112,689 research outputs found

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    A C++-embedded Domain-Specific Language for programming the MORA soft processor array

    Get PDF
    MORA is a novel platform for high-level FPGA programming of streaming vector and matrix operations, aimed at multimedia applications. It consists of soft array of pipelined low-complexity SIMD processors-in-memory (PIM). We present a Domain-Specific Language (DSL) for high-level programming of the MORA soft processor array. The DSL is embedded in C++, providing designers with a familiar language framework and the ability to compile designs using a standard compiler for functional testing before generating the FPGA bitstream using the MORA toolchain. The paper discusses the MORA-C++ DSL and the compilation route into the assembly for the MORA machine and provides examples to illustrate the programming model and performance

    Tiramisu: A Polyhedral Compiler for Expressing Fast and Portable Code

    Full text link
    This paper introduces Tiramisu, a polyhedral framework designed to generate high performance code for multiple platforms including multicores, GPUs, and distributed machines. Tiramisu introduces a scheduling language with novel extensions to explicitly manage the complexities that arise when targeting these systems. The framework is designed for the areas of image processing, stencils, linear algebra and deep learning. Tiramisu has two main features: it relies on a flexible representation based on the polyhedral model and it has a rich scheduling language allowing fine-grained control of optimizations. Tiramisu uses a four-level intermediate representation that allows full separation between the algorithms, loop transformations, data layouts, and communication. This separation simplifies targeting multiple hardware architectures with the same algorithm. We evaluate Tiramisu by writing a set of image processing, deep learning, and linear algebra benchmarks and compare them with state-of-the-art compilers and hand-tuned libraries. We show that Tiramisu matches or outperforms existing compilers and libraries on different hardware architectures, including multicore CPUs, GPUs, and distributed machines.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0041

    In the quest of vision-sensors-on-chip: Pre-processing sensors for data reduction

    Get PDF
    This paper shows that the implementation of vision systems benefits from the usage of sensing front-end chips with embedded pre-processing capabilities - called CVIS. Such embedded pre-processors reduce the number of data to be delivered for ulterior processing. This strategy, which is also adopted by natural vision systems, relaxes system-level requirements regarding data storage and communications and enables highly compact and fast vision systems. The paper includes several proof-o-concept CVIS chips with embedded pre-processing and illustrate their potential advantages. © 2017, Society for Imaging Science and Technology.Office of Naval Research (USA) N00014-14-1-0355Ministerio de Economía y Competitiviad TEC2015-66878-C3-1-R, TEC2015-66878-C3-3-RJunta de Andalucía 2012 TIC 233
    corecore