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Abstract—MORA is a novel platform for high-level FPGA
programming of streaming vector and matrix operations, aimed
at multimedia applications. It consists of soft array of pipelined
low-complexity SIMD processors-in-memory (PIM). We present
a Domain-Specific Language (DSL) for high-level programming
of the MORA soft processor array. The DSL is embedded in
C++, providing designers with a familiar language framework
and the ability to compile designs using a standard compiler for
functional testing before generating the FPGA bitstream using the
MORA toolchain. The paper discusses the MORA-C++ DSL and
the compilation route into the assembly for the MORA machine
and provides examples to illustrate the programming model and
performance.

Index Terms—Reconfigurable Processor, Soft Processor Array,
Multimedia Processing, Domain-Specific Language

I. INTRODUCTION

Media processing architectures and algorithms have come

to play a major role in modern consumer electronics, with

applications ranging from basic communication devices to

high level processing machines. Therefore architectures and

algorithms that provide adaptability and flexibility at a very

low cost have become increasingly popular for implement-

ing contemporary multimedia applications. Reconfigurable or

adaptable architectures are widely being seen as viable alter-

natives to extravagantly powerful General Purpose Processors

(GPP) as well as tailor made but costly Application Specific

Circuits (ASICS). Over the last few years, FPGA devices have

grown in size and complexity. As a result, many applications

that were earlier restricted to ASIC implementations can

now be deployed on reconfigurable platforms. Reconfigurable

devices such as FPGAs offer the potential of very short design

cycles and reduced time to market.

However with the ever increasing size and complexity of

modern multimedia processing algorithms, mapping them onto

FPGAs using Hardware Description Languages(HDLs) like

VHDL, Verilog provided by many FPGA vendors has become

increasingly difficult. To overcome this problem several groups

in academia as well as industry have engaged in developing

high level language support for FPGA programming. The most

common approaches fall into three main categories: C-to-
gates, system builders and soft processors.

The C-to-gates design flow uses special C dialects and

additional keywords or pragmas to a subset of ANSIC C

language specifications to extract and control parallelism out

of algorithms. Promising examples in this category are Handel-

C [1], Impulse-C [2], Streams-C [3], and Trident [4]. Despite

the advantage of a smaller learning curve for programmers

to understand these languages, a significant disadvantage of

this C-based coding style is that it is customized to suit Von

Neumann processor architectures which cannot fully extract

parallelism out of FPGAs.

By system builders we mean solutions that will generate

complex IP cores from a high-level description, often using a

wizard. Examples are Xilinx’s CoreGen and Altera’s Mega

wizard. These tools greatly enhance productivity but are

limited to creating designs using parameterized predefined IP

cores.

Finally, soft processors have increasingly been seen as

strong players in this category. Each FPGA vendor provides

their own soft cores such as Microblaze and Picoblaze from

Xilinx and Nios from Altera. However, the traditional ar-

chitectures with shared memory access and mutual memory

access are far from ideal to exploit the inherent parallelism

inherent in FPGAs for media processing applications. To

address this problem, different processor architectures are

needed. One such architecture, commercialized by Mitrionics,

is the "Mitrion Virtual Processor" (MVP), a massively parallel

processor that can be customized for the specific programs that

run on it [5]. Other alternatives are processor arrays such as

[6], which is based on the OpenFire processor.

II. CONTRIBUTION OF THE PAPER

In this paper we present a high-level programming solution

for the MORA (Multimedia Oriented Reconfigurable Architec-

ture) soft processor array, as a solution at a lower granularity

than conventional processor arrays but higher than the MVP.

The MORA architecture is composed of an array of small

pipelined SIMD processor-in-memory (PIM) cells [7]. A key

feature of our approach is that each processor is customized at

compile time for program specific instruction execution. The

interconnects, memories and processing unit modules are all
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customized at compile time, resulting in an instance of the

array optimised for running a particular program.

The main contribution of the paper is a MORA-C++,

a Domain-Specific Language (DSL) for programming the

MORA soft processor array at high level. MORA-C++ is

embedded in C++ as an API an a set of rules. Consequently,

any MORA-C++ program is valid C++ and can also be

compiled to run on the host platform. The main advantage

of embedding a DSL into a mainstream language like C++

is that the developers do not need to learn an entirely new

language (as is the case for e.g. the Mitrion platform); on

the other hand, thanks to the PIM array abstraction, there is

no need for the programmer to have in-depth knowledge of

the FPGA architecture (as is the case for e.g. Handel-C and

Catapult-C).

To understand the compilation process and programming

model, we also present the MORA assembly language, and

advanced assembly language that can be targeted by high-level

language compilers and a complete tool chain to automatically

generate the FPGA configuration from the assembly source

code. Our initial results show that the concept has great

potential for high-level programming of multimedia processing

applications on FPGAs.

It should be noted that MORA-C++ and the MORA as-

sembly language are not limited to deployment on the FPGA-

based soft MORA: the ASIC version of MORA shares the

same processor architecture and will therefore run the same

programs as the soft MORA. However, the soft MORA is

an ideal development platform for exploring new designs and

features to be implemented on the ASIC MORA.

III. MORA ARCHITECTURE

The MORA processor array is aimed towards the im-

plementation of streaming algorithms for media processing

applications. It consists of an array of small processing cores

called Reconfigurable Cells (RC) [8], [9]. For the FPGA-based

soft MORA, the RCs and their connections are instantiated

at compile time. In the ASIC version the RCs and the

interconnection network are run-time reconfigurable.

Each RC (Figure 1) has a PIM architecture [7] with a small

(typically 256 bytes) local memory, two external input ports

and two output ports.

In order to decrease the memory access delays between the

data RAM and the processing core as well as to avoid memory

contention issues between multiple cells (as would be the case

in a shared-memory architecture), each RC has a local data

memory. The Processing Element of the RC performs fixed-

point arithmetic, logical, shifting and comparison operations.

The Control Unit inside each RC manages internal synchro-

nization within the processor as well as external communi-

cation with other RCs. To achieve better resource utilisation

and performance, data memories are implemented on the block

RAMs (BRAMS) available in the FPGA. The control unit also

handles asynchronous handshaking mechanism to control data

flow within the array.

Figure 1. MORA Reconfigurable Cell (RC)

A. Asynchronous Handshake

To minimize the impact of communication networks on the

power consumption of the array, each RC is equipped with

a simple and resource efficient communication technique. As

every RC can in principle operate at a different clock speed,

an asynchronous handshake mechanism was implemented. As

MORA is a streaming architecture, a two-way communication

mechanism is required, one to communicate with the upstream

RCs and another to communicate with the downstream RCs.

Altogether, a total of four communication I/O signals are used

by each RC to communicate with the other RCs efficiently in

streaming fashion. They are described as follows:

• rc_rdy_up is an output signal signifying that the RC is

idle and ready to accept data from upstream RCs.

• rc_rdy_down is an input signal signifying the downstream

RCs are idle and ready to accept new data.

• data_rdy_down is an output signal asserted when all the

data transfers to the downstream RCs are completed.

• data_rdy_up is an input signal to RC corresponding to the

data_rdy_down signal from upstream RCs.

Each RC can accept inputs either from two output ports of

a single RC or from two individual ports of different RCs. The

output of each RC can be routed to at most of four different

RCs. In order to support multiple RC connections to a single

cell, a two bit vector for data_rdy_up (data_rdy_up[1:0]) and

four bit vector for rc_rdy_down (rc_rdy_down[3:0]) is used.

B. Execution Model

The RC has two operating modes: processing and loading.

When the RC is operating in processing mode, it can either

write the processed data back into internal memory or write to

a downstream RC. Each RC has two execution modes while

processing input data. One is a sequential way of execution

used for normal instructions (ADD, SUB, etc..) with write-

back option. The second is pipelined execution for accu-

mulation and instructions with write-out option. Instructions

with sequential execution take three clock cycles to complete,

with each clock cycle corresponding to reading, executing and

writing data to the RAM. A prefetching technique is used for

reading instructions from the instruction memory, this involves
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reading a new instruction word while performing the last

operation of the previous instruction. This approach saves one

clock cycle for every new instruction.

For pipelined operation the controller utilizes the pipelining

stage between the RAM and the PE. This style of implementa-

tion allows the accumulation, write-out operations to complete

in n+2 clock cycles. The latency of 2 clock cycles results from

reading and execution of the first set of operands. The single-

cycle execution for instructions with write-out option makes

the RC very efficient for streaming algorithms.

IV. THE MORA ASSEMBLY LANGUAGE

The MORA assembly language has been published in detail

in [10]. We summarize briefly its most important characteris-

tics.

The aim of the MORA assembly language is to serve as a

compilation target for high-level languages such as MORA-

C++ whilst at the same time providing a means of program-

ming the MORA processor array at a low level.

The language consists of three components: a coordination
component which allows to express the interconnection of

the RCs in a hierarchical fashion, an expression component

which corresponds to the conventional assembly languages for

microprocessors and DSPs and a generation component which

allows compile-time generation of coordination and expression

instances.

A. Expression Language

The MORA expression language is an imperative language

with a very regular syntax, similar to other assembly lan-

guages: every line contains an instruction which consists of

an operator followed by list of operands. The main differences

with other assembly languages are:

• Typed operators: the type indicates the word size on which

the operation is performed, e.g. bit, byte, short.

• Typed operands: operands are tuples indicating not only

the address space but also the data type, i.e. word, row, column,

or matrix.

• Virtual registers and address banks: MORA has direct

memory access and no registers (an alternative view is that

every memory location is a register). Operations take the RAM

addresses as operands; however, “virtual” registers indicate

where the result of an operation should be directed (RAM

bank A/B, output L/R/both)

We illustrate these characteristics with an example. The

instruction for a multiply-accumulate of the first row of 8×8-

matrix in bank A with the first column of 8×8 matrix in bank

B reads in full:

MULTACC:C 8 Y A:0:W A:0:R B:0:C

The ’8’ indicates that 8 operations need to be performed on a

range of addresses. The ’Y’ is a virtual register indicating that

the resulting 2 bytes must be written to the output ports. The

‘:C’ indicates the type of operand of the operation, in this case

‘char’ (1 byte). The groups A:0:W etc are the address tuples.

They encode the address and the type of the data stored at

the address, in this case a word (1 byte) stored at address 0

of bank A. The tuple B:0:C encodes a 8×1 column of bytes

starting at address 0 of bank B.

B. Coordination Language

MORA’s coordination language is a compositional, hier-

archical netlist-based language similar to hardware design

languages such as Verilog and VHDL. It consists of primitive

definitions, module definitions and instantiations.

Primitives describe a MORA RC. They have two input ports

and two output ports. Modules are groupings of instantiations,

very similar to non-RTL Verilog. Modules can have variable

numbers of input and output ports. Instantiations define the

connections between different modules or RCs, again very

similar to other netlist-based languages.

C. Generation Language

The generation language is an imperative mini-language.

The language acts similar to the macro mechanism in C, i.e.

by string substitution, but is much more expressive.

The generation language allows instructions to be generated

in loops or using conditionals. The generation language can

also be used to generate module definitions through a very

powerful mechanism called module templates. Instantiation

of a module template results in generation of a particular

module (specialization) based on the template parameters. This

is similar to the way template classes are used in C++.

V. THE MORA-C++ DOMAIN-SPECIFIC LANGUAGE

The MORA-C++ DSL allows the developer to program the

MORA platform using a C++ API and a subset of the full C++

language. The API is used to describe the connections between

RCs or groups of RCs (modules). The C++ subset is used to

describe the functionality of the RC or module. The rationale

for this approach (i.e. giving the programmer full control

over the RC functionality and interconnections) is based on

performance: to write a high-performance program for a given

architecture requires in-depth knowledge of the architecture.

For example, to write high-performance C++ code one needs a

deep understanding of stack and heap memory models, cache,

bus access and I/O performance. Conversely, to write a high-

performance program for MORA, one needs to understand

the MORA architecture and make the best possible use of it.

Therefore we do not attempt to hide the architecture from the

developer but we expose it through a high-level API. On the

other hand, because of the processor array abstraction, there

is no need for the programmer to have in-depth knowledge of

the FPGA architecture.

A. Key Features

The MORA-C++ DSL relies heavily on the type system

to determine the compilation route for given expressions.

Because MORA is targeted at vector and matrix operations,

these are fundamental types in the DSL. Operators are over-

loaded to support powerful matrix and vector expressions. The

type system is also used to infer RCs to split and merge

signals, so that there is no need for the developer to explicitly
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instantiate them. Finally, MORA-C++ uses automatic static

memory allocation. Apart from the powerful syntactic con-

structs, this is probably the most significant feature of the DSL.

Static memory allocation is of course standard in C/C++, but

essentially the compiler assumes that the memory is infinite. In

MORA, the local memory of each RC is very small, requiring

the compiler to check if there is sufficient memory available

for a given program.

B. MORA-C++ by Example

In this section we illustrate the features of MORA-C++

using an implementation of a DWT and a DCT algorithm as

example.

1) Discrete Wavelet Transform: As an example application

to illustrate the features of the MORA assembly we present the

implementation of the Discrete Wavelet Transform (DWT) al-

gorithm. An 8-point LeGall wavelet transform is implemented

using a pipeline of 4 RCs, each RC computes following

equations :

yi = xi–(xi−1 + xi+1)/2
yi−1 = xi−1 + (yi + yi−2)/4

The MORA-C++ code for the pipeline stages is imple-

mented as a single function template:
template <int N,typename TL,typename TR>

UCharPair dwt_stage(TL x,TR y_in) {
UChar y_l;UChar y_r;
if (N==6) {

y_r = x[1] - x[0]/2;
} else {

y_r = x[1] - (x[0]+x[2])/2;
}
if (N==0) {

y_l = x[0] + y_r/4;
} else {

y_l = x[0] + (y_r+y_in)/4;
}
UCharPair out(y_l,y_r); return out;

}

Using this template, the complete DWT algorithm becomes
Pair<Row8,Nil> dwt (Row8 inA) {

vector<UChar> v012 =inA.slice(0,2);
vector<UChar> v234 =inA.slice(2,4);
vector<UChar> v456 =inA.slice(4,6);
vector<UChar> v67 =inA.slice(6,7);
Row3 x012(v012);
Row3 x234(v234);
Row3 x456(v456);
Row2 x67(v67);
Row8 ny;
UCharPair res01=

dwt_stage<0,Row3,Nil>(x012,_);
ny[1]=res01.left; ny[0]=res01.right;
UCharPair res23=

dwt_stage<2,Row3,UChar>(x234,ny[1]);
ny[3]=res23.left; ny[2]=res23.right;
UCharPair res45=

dwt_stage<4,Row3,UChar>(x456,ny[3]);
ny[5]=res45.left; ny[4]=res45.right;
UCharPair res67=

dwt_stage<6,Row2,UChar>(x67,ny[5]);
ny[6]=res67.left; ny[7]=res67.right;
Pair< Row8, Nil > res(ny,_);
return res;

}

The example illustrates several features of MORA-C++:

a) Data Types: The type UCharPair is a typedef for

Pair<UChar,UChar>; a Pair is the fundamental template

class used for returning data from an RC (for higher-level

modules with more than two output ports, there is a Tuple

class). The Pair has accessors left and right for accessing

its elements.

MORA-C++ defines a number of signed scalar types, Char,

Short, Int, Long and unsigned versions UChar etc. These map

to 1, 2, 4, 8 bytes respectively. A special scalar type Nil is also

defined and used to indicate unconnected ports. The constant

variable ’_’ is of this type.

The types RowN are typedefs for Row<UChar,N>. Apart

from the row vector, MORA-C++ also defines a Col vector

and a Matrix type. All three template classes inherit from the

STL vector<> template.

b) Split and merge: The example also illustrates the use

of the slice method for accessing a subset of the data and the

use of indexing for accessing scalar data. This is an important

abstraction as it relieves the developer of having to create and

connect RCs purely for splitting and merging data.

2) Discrete Cosine Transform: To illustrate another key

feature of MORA-C++, operator overloading, we present

the implementation of the 2-D Discrete Cosine Transform

algorithm (DCT) on an 8×8 image block. In its simplest form,

the DCT is a multiplication of a pixel matrix A with a fixed

coefficient matrix C as follows:

MDCT = C.A.CT

The DWT is a pipelined algorithm with little or no par-

allelism, and as such only illustrates the pipelining feature

of the MORA array. The DCT however provides scope for

parallelism, by computing the matrix multiplication using a

parallel divide-an-conquer approach (see Section VI-C).

The implementation of the DCT in MORA-C++ is ex-

tremely simple and straightforward:
typedef Matrix<UChar,8,8> Mat;
const UChar ca[8][8]={ ... };
const Mat c((const UChar**)ca);
const Mat ct = c.trans();

Pair<Mat,Nil> dct (Mat a) {
Mat m=c*a*ct;

Pair<Mat,Nil> res(m,_);
return res;

}

As the example shows, the multiplication operator (and other

arithmetic and logic operators) are overloaded to provide

matrix operations. The other classes Row and Col also pro-

vide overloaded operations, making integer matrix and vector

arithmetic in MORA-C++ very simple.

VI. COMPILATION

As a MORA-C++ program is valid C++, it can simply be

compiled using a compiler such as gcc. This is extremely

useful as it allows for rapid testing and iterations. The API

implementing the DSL attempts to catch as many architecture-

specific issues at possible, so that a MORA-C++ program that
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Algorithm 1 Memory allocation algorithm

1) Allocate space for used function arguments

2) Allocate space for constant data

3) Convert expressions into SSA

4) Identify intermediate expressions

5) Allocate space for intermediate expressions

works correctly at this stage will usually need no modifications

for deployment on the FPGA. Some issues can however not be

caught by the C++ compiler, for example it is not possible to

determine the exact amount of MORA assembly instructions

for any given MORA-C++ program (obviously, as gcc will

produce assembly for the host platform, not for the MORA

array). If the number of instructions exceeds the maximum

instruction size of the RC, this error can only be caught by

the actual compilation to MORA assembly.

To be able to emit MORA assembly from MORA-C++, the

compiler needs to perform several actions. The most important

ones are:

- memory allocation

- inferring split and merge trees

- inferring template modules

A. Memory Allocation

The MORA-C++ compiler considers the MORA RC’s mem-

ory as two logical banks, typically one for the left port inputs

and one for the right port; the total memory is a fixed value

MEMSZ. Allocation is performed based on the type, i.e. the

dimensions of the matrix. Thus, allocation is a 1-D bin packing

problem with two bins; however, because of the limited size of

the memory, a simple heuristic algorithm can be used. The out-

line of the overall allocation algorithm is shown in Algorithm

1. The third step of the algorithm is to convert expressions into

Static Single Assignment (SSA) [11]. This is an intermediate

representation commonly used in compilers for the purpose of

memory/register allocation. Essentially, it consists of assigning

every expression to a unique variable (hence the name “single

assignment”). Intermediate expressions are those expressions

that are not part of the returned tuple.

B. Inferring Split and Merge Trees

In most cases, the input data for a program will have to be

distributed over a number of RCs for computation. For exam-

ple the DWT algorithm requires an 8-byte vector to be split

into three 3-byte vectors and one 2-byte vector. Conversely, to

collect the final data for output, usually results from several

RCs have to be merged. In MORA-C++ splitting of a vector

into subvectors is achieved via the slice method, merging of

subvectors into a single vector via the splice method. To split

or merge single elements indexing is used. The compiler has

to infer a corresponding “split tree” and “merge tree”, a tree

of RCs that performs the required operations.

1) Split algorithm: Because of the definition of slice, any

intermediate slices can be removed: Let v be a vector of N

elements 0..N-1 (of some type T):

Algorithm 2 Optimal grouping of slices

1) For every slice, group with all other slices in the set.

Let si(bi, ei) and sj(bj , ej) be the grouped slices. Every

grouping receives a weight

wij = max(ei, ej)−min(bi, bj)+1 , i.e. the size of the

combined slice.

2) Remove the group with the lowest weight from the set,

assign to the first RC

3) Repeat the procedure until the set contains 0 or 1 slices

(NS times if NS is even, NS − 1 times if NS is odd)

4) Using the combined slices, repeat the procedure for the

next level of the tree.

5) Finally, if SN is odd, prune the tree, i.e. remove any

intermediate RCs that return the same slice as they

receive.

Row<T,N> v;
s1=v.slice(b1,e1);
s2=s1.slice(b2,e2);

Obviously b1,b2≥0; e1,e2<N; also, b2≥b1 and e2≤e1 or the

slice call will throw an exception. With these restrictions on

the bounds of the slice, the following identities hold:
s1.slice(b2,e2)≡
v.slice(b1,e1).slice(b2,e2)≡
v.slice(b2,e2)

The compiler has to infer the tree of RCs required to slice the

divide data into the given slices. Let the total number of slices

be NS . Because every RC has 2 outputs, the tree is a binary

tree. The process consists of following steps:

• Determine the minimum required number of RCs, NRC

NRC = {N S /2 , NS is even(Ns + 1)/2 , NS is odd,

• Compute the number of levels the tree (closest power of

2)

Nlev = �log2(NRC)�
• Optimal grouping of the slices

In many cases, some of the slices will overlap to some

degree. The RCs have instructions to move a contiguous

range of data in an efficient way (1 cycle per word

+ 1 cycle overhead); moving a non-contiguous set of

data requires one instruction per subset, increasing the

overhead. Consequently, it pays to move the smallest

contiguous range required for the two slices of the

leaf RCs. To determine the optimal grouping, we use a

recursive algorithm as shown in Algorithm 2:

2) Merge algorithm: The complement of the split algorithm

follows entirely the same pattern: a merge tree can be viewed

as an upside-down split tree; the main difference is that ranges

to be merged should be non-overlapping.

C. Compilation of Matrix and Vector Arithmetic using Module
Templates

As discussed in Section IV, the MORA assembly language

provides the ability to generate code at compile time and

the ability to group instantiations of RCs into hierarchical
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modules. Module templates combine both features: when a

module template is instantiated, it generates a module based

on the template parameters. This feature of the assembly

language was designed with the express purpose of supporting

code generation from overloaded matrix and vector operations.

Consider for example a matrix multiplication:
Matrix<UChar, NR1,NC1> m1;
Matrix<UChar, NC1,NC2> m2;
Matrix<UChar, NR1,NC2> m12;
m12=m1*m2;

The multiplication is computed by splitting the matrices into

two submatrices (NR1/2)×NC1 and NC1×(NC2/2). The com-

putation of m1.m2 results in four sub-matrices of size (NR1/2)

×(NC2/2) being computed in parallel and then combined into

m12. Of course it is possible to split either one of the matrices

into more submatrices, but this leads to larger numbers of RCs

being used. In Section VIII we present both the smaller and

the faster implementation of the DCT.

In terms of implementation, the multiplication is imple-

mented as a template module which takes the dimensions of

both matrices as parameters. Furthermore, if the multiplication

is part of a compound arithmetic expression, the intermediate

connections will use the full bandwith available, rather than

inserting merge and split trees. The current algorithm for

deciding if a template module can be used and if split/merge

trees should be inferred is simple:

• Only compound arithmetic expressions on matrices or

vectors will be implemented as a template module. This

means that expressions with control constructs are not

implemented this way, nor are expressions that result in

changing the data type by slicing, splicing or joining.

• For every such compound expression, a split tree will be

inferred for the leaf terms and a merge tree for the result.

As the actual syntax of the MORA assembly template modules

is out of scope for the paper, we present the module template

using the equivalent MORA-C++ syntax. This also gives a

good idea of how much complexity is handled by the compiler

when inferring a template module from an overloaded matrix

multiplication. For conciseness we have omitted the type fields

of the template instances.
template <int NR1,int NC1,int NC2>
Pair<Matrix<NR1,NC2>,Nil> mmult4
(Matrix<NR1,NC1> m1, Matrix<NC1,NC2> m2) {
Matrix<NR1,NC2> m_res=m1*m2;
Pair<Matrix<NR1,NC2>,Nil> out(m_res);
return out;
}
template <int NR1, int NC1, int NC2>
Tuple<Matrix<NR1,NC2> > mmult
(Matrix<NR1,NC1> m1,Matrix<NC1,NC2> m2) {

// split. In assembly, this is a split tree
b11=m1.block(0,0,NR1/2-1,NC1);
b12=m1.block(NR1/2,0,NR1/2,NC1);
b21=m2.block(0,0,NC1,NC2/2-1);
b22=m2.block(0,NC2/2,NC1,NC2);
// compute partial results
Pair<Matrix<NR1/2,NC2/2>,Nil> p11=
mmult4<NR1/2,NC1,NC2/2>(b11,b21);
Pair<Matrix<NR1/2,NC2/2>,Nil> p12=
mmult<NR1/2,NC1,NC2/2>(b11,b22);

Pair<Matrix<NR1/2,NC2/2>,Nil> p21=
mmult4<NR1/2,NC1,NC2/2>(b12,b21);
Pair<Matrix<NR1/2,NC2/2>,Nil> p22=
mmult4<NR1/2,NC1,NC2/2>(b12,b22);
// merge. In assembly, this is a merge tree
Matrix<NR1,NC2/2> m_u =
p11.left.merge<NR1/2,NC2/2>(p12.left);
Matrix<NR1,NC2/2> m_l =
p11.left.merge<NR1/2,NC2/2>(p12.left);
Matrix<NR1,NC2> m =
m_u.merge<NR1,NC2/2>(m_l);
Tuple<Matrix<NR1,NC2> > out(m);
return out;

}

The equivalent MORA assembly template is structurally

identical to the MORA-C++ version. The above code also

serves to illustrate the MORA-C++ merge function. This is

a method call implemented using a polymorphic function

template which works out how to merge the matrices based on

the specified return type, i.e. the dimensions of the returned

matrix.

VII. SOFT PROCESSOR ARRAY AND BITFILE GENERATION

The MORA-C++ compiler is written in the functional

language Haskell using the Parsec parser combinator library. It

compiles the MORA-C++ program into the MORA assembly

language. The MORA assembler (written in Perl) generates the

VHDL code for the soft processor array. The MORA processor

array is configured for a given program by configuring the

instruction and data memories for each RC and connecting

the RCs as required. The assembler generates the required

memory configurations and the interconnect configurations.

A. Memory Configuration

To generate the data memory configurations we use the

Xilinx CoreGen utility. The content of the memories can be

provided using external files (.coe files) at synthesis time.

As every RC can have a different memory configuration, a

template-driven generator is used to create multiple instances

of the CoreGen configuration file templates. It then generates

and runs a script which calls coregen to build the actual

memories.

B. RC Generation

The RC contains the memories for data and instructions,

the PE and the control unit. Each of these has to specialized

based on the program. The assembler performs an analysis

to determine the size of the instruction memory and the

required instructions for the PE and control unit. Based on this

information the template-driven generator creates specialized

instances for every enclosing module. Currently, the data paths

are 8 bits, but we are working on an RC with a configurable

data path width.

C. Interconnect and Toplevel Generation

The final step of the generator instantiates all the generated

RCs and creates the required interconnections. This is the most

complicated step in the process as the generator must infer the

control nets as well as wiring up the data nets, and must also

correctly strap unused nets to ground or leave them open.
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Figure 2. MORA toolchain

D. FPGA Configuration Generation

Using a template for a Xilinx ISE project in Tcl, the

assembler finally builds the complete project including syn-

thesis, place and route and bitfile generation. All the steps are

completely automated, resulting in a truly high-level FPGA

programming solution.

VIII. RESULTS AND DISCUSSION

We implemented the two image processing algorithms de-

scribe above, Discrete Wavelet Transform (DWT) and Discrete

Cosine Transform (DCT), as exemplars.

A. Overview of Exemplars

Fig. 3 (generated by the visualization backend) shows the

connectivity (acyclic directed graph, ADG) of the RCs for

the DWT algorithm. The implementation takes 55 cycles to

compute the 24 arithmetic instructions of the DWT.

The ADG for the DCT algorithm as generated by the

MORA assembler is shown in Fig. 4 and illustrates the 4

parallel data paths. Two different implementations, one for

high throughput (DCTF ) and another for better resource

utilization (DCTS) were implemented for the DCT on the

Figure 3. ADG diagram for the DWT algorithm

Figure 4. ADG diagram for the DCT algorithm

Virtex-4 LX200. The DCTF and DCTS compute the results in

110 and 200 clock cycles respectively running at frequencies

around 100 MHz. The Virtex-4 LX200 can accommodate at

least twenty five DCTSs or twelve DCTF s with little decrease

in operating frequencies.

B. Abstraction Level

To demonstrate the level of abstraction of MORA-C++ for

programming FPGAs, Table I shows the number of lines of

source code (obtained using the cloc program1) for implemen-

tations of DWT and DCT. From a very small source code file

(37 lines of on average 30 characters), the MORA assembler

produces 124 VHDL files totaling 8815 lines of VHDL source

code. Thanks to the powerful matrix operations, the DCT

is even smaller: 18 lines of on average only 20 characters,

compared to 16803 lines of VHDL code.

C. Resource Utilisation and Performace

Table II illustrates the area and performance results of the

MORA array on a Xilinx Virtex 4 LX200 for both algorithms.

1http://cloc.sourceforge.net
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Language files blank comment code
DWT MORA-C++ 1 6 1 37

VHDL 124 1881 1924 8815
DCT MORA-C++ 1 6 1 18

VHDL 214 3390 3748 16803

Table I
SOURCE CODE LINE COUNT FOR MORA-C++ AND VHDL

IMPLEMENTATIONS OF DCT AND DWT

Single RC DWT DCT
Smaller (S) Faster (F)

Slice count 479 1836 3368 6867
BRAM count 1 10 22 44

Latency (cycles) NA 55 200 110
Clock Freq(MHz) NA 70 100 95

Table II
IMPLEMENTATION RESULTS ON VIRTEX-4 LX200

Although the project is still in an early stage and many

optimizations have not yet been implemented, the performance

of the MORA soft array is already comparable to other high-

level FPGA programming tools. For example, Yankova et

al [12] report a DCT implementation using their DWARV

VHDL generator. The slice count is 3307, the clock frequency

100MHz. They do not report cycle counts but compare to a

PowerPC implementation and report a speed-up of 9.74. For

comparison we used the highly optimized DCT implementa-

tion by the Independent JPEG Group and compiled it using

gcc. The average cycle count was 2550 cycles. Relative to

this figure, our two DCT implementations DCTS and DCTF

achieves a speed-up of 12.7 times and 23.2 times respectively.

El-Araby et al [13] report on a comparison of different high-

level programming tools and one of their test benches is a

DWT implementation. They report percentage of slices utilized

for a Virtex-II Pro XC2VP50. Their Impulse-C implementation

utilized 17% or 4015 slices, their Mitrion-C version 6613

slices. Both run at 100MHz. The reported throughout is

respectively, 1.35 and 375 MB/s. By comparison, our MORA

implementation utilizes 1836 slices and has a throughput (at

70MHz) of 10 MB/s; the key difference is that our current

DWT implementation has 8-bit I/O whereas the Cray XD1

board used by [13] has a 64-bit I/O interface. We could easily

fit 8 parallel DWT pipelines on the XC2VP50.

It should be noted that implementations using commercial

tools such as Impulse CoDeveloper achieve similar clock

frequencies as the MORA approach. However, as also noted in

[12], these commercial tools, although accepting a C-like input

language, do in fact require advanced hardware knowledge.

MORA does not require in-depth hardware knowledge. The

MORA-C++ API completely abstracts the implementation

details of the MORA soft array architecture.

IX. CONCLUSION

In this paper we have presented a novel approach to high-

level FPGA programming of multimedia applications. We have

introduced the MORA soft processor array and MORA-C++, a

C++-embedded Domain-Specific Language for high-level pro-

gramming of the MORA platform. The advantages of MORA-

C++ over other high-level FPGA programming approaches are

that it is embedded in popular, powerful language and requires

no knowledge of FPGAs. Our initial results demonstrate that

the generated designs are very resource-efficient and provides

high throughput for the multimedia exemplars on a Xilinx

Virtex-4 FPGA. These results clearly indicate that the concept

has great potential for high-level programming of multimedia

processing applications on FPGAs. As future work, the RCs

will be optimised to achieve higher operation frequency and

higher throughput with a smaller footprint; the datapath width

will be made configurable; and we will continue work on the

compiler for MORA-C++.
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