=25000$ \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} & \text{BLk} \\ & (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (0.00001264402)  R_{\lambda}^{k-5} \\ & (0.00001264402)  R_{\lambda}^{k-5} \\ & (0.00001264402)  R_{\lambda}^{k-5} \\ & \text{BLk} \end{array}$                                                                                                                               | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$                                                                                      |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ r \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ r \\ \varphi \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ r \\ \varphi \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ r \\ \varphi \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ r \\ \varphi \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{r} & \text{BLk} \\ & (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ & (1.858293 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \\ & (0.00001264402)  R_{\lambda}^{k-5} \\ & (0.00001264402)  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ \hline \\ & (3.413930 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \end{array}$                                     | $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$                                                                                      |
| $\begin{array}{c} \operatorname{Re} = 10000 \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ \varphi \\ x \\ y \\ \end{array}$ $\begin{array}{c} \varphi \\ r \\ y \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} & \text{BLk} \\ \\ (2.339541 \cdot 10^{-20})  \Phi_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (4.080535 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ \\ (1.390402 \cdot 10^{-19})  \Phi_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ (6.449646 \cdot 10^{-6})  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ \hline \\ & (1.858293 \cdot 10^{-18})  \Phi_{\lambda}^{k-5} \\ (0.00001264402)  R_{\lambda}^{k-5} \\ \hline \\ & \text{BLk} \\ \hline \\ & \text{BLk} \\ \hline \\ & \text{BLk} \\ \hline \\ & \text{(3.413930 \cdot 10^{-18}) }  \Phi_{\lambda}^{k-5} \\ \hline \\ & (0.00001475125)  R_{\lambda}^{k-5} \\ \hline \end{array}$ | $\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$                                                                                       |

**4.3. Backward-facing step problem.** The problem of the flow around a backward-facing step is another benchmark problem used for testing numerical methods. Unlike the lid-driven cavity problem, there are few works that would compute several corner eddies for the backward-facing step problem. Also, because there are more parameters to choose in the backward-facing step problem (i.e., expansion ratio and two channel lengths), different authors perform computations using different



FIG. 4.3. Estimated relative error of computation of BL4 for different shrinking factors.



FIG. 4.4. Schematic structure of the domain and the eddies for the backward-facing step flow.

parameters. This makes comparison between different works for this problem more difficult than for the lid-driven cavity problem. Therefore, instead of comprehensive comparison of computation of series of corner eddies for this problem, we just compute the backward-facing step flow for one choice of parameters and compare our results with one of the works available in the literature (namely, with [23]).

The schematic structure of the domain and the eddies for the backward-facing step flow is shown in Figure 4.4. There is one upper wall eddy (UW) and a series of corner eddies (C1, C2, ..., Ck, ...). The first corner eddy is sometimes referred in the literature as the "lower wall eddy".

We chose the parameters of the problem in accordance with the first computational example of [23]. The domain sizes and Reynolds number in the computed example are chosen as follows: L = 20,  $L_e = 3$ , H = 1, h = 0.5, Re = 1000. The standard parabolic velocity with a maximum value of 1 is prescribed at the inlet (at  $x = -L_e$ ). At the position of the outlet x = L, contrary to the conventional outflow conditions, the velocity is set to be equal to velocity at  $x \to \infty$ . We found that these boundary conditions produce the same results as the other boundary conditions tried in the literature, but are easier to implement. With these boundary conditions, the problem takes the form

$$\begin{cases} \Delta\Delta\varphi + \operatorname{Re}\left(\frac{\partial\Delta\varphi}{\partial x}\frac{\partial\varphi}{\partial y} - \frac{\partial\Delta\varphi}{\partial y}\frac{\partial\varphi}{\partial x}\right) = 0, \\ \varphi|_{\partial\Omega} = \varphi_0, \\ \frac{\partial\varphi}{\partial n}\Big|_{\partial\Omega} = 0, \end{cases}$$



FIG. 4.5. Streamlines of the backward-facing step flow.

where

$$\varphi_0(x,y) = \begin{cases} \frac{2(3H - h - 2y)(y - h)^2}{3(H - h)^2}, & \text{for } x = -L_e, \\ \frac{1}{3}(3 - 2y)y^2, & \text{for } x = L, \\ 0, & \text{for } -L_e < x < L. \end{cases}$$

There were two insignificant differences in choice of parameters between our work and [23]. First, the value of Reynolds number in [23] was 500 due to the different way of defining it. And second, the outlet boundary conditions in [23] were such that the normal derivatives of velocity were zero at the outlet. However, as was stated in [23], with the chosen outlet boundary conditions and the channel length L, their results were "channel-length-independent". For our case, we found out that our results are also independent of the channel length: The relative difference in intensity of eddies between the flows with L = 20 and L = 25 is less than  $10^{-12}$ . Therefore, it is valid to compare these two examples.

The graphs with streamlines of the backward-facing step flow are presented in Figure 4.5. The upper graph has the eddies UW and C1, the lower left graph contains C1 and C2, and the lower right graph shows C2 and C3.

The backward-facing step problem was computed on three different meshes denoted as M1, M2, and M3. The mesh M1 is shown in Figure 4.6, where the bold lines correspond to the boundaries of near-corner subdomains. Near the 90-degree corner the mesh is similar to the near-corner mesh for the lid-driven cavity problem. The mesh at the backward-facing 270-degree corner is constructed by splitting the corner into three 90-degree angles and combining the meshes for those 90-degree angles, as shown in Figure 4.6. The details of the meshes used are presented in Table 4.11, where the table columns are the same as in Table 4.1. Also, some details of the discretization of [23] are presented in Table 4.1.

Intensity ( $\varphi$ ) and position (x, y) of the upper wall eddy UW and the corner eddies C1, C2, C3, and Ck (k = 4, 5, ...) are presented together with the results of [23] in Table 4.12. As can be seen from the table, the absolute difference in intensity



FIG. 4.6. Mesh M1 used for the backward-facing step problem.

| TABLE 4.11 |    |        |       |  |  |  |  |
|------------|----|--------|-------|--|--|--|--|
| Parameters | of | meshes | used. |  |  |  |  |

|                |           |        |         | Corner      | Near-corner                      | Near-corner     |
|----------------|-----------|--------|---------|-------------|----------------------------------|-----------------|
|                |           |        | Reduced | triangle    | radial                           | angular         |
| Mesh           | Triangles | DOF    | DOF     | size $(OG)$ | $\operatorname{subdivisions}(m)$ | subdivisions(n) |
| present (M1)   | 2852      | 14268  | 11786   | 0.0020      | 6                                | 1               |
| present $(M2)$ | 11524     | 54790  | 49720   | 0.00049     | 17                               | 3               |
| present (M3)   | 46596     | 215666 | 205344  | 0.00012     | 43                               | 7               |
| [23]           |           | 23414  | 17564   |             |                                  |                 |

TABLE 4.12Results of computation of the backward-facing corner problem.

| Work (mesh) |                       | UW                                             | C1           | C2                      | C3                         |
|-------------|-----------------------|------------------------------------------------|--------------|-------------------------|----------------------------|
| present     | $\varphi$             | 0.3358312568                                   | -0.022261362 | $5.00806 \cdot 10^{-7}$ | $-1.383685 \cdot 10^{-11}$ |
| (M1)        | x                     | 6.463736747                                    | 2.77208792   | 0.03233880              | 0.001953041                |
|             | y                     | 0.847563780                                    | 0.29352617   | 0.03246756              | 0.001953396                |
| present     | $\varphi$             | 0.3358309224                                   | -0.022261464 | $4.92964 \cdot 10^{-7}$ | $-1.359039 \cdot 10^{-11}$ |
| (M2)        | x                     | 6.463424442                                    | 2.77233160   | 0.03241694              | 0.001950378                |
|             | y                     | 0.847566677                                    | 0.29352462   | 0.03221787              | 0.001950591                |
| present     | $\varphi$             | 0.3358309259                                   | -0.022261475 | $4.92906 \cdot 10^{-7}$ | $-1.359057 \cdot 10^{-11}$ |
| (M3)        | x                     | 6.463423960                                    | 2.77233327   | 0.03241492              | 0.001950368                |
|             | y                     | 0.847566601                                    | 0.29352457   | 0.03221771              | 0.001950582                |
| [23]        | $\varphi$             | 0.3357                                         | 0.02215      |                         |                            |
|             | x                     | 6.47                                           | 2.76         | not resolved            | not resolved               |
|             | y                     | 0.849                                          | 0.278        |                         |                            |
| Work (mesh) |                       | Ck                                             |              |                         |                            |
| present     | $\varphi$             | $(3.8887 \cdot 10^{-16}) \Phi_{\lambda}^{k-4}$ |              |                         |                            |
| (M1)        | $\stackrel{\cdot}{x}$ | $0.000118619 R_{\lambda}^{k-4}$                |              |                         |                            |
|             | y                     | $0.000118619R_{\lambda}^{k-4}$                 |              |                         |                            |
| present     | $\varphi$             | $(3.7459 \cdot 10^{-16}) \Phi_{\lambda}^{k-4}$ |              |                         |                            |
| (M2)        | x                     | $0.000117718 R_{\lambda}^{k-4}$                |              |                         |                            |
|             | y                     | $0.000117718R_{\lambda}^{k-4}$                 |              |                         |                            |
| present     | $\varphi$             | $(3.7473 \cdot 10^{-16}) \Phi_{\lambda}^{k-4}$ |              |                         |                            |
| (M3)        | x                     | $0.000117729 R_{\lambda}^{k-4}$                |              |                         |                            |
|             | y                     | $0.000117729R_{\lambda}^{k-4}$                 |              |                         |                            |
| [23]        | $\varphi$             |                                                |              |                         |                            |
|             | x                     | not resolved                                   |              |                         |                            |
|             | y                     |                                                |              |                         |                            |

of the eddies between the present solution and [23] is of the order of  $10^{-4}$ . The absolute difference in intensity between the present results on the meshes M2 and M3 is  $1.1 \cdot 10^{-8}$ . The relative difference in intensity of the eddies Ck ( $k \ge 4$ ) is  $3.7 \cdot 10^{-4}$ . Thus, we can conclude that the proposed method efficiently computes the solution of the backward-facing corner problem, and allows one to compute all the eddies present in the flow relatively accurately.

5. Conclusion. The method for computing the infinite series of eddies in viscous fluid flows in domains with corners was proposed. The method is based on Argyris finite element discretization for the stream function formulation of the Navier–Stokes equations, exponential mesh refinement near corners, and asymptotics of the flow near corners. The method was applied to two benchmark problems: The lid-driven cavity problem and the backward-facing step problem. The results of computations demonstrate high accuracy of the present method, show that the method can accurately compute the infinite series of eddies, and indicate that the relative error of finding eddies' intensity and position decreases uniformly as the mesh is refined (i.e. the error of finding intensity and position of different eddies does not depend on their size). The comparison with the results available in the literature shows that the present method produces solutions of the same or better accuracy than the existing methods.

Acknowledgments. The authors are thankful to Prof. Bruneau and Prof. Rannacher for valuable comments on the present work. The authors would also like to thank the referees for their suggestions on improving the article.

## REFERENCES

- T. APEL AND F. MILDE, Comparison of several mesh refinement strategies near edges, Comm. Numer. Methods Engrg., 12 (1996), pp. 373–381.
- [2] F. ASSOUS, P. CIARLET, JR., AND J. SEGRÉ, Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: The singular complement method, J. Comput. Phys., 161 (2000), pp. 218–249.
- [3] I. BABUŠKA, R. B. KELLOGG, AND J. PITKÄRANTA, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math., 33 (1979), pp. 447–471.
- [4] E. BARRAGY AND G. F. CAREY, Stream function-vorticity driven cavity solution using p finite elements, Comput. & Fluids, 26 (1997), pp. 453–468.
- [5] H. BLUM, Der Einfluß von Eckensingularitäten bei der numerischen Behandlung der biharmonischen Gleichung, Bonner Mathematische Schriften [Bonn Mathematical Publications], 140, Universität Bonn Mathematisches Institut, Bonn, 1981. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1981.
- [6] H. BLUM, A simple and accurate method for the determination of stress intensity factors and solutions for problems on domains with corners, The Mathematics of Finite Elements and Applications IV, MAFELAP 1981, Proc. Conf., Uxbridge/Middlesex, 1981, pp. 57–64.
- [7] H. BLUM AND M. DOBROWOLSKI, On finite element methods for elliptic equations on domains with corners, Computing, 28 (1982), pp. 53–63.
- [8] H. BLUM AND R. RANNACHER, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci., 2 (1980), pp. 556–581.
- [9] O. BOTELLA AND R. PEYRET, Benchmark spectral results on the lid-driven cavity flow, Comput. & Fluids, 27 (1998), pp. 421–433.
- [10] M. BOURLARD, M. DAUGE, M.-S. LUBUMA, AND S. NICAISE, Coefficients of the singularities for elliptic boundary value problems on domains with conical points. III. Finite element methods on polygonal domains, SIAM J. Numer. Anal., 29 (1992), pp. 136–155.
- S. C. BRENNER, Overcoming corner singularities using multigrid methods, SIAM J. Numer. Anal., 35 (1998), pp. 1883–1892.
- [12] C. H. BRUNEAU AND M. SAAD, The 2D lid-driven cavity problem revisited, Comput. & Fluids, 35 (2006), pp. 326–348.
- [13] C. H. BRUNEAU AND C. JOURON, An efficient scheme for solving steady incompressible Navier-Stokes equations, J. Comput. Phys., 89 (1990), pp. 389–413.

#### ALEXANDER V. SHAPEEV AND PING LIN

- [14] P. BURDA, J. NOVOTNY, AND J. SISTEK, Precise FEM solution of a corner singularity using adjusted mesh, Internat. J. Numer. Methods Fluids, 47 (2005), pp. 1285–1292.
- [15] Z. CHEN, Finite Element Methods and Their Applications, Springer, New York, 2005.
- [16] T. A. DAVIS, Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), pp. 196–199.
- [17] T. A. DAVIS, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method, ACM Trans. Math. Software, 30 (2004), pp. 165–195.
- [18] E. ERTURK, T. C. CORKE, AND C. GOKCOL, Numerical solutions of 2-d steady incompressible driven cavity flow at high reynolds numbers, Internat. J. Numer. Methods Fluids, 48 (2005), pp. 747–774.
- [19] G. J. FIX, S. GULATI, AND G. I. WAKOFF, On the use of singular functions with finite element approximations, J. Comput. Phys., 13 (1973), pp. 209–228.
- [20] U. GHIA, K. N. GHIA, AND C. T. SHIN, High-re solutions for incompressible-flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387– 411.
- [21] D. GIVOLI AND L. RIVKIN, The DtN finite element method for elastic domains with cracks and re-entrant corners, Comput. & Structures, 49 (1993), pp. 633–642.
- [22] O. GOYON, High-reynolds number solutions of Navier-Stokes equations using incremental unknowns, Comput. Methods Appl. Mech. Engrg., 130 (1996), pp. 319–335.
- [23] M. M. GRIGORIEV AND A. V. FAFURIN, A boundary element method for steady viscous fluid flow using penalty function formulation, Internat. J. Numer. Methods Fluids, 25 (1997), pp. 907–929.
- [24] M. M. GUPTA, R. P. MANOHAR, AND B. NOBLE, Nature of viscous flows near sharp corners, Comput. & Fluids, 9 (1981), pp. 379–388.
- [25] K. GUSTAFSON AND R. LEBEN, Multigrid calculation of subvortices, Appl. Math. Comput., 19 (1986), pp. 89–102.
- [26] T. HAWA AND Z. RUSAK, Numerical-asymptotic expansion matching for computing a viscous flow around a sharp expansion corner, Theoretical and Computational Fluid Dynamics, 15 (2002), pp. 265–281.
- [27] V. A. KONDRAT'EV, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., 16 (1967), pp. 227–313.
- [28] H. K. MOFFAT, Viscous and resistive eddies near a sharp corner, J. Fluid Mech., 18 (1964), pp. 1–18.
- [29] H. NISHIDA AND N. SATOFUKA, Higher-order solutions of square driven cavity flow using a variable-order multigrid method, Internat. J. Numer. Methods Engrg., 34 (1992), pp. 637– 653.
- [30] L. A. OGANESYAN AND L. A. RUKHOVETS, Variational-difference methods for the solution of elliptic equations, Izv. Akad. Nauk Armyanskoi SSR, Jerevan, 1979.
- [31] G. RAUGEL, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone, C. R. Math. Acad. Sci. Paris Sér. A-B, 286 (1978), pp. A791–A794.
- [32] H.-G. ROOS, M. STYNES, AND L. TOBISKA, Numerical methods for singularly perturbed differential equations, vol. 24 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1996. Convection-diffusion and flow problems.
- [33] A. SEWERYN, Modeling of singular stress fields using finite element method, Internat. J. Solids Structures, 39 (2002), pp. 4787–4804.
- [34] J. M. SHI, M. BREUER, AND F. DURST, A combined analytical-numerical method for treating comer singularities in viscous flow predictions, Internat. J. Numer. Methods Fluids, 45 (2004), pp. 659–688.
- [35] G. STRANG AND G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973. Prentice-Hall Series in Automatic Computation.