97,997 research outputs found

    Quality of service management for non-guaranteed networks

    Get PDF
    The increasing dominance of multimedia communication posed new requirements for the underlying systems. Multimedia data, formally called continuous media, has time constraints that impose real time limitations for their transmission. Certain levels of service, called Quality of Service (QoS), need to be considered when handling continuous media. The present work utilizes QoS concepts for networks that do not have inherent QoS support. The thesis aims at verifying the possibility of having QoS-controlled communication on non-guaranteed networks. A basic QoS architecture is designed where already existing QoS concepts are adapted to work with non-guaranteed networks. The architecture provides the facilities of QoS specification, mapping, admission, maintenance, monitoring and notification. In addition, a new concept for predictive QoS admission is introduced. The proposed architecture was verified using a prototype system. The results showed an increased percentage of continuous media that arrive on time to their receivers (good put) with higher network loads. The increased good put was at the expense of high network overhead

    QoS-Based Middleware Architecture for Distributed Control Systems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-540-85863-8_70This paper presents an implementation of a middleware architecture to control distributed systems. The main objective is providing a QoS level between the communications layer and the control layer. This architecture is based on the use of a hierarchical communications structure called logical namespace tree and a structured set of control processes interconnected, called logical sensors graph . This architecture is named Frame Sensor Adapter Control (FSA-Ctrl). In this architecture communication layer and control layer can manage the QoS policies. The communication layer is based on the Data Distribution Service (DDS), a standard proposed by Object Management Group (OMG). Control layer is derived from the Sensor Web Enablement (SWE) model proposed by Open Geospatial Consortium (OGC). Middleware components use messages queues to manage components QoS requirements. By means of QoS policies, control components can take important decisions about distributed questions, like components mobility or information redundancy detection.The architecture described in this article is a part of the coordinated project KERTROL: Kernel control on embedded system strongly connected. Education and Science Department, Spanish Government. CICYT: DPI2005-09327-C02-01/02.Poza-Lujan, J.; Posadas-Yagüe, J.; Simó Ten, JE. (2009). QoS-Based Middleware Architecture for Distributed Control Systems. En International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Springer. 587-595. https://doi.org/10.1007/978-3-540-85863-8_70S587595Matteucci, M.: Publish/Subscribe Middleware for Robotics: Requirements and State of the Art. Technical Report N 2003.3, Politecnico di Milano, Milano, Italy (2003)OMG. Data Distribution Service for Real-Time Systems, v1.1. Document formal/2005-12-04 (2005)Botts, M., Percivall, G., Reed, C., Davidson, J. (eds.): OGC. Sensor Web Enablement: Overview and High Level Architecture. OGC White Paper. OGC 06-050r2 (2006)Coulouris, G., Dollimore, J., Kindberg, T.: Distributed systems, concepts and design, 3rd edn. Addison-Wesley, Reading (2001)OMG. Real-Time Corba Specification version 1.1. Document formal /02-08-02 (2002)FIPA. Specfication. Part 2, Agent Communication Language. Foundation for Intelligent Physical Agents (1997)Hapner, M., Sharma, R., Fialli, J., Stout, K.: JMS specification, vol. 1.1. Sun Microsystems Inc., Santa Clara (2002)Pardo-Castellote, G.: OMG Data-Distribution Service: architectural overview. In: Proceedings of 23rd International Conference on Distributed Computing Systems Workshops, Providence, USA, vol. 19-22, pp. 200–206 (2003)Vogel, A., Kerherve, B., von Bochmann, G., Gecsei, J.: Distributed Multimedia and QoS: A Survey. IEEE Multimedia 2(2), 10–19 (1995)Crawley, E., Nair, R., Rajagopalan, B.: RFC 2386: A Framework for QoS-based Routing in the Internet. IETF Internet Draft, pp. 1–37 (1998)Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC. Sensor Web Enablement: Overview and High Level Architecture. OpenGIS Consortium Inc. (2006)Posadas, J.L., Perez, P., Simo, J.E., Benet, G., Blanes, F.: Communication structure for sensory data in mobile robots. Engineering Applications of Artificial Intelligence 15(3-4), 341–350 (2002)Poza, J.L., Posadas, J.L., Simó, J.E., Benet, G.: Hierarchical communication system to manage maps in mobile robot navigation. In: Proceedings of International Conference on Automation, Control and Instrumentation, Valencia, Spain (2006)Poza, J.L., Posadas, J.L., Simó, J.E.: Distributed agent specification to an Intelligent Control Architecture. In: 6th International Workshop on Practical Applications of Agents and Multiagent Systems, Salamanca, Spain (in press, 2007

    Hybrid Fixed-Mobile P2P Superdistribution

    Get PDF
    The Internet and the cellular telephony system are the two most influential communication systems of the last years. The arrival of the IP Multimedia Subsystem (IMS) promises to help service providers to deploy a complete array of real-time, customized business and consumer multimedia services over any access network. IMS is an integrated solution that defines a generic architecture for offering Voice over IP (VoIP) and advanced multimedia services. This project describes a hybrid fixed-mobile peer-to-peer superdistribution system deployed over an IMS platform. This superdistribution service is aligned with the current interests of telecommunication operators that desire to offer services with large user acceptance and that involve a massive access to the service without collapsing their network infrastructure. Operators can increase their revenues for connectivity and Digital Rights Management (DRM)-based license distribution of the multimedia content, depending on the content and on the desired business model

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    Octopus - an energy-efficient architecture for wireless multimedia systems

    Get PDF
    Multimedia computing and mobile computing are two trends that will lead to a new application domain in the near future. However, the technological challenges to establishing this paradigm of computing are non-trivial. Personal mobile computing offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The approach we made to achieve such a system is to use autonomous, adaptable modules, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules that is placed in the data streams. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies
    corecore