8,548 research outputs found

    Biomimetic Emotional Learning Agents

    Get PDF
    This extended abstract proposes a type of AI agent comprised of: an autonomous real-time control system,\ud low-level emotional learning (including a simple\ud knowledge base that links homeostatic/innate drives to sensory perception states), and a novel sliding-priority drive motivation mechanism. Learning occurs in both phylogenetic and ontogenetic training

    Crossing the death valley to transfer environmental decision support systems to the water market

    Get PDF
    Environmental decision support systems (EDSSs) are attractive tools to cope with the complexity of environmental global challenges. Several thoughtful reviews have analyzed EDSSs to identify the key challenges and best practices for their development. One of the major criticisms is that a wide and generalized use of deployed EDSSs has not been observed. The paper briefly describes and compares four case studies of EDSSs applied to the water domain, where the key aspects involved in the initial conception and the use and transfer evolution that determine the final success or failure of these tools (i.e., market uptake) are identified. Those aspects that contribute to bridging the gap between the EDSS science and the EDSS market are highlighted in the manuscript. Experience suggests that the construction of a successful EDSS should focus significant efforts on crossing the death-valley toward a general use implementation by society (the market) rather than on development.The authors would like to thank the Catalan Water Agency (Agència Catalana de l’Aigua), Besòs River Basin Regional Administration (Consorci per la Defensa de la Conca del Riu Besòs), SISLtech, and Spanish Ministry of Science and Innovation for providing funding (CTM2012-38314-C02-01 and CTM2015-66892-R). LEQUIA, KEMLG, and ICRA were recognized as consolidated research groups by the Catalan Government under the codes 2014-SGR-1168, 2013-SGR-1304 and 2014-SGR-291.Peer ReviewedPostprint (published version

    The Impact of the Temporal Distribution of Communicating Civilizations on their Detectability

    Full text link
    We use a statistical model to investigate the detectability (defined by the requirement that they are in causal contact with us) of communicating civilizations within a volume of the universe surrounding our location. If the civilizations are located in our Galaxy, the detectability requirement imposes a strict constraint on their epoch of appearance and their communicating lifespan. This, in turn, implies that the fraction of civilizations of which we can find any empirical evidence strongly depends on the specific features of their temporal distribution. Our approach shed light on aspects of the problem that can escape the standard treatment based on the Drake equation. Therefore, it might provide the appropriate framework for future studies dealing with the evolutionary aspects of the search for extraterrestrial intelligence (SETI).Comment: 17 pages, 1 figure. Accepted for publication in Astrobiolog

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    ELM-ART - An Interactive and Intelligent Web-Based Electronic Textbook

    Get PDF
    This paper present provides a broader view on ELM-ART, one of the first Web-based Intelligent Educational systems that offered a creative combination of two different paradigms - Intelligent Tutoring and Adaptive Hypermedia technologies. The unique dual nature of ELM-ART contributed to its long life and research impact and was a result of collaboration of two researchers with complementary ideas supported by talented students and innovative Web software. The authors present a brief account of this collaborative work and its outcomes. We start with explaining the "roots" of ELM-ART, explain the emergence of the "intelligent textbook" paradigm behind the system, and discuss the follow-up and the impact of the original project
    corecore