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ABSTRACT 

The increasing dominance of multimedia communication posed new requirements for 

the underlying systems. Multimedia data, formally called continuous media, has time 

constraints that impose realtime limitations for their transmission. Certain levels of 

service, called Quality of Service (QoS), need to be considered when handling 

continuous media. 

The present work utilizes QoS concepts for networks that do not have inherent QoS 

support. The thesis aims at verifying the possibility of having QoS-controlled 

communication on non-guaranteed networks. A basic QoS architecture is designed 

where already existing QoS concepts are adapted to work with non-guaranteed 

networks. The architecture provides the facilities of QoS specification, mapping, 

admission, maintenance, monitoring and notification. In addition, a new concept for 

predictive QoS admission is introduced. 

The proposed architecture was verified using a prototype system. The results showed 

an increased percentage of continuous media that arrive on time to their receivers 

(goodput) with higher network loads. The increased goodput was at the expense of 

high network overhead. 
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CChhaapptteerr  11  IINNTTRROODDUUCCTTIIOONN  

The new requirements posed by the use of multimedia in distributed networks called 

for new ways of handling the new type of data that was being treated, continuous 

media. Handling continuous media favored the introduction of new mechanisms for 

dealing with its realtime aspects. Quality of Service (QoS) management stands out as 

a major aspect to be handled. 

1.1 Continuous Media 

With the advancement in computer hardware and networking technologies, there was 

a matching elevation in the anticipation of computer users.  Traditional computer 

users started demanding more than merely exchanging text data and binary files. The 

next step in user expectations was to interchange audio and video data, which are 

collectively referred to as multimedia.  Multimedia transfer imposed more burdens on 

the existing systems for two main reasons: the nature of the data being transferred, the 

increasing bandwidth requirements for multimedia data, and the nature of multimedia 

applications themselves. 

Unlike binary data, multimedia has diverse requirements in terms of bandwidth, 

latency levels and jitter. Once multimedia transfer starts, it is expected to flow with a 

constant rate. This concept of constant flow rate gave rise to the concept of continuous 

media.  One cannot expect an audio transfer to be delayed in the middle without 

hearing “clicks” in the stream, which renders the audio stream non-comprehendible.  

The same applies for the other types of multimedia data.  It is this implied rate of 
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exhibition for continuous media that caused problems for traditional distributed 

systems. Conventional distributed systems were designed to deal with transmitted data 

in a “best-effort” fashion.  This “best-effort” technique will destroy the integrity of 

continuous media because it does not guarantee the expected rates. This called for the 

evolution of new systems that can handle continuous media, whether at the application 

level, transport layer level, or distributed system level. 

1.2 Quality of Service 

The realtime requirements of continuous media imposed a limit on the level of service 

that a distributed system can provide to its clients. The guaranteed level of service for 

continuous media communication is termed Quality of Service (QoS). QoS refers to 

certain characteristics as observed by the transport service users [Reynolds 96]. 

Most existing distributed systems are based on traditional communication 

architectures that have a narrow notion of QoS. The Internet Protocol (IP), for 

example, can only specify ‘high’ and ‘low’ throughput or reliability factors. The 

underlying network rarely honors such qualitative measures. Furthermore, existing 

qualitative QoS parameters are defined statically. Current needs require the ability to 

dynamically modify the agreed upon values through processes of negotiation and 

renegotiations. The need exists for more quantitative parameters to be specified and 

honored [Campbell 94]. Modern multimedia distributed systems should have the 

facility to specify and honor agreed QoS levels. 

Recent network topologies provide support for QoS definition and management. 

Modern networks, such as ATM, allow for the reservation of QoS levels prior to 

channel creation. Once a QoS level is granted, the network guarantees to send the 
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transmitted data at the specified level. Older networks, such as Ethernet, do not have a 

facility for resource reservation. The network medium is shared among applications 

and it is left to the applications to cooperate in sharing the network in a way that 

maximizes network utilization and performance. 

1.3 The Problem 

This thesis addresses one problem that shows with QoS management: the provision 

of system-level QoS on non-guaranteed networks. The goal of this thesis is to 

borrow, adapt and develop mechanisms for porting the QoS concepts that were 

originally developed for guaranteed networks to work with non-guaranteed network 

platforms. 

This work asserts that QoS provision should be performed at the system level rather 

than the application level. Leaving QoS provision to the application level has the 

following problems: 

 complexity of user applications due to the addition of QoS management to the 

applications 

 inability to handle multiple coexisting applications with different media types and 

varying QoS requirements 

Providing a common interface to the applications to access QoS facilities will simplify 

the creation of multimedia applications. System-level QoS management also allows 

for maximum network utilization by enforcing system-level management of the data 

being transmitted. This thesis demonstrates that QoS can be provided at the system 
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level by providing a complete transport-level architecture that facilitates QoS 

management of multimedia data. 

1.4 Motivation and Contribution 

Providing QoS for non-guaranteed networks is essential due to the dominance of 

traditional network platforms that do not have inherent QoS support. Facilitating QoS 

management for the traditional platforms will allow for the utilization of the new 

concepts of multimedia to the old existing networks. It will also lay the foundations 

for permitting multimedia communication on heterogeneous networks that comprise a 

combination of both traditional and modern network platforms, such as the Internet. 

This thesis provides a novel approach to QoS provision, where a complete transport-

level QoS management architecture is designed to provide QoS functionality to non-

QoS-aware platforms. The technique adopted is breadth coverage of all essential 

aspects of QoS management. Key QoS management functions are provided in an 

elementary form to furnish a basic, yet complete, framework for QoS management on 

non-guaranteed networks. One aspect of QoS management, namely admission control, 

is studied in depth to provide a new approach for predictive admission control on 

networks that do not provide QoS guarantees. 

1.5 Thesis Outline 

In the next chapter, a survey of current research in the field of QoS management is 

presented. The survey includes the current standardization efforts as well as individual 

research in the field of QoS management. The survey covers research performed on 

guaranteed and non-guaranteed networks. 
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Chapter 3 focuses on QoS management research for transport protocols. Focus is 

given on the incorporation of QoS mechanisms at the transport-level. A discussion of 

QoS management for the Internet Protocols is also presented. 

The proposed architecture is outlined in Chapter 4. The chapter describes the approach 

used in design and details the design of the different components of the proposed 

system. The chapter also presents the implementation of the proposed system. 

Chapter 5 provides the results of the testing and measurement performed on the 

implemented system. Results show the benefits of the proposed system and the costs 

of achieving those benefits. 

Chapter 6 concludes the thesis and provides a summary of the proposed work. The 

chapter also outlines future directions for possible fields of research in the area of QoS 

management for non-guaranteed networks. 
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CChhaapptteerr  22  QQOOSS  AARRCCHHIITTEECCTTUURREESS  SSUURRVVEEYY  

2.1 QoS Basics 

Quality of Service is the collective effect of service performance, which determines 

the degree of satisfaction of a user of the service [Hafid 96b]. The level of satisfaction 

for a distributed multimedia application is defined in terms of several characteristics, 

called QoS characteristics. The distributed multimedia system manages those 

characteristics for different application in the process of QoS management. This 

section describes different existing QoS characteristics and the steps of QoS 

management in a distributed multimedia system. 

2.1.1 QoS Characteristics 

QoS characteristics define the fundamental aspects of QoS to be managed by the 

distributed multimedia system [ISO 95]. They represent some aspects of the system 

that are to be identified and quantified. QoS characteristics are represented for every 

connection existing in a multimedia system. The QoS characteristics and the values 

associated with those characteristics will be assumed to exist by the application as 

long as the communication channel exists. In the case of multi-peer communication, 

the communication channel is from one sender to several recipients. Here the QoS 

characteristics may either be connection-wide or receiver-selected. Connection-wide 

characteristics apply to all instances of the communication channel with all the 

recipients of the service. Receiver-selected characteristics apply only to a single 

instance of the channel that the receiver is connected to. All other instances of the 
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communication channel share the connection-wide characteristics. This permits 

custom-configuring QoS requirements per receiver to allow for heterogeneous 

receivers. 

The proposed ISO standard QoS framework [ISO 95] categorizes the QoS 

characteristics of general importance into: 

 Time-related characteristics 

 Coherence characteristics 

 Capacity-related characteristics 

 Integrity-related characteristics 

 Safety-related characteristics 

 Cost-related characteristics 

 Security-related characteristics 

 Reliability-related characteristics 

 Other characteristics 

Each category of the characteristics contains a set of generic QoS characteristics that 

could be quantified in numbers, vectors, or matrices using a specific unit. The generic 

QoS characteristics can be further specialized into specific QoS characteristics. 

Specialization is done by limiting a generic characteristic to a certain event or to or 

from a specific origin or location or by representing the original characteristic as a 
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statistical function, such as variance of the generic function. For example, the “time 

delay” characteristic can be specialized into “transit delay” and “request/reply” delay, 

which are two kinds of time delay or can be specialized into mean time delay to 

represent the arithmetic mean. The ISO document [ISO 95] gives a detailed discussion 

of the QoS characteristics in every category, their definition, quantification and units. 

2.1.2 QoS Management 

Distributed Multimedia Systems aim at managing QoS characteristics to produce the 

expected multimedia performance. QoS management is done through several QoS 

management functions (QMFs). QoS management functions refer to all the activities 

relating to the control and administration of QoS within a system. QMFs are 

composed of several QoS mechanisms. A QoS mechanism is an action performed by 

one or more entities in a distributed system to meet one or more QoS requirements. 

QoS mechanisms may operate individually or be combined to cooperate in performing 

a single QoS management function. The QoS requirements that QMFs act to meet are 

represented as QoS parameters, which are values given by the users of the system for 

certain QoS characteristics. 

The activities supported by QMFs include [ISO 95]: 

 Establishment of QoS for a set of QoS characteristics 

 Monitoring of the observed values of QoS 

 Maintenance of the actual QoS as close as possible to the target QoS 

 Control of QoS targets 

 Inquiry upon some QoS information or action 

 Alerts as a result of some event relating to QoS management. 
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An important notion to QoS management is the notion of a flow. A flow is defined as 

the production, transmission and eventual consumption of a single media stream as an 

integrated activity governed by a single statement of QoS [Hutchison 95]. QoS 

management uses QMFs at different stages during the lifetime of a flow. QoS 

management is typically performed a priori, before initiation, at initiation of the flow 

and during interaction. A priori management can occur when certain QoS parameters 

are preset in the system at design time.  For example, a multimedia system may have 

preset values for certain video characteristics that are applied system-wide. QoS 

management can be performed before initiation by reserving some resources before 

communication is initiated. During flow initiation, the application can negotiate with 

the system the QoS parameters to use for certain QoS characteristics according to the 

application needs and the system’s current state. QoS management can also be 

performed during communication within a flow when a certain QoS characteristic 

falls below or exceeds the agreed upon parameters. This causes an alert to the 

application to either renegotiate QoS or terminate. 

QoS management activities can be categorized into three phases: prediction, 

establishment and operation. During the prediction phase, current QoS parameters of 

the system are examined to be able to predict what kind of parameters an application 

can ask of the system. After QoS parameters are predicted, flow establishment takes 

place with all the QoS management functions related to establishment taking place, 

too. These are typically actions of negotiation, renegotiations and setting of 

parameters in case of degradation. Finally, during the operation of a flow, QoS 

monitoring and maintenance is done by the system and QoS inquiries are done by the 

applications. It is hence useful to categorize QoS management activities into 
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specification, mapping, negotiation, resource reservation, admission control, 

maintenance, monitoring, policing, adaptation, renegotiations, accounting and 

termination activities. 

2.1.2.1 Specification 

The purpose of QoS specification is for applications to represent their multimedia 

QoS requirements through defining values for the QoS characteristics supported by 

the systems. This is known as passing parameters to the QoS system. It is generally 

desirable that the system allows applications to specify their QoS requirements in 

terms of characteristics that are meaningful to the application. Video applications, for 

example, should specify the number of desired frames per second and it is up to the 

system to translate that (in the mapping step) to meaningful system-level QoS 

parameters such as throughput and jitter. The QoS requirements specified by the 

application will act as a service-contract that the system will be expected to adhere to. 

The application can specify QoS requirements in several ways. Common ways 

include: 

 upper or lower limits 

 upper or lower thresholds 

 a specific operating target value 

QoS requirements can also specify actions to be taken as a result of reaching the 

specified limits or thresholds in other characteristics. Thresholds are different from 

limits in that they carry no restriction on whether or not they should be crossed [ISO 

95]. 
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2.1.2.2 Mapping 

QoS mapping is normally responsible for translating the user-level QoS requirements 

into QoS requirements for the different levels of the system. Hafid [Hafid 96b] defines 

three main types for mapping: 

 QoS – QoS mapping. QoS parameters specified at the higher level are mapped into 

QoS parameters for the lower layer. An example of this is mapping a protocol 

level time requirement into an ATM cell QoS parameter. 

 QoS – resource mapping. QoS parameters of a certain level are mapped into 

resources that need to be reserved, such CPU, bandwidth or system buffers. 

 Service – system mapping. Services are mapped onto system components that are 

required to support the requested service. 

Mapping, in conjunction with specification, relieve the application from the burden of 

having to specify system-level QoS parameters that might not be meaningful to the 

application developer. 

2.1.2.3 Negotiation 

The role of the negotiation phase of QoS management is to find an agreement on the 

values of QoS parameters between the application establishing a flow and the 

distributed multimedia system. Typically, applications will ask for the best QoS they 

can get. It is the task of the system to check the available resources and report to the 

requesting application the levels of QoS that the system can permit. The application 

should decide, based on the reported available QoS, whether to abort establishment, 
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establish with a lower QoS, or negotiate a new set of parameters based on the reported 

QoS. For example, a video application may require 30 frames per second for its 24-bit 

video data. When the system reports back the availability of a 20 frames per second 

rate only. The application can either refuse to work with this rate, accept the 20 frames 

per second rate, or negotiate having 30 frames per second for 8-bit video data. The 

result of the negotiation process should be the establishment of the flow with 

acceptable QoS parameters for both the system and the application, or the cancellation 

of the process if agreed levels cannot be reached. 

2.1.2.4 Resource Reservation 

In order to guarantee the agreed QoS levels, the system needs to allocate low-level 

resources to the applications. Resources include network bandwidth, CPU cycles 

required for multimedia processing, thread scheduling, memory and buffer space. 

Normally, only requesting a low-level resource and checking the outcome of the 

request can test QoS availability. This shows why resource reservation is a process 

that is often tightly coupled with QoS negotiation. 

Hafid [Hafid 97] discusses two approaches to resource reservation: 

 Pessimistic Approach. Resources are allocated based on the worst-case 

scenario. This clearly leads to fully guaranteed QoS but also leads to 

under-utilization of the allocated resources because multimedia data 

naturally come in bursts. 

 Optimistic Approach. Resources are allocated on the average 

characteristics. This causes a more efficient utilization for resources but 
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could yield to situations where the “guaranteed” QoS is not guaranteed! 

This leads us to other mechanisms of QoS alerting and QoS renegotiations. 

2.1.2.5 Admission Control 

Together with negotiation and resource reservation, admission control lies at the heart 

of QoS establishment in QoS management. Based on the system’s QoS policies and 

the current QoS levels, the system makes the decision on whether to admit the QoS 

request or not. The decision is based on tests that the system makes internally to 

allocate resources (resource reservation) and to inquiries about QoS levels of the 

requested QoS parameters. If the QoS parameters can be met without threatening QoS 

guarantees the QoS request is admitted. If the QoS parameters cannot be met, system 

policies are checked to see whether the request should be admitted. For example, an 

application’s request for 20% of the CPU cycles can be met even if it is not attainable 

if the requesting application is realtime and the system’s policies are for preempting 

normal applications for realtime ones. QoS renegotiations would now need to occur 

with the lower priority applications. 

2.1.2.6 Maintenance 

Since QoS management is an activity that involves the reservation of resources, 

distributed multimedia systems are expected to dynamically manage the reserved 

resources to make sure that they operate in a way that attains all contracted QoS 

levels. Resources are dynamically multiplexed by the system to ensure that high 

priority, realtime for instance, applications are guaranteed their levels and that lower 

priority applications do not starve. The dynamic multiplexing of resources to achieve 

the guaranteed QoS levels is called QoS maintenance. An example of this is the 
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realtime scheduler that is asked to cooperate with the QoS system to provide the 

required CPU cycles to the requesting applications. The maintenance of the realtime 

scheduler is an action of QoS maintenance. 

2.1.2.7 Monitoring 

QoS monitoring is another dynamic QoS management activity. It is part of the 

operation phase of flow management. During QoS monitoring, higher system layers 

constantly supervise the lower layers to ensure proper QoS levels are kept. This 

process involves QoS inquiry to inquire about current QoS levels and also involves 

comparison with the contracts to guarantee that the contracted QoS values are obeyed. 

Fine-grained resource adjustment can be performed as a maintenance action that 

results from monitoring. When contracted QoS levels cross the contracted limits, 

notifications are sent to the concerned applications. A QoS degradation notification is 

sent to applications when the QoS values they contracted cannot be maintained by the 

system. Applications are expected to respond to degradation notifications by ignoring 

them, renegotiating new levels or terminating. When QoS values exceed the high 

limits specified by the application (if any), another notification is sent to the 

application notifying it with the change. Applications can respond with renegotiations 

for higher QoS values or continue to run with the current levels.  

Consider the video application example once more. Assume that during negotiation 

the application agrees on 24 frames minimum and 30 frames per second maximum for 

its 16 bits per pixel video. Now during operation of the flow, the system cannot keep 

the minimum QoS level of 24 fps. The system sends a degradation notification and the 

application has the option to terminate, ignore or renegotiate. The system decides to 
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negotiate 24-fps minimum and 30 fps maximum for black and white video. The 

system agrees with this and after a while, the burst in the system ceases to exist and 

the system can now provide more than 30 fps for black and white video for this flow. 

The system sends another notification to the application where it has the option to 

either continue with the current level or renegotiate a higher level, 30-fps 16-bit video 

again, for instance. 

2.1.2.8 Policing 

QoS policing is the equivalent of QoS monitoring but from the applications’ side. 

Since QoS contracts are constrains to both the system and the application, QoS 

policing is responsible for ensuring that the application that agreed to a QoS contract 

does adhere to its QoS terms just as QoS monitoring ensures that the system obeys the 

contract, too. QoS policing is only valid where administrative or charging rules are 

being enforced. For example, if applications are being charged for the data they 

transmit and an application agrees to send at 1 MBPS; if the application tries to send 

at more than 1 MBPS, QoS policing should detect the situation and react. Actions 

expected of QoS policing include ignoring the application’s violation, notifications, 

automatically shaping the data in the flow through filters to adhere to the contract or 

pure termination of the violating application. 

2.1.2.9 Adaptation 

QoS adaptation is responsible for automatically altering data in a flow to adapt to 

changing QoS context. When QoS values cannot be maintained at the contracted 

levels, the system may solve the problem in one of two ways: system and application 

policies or adaptation. The first alternative is the normal QoS alerting as a result of 
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QoS monitoring resulting in either renegotiations or termination. Here the application 

is the sole controller in case of the system being incapable of delivering the desired 

QoS. Another approach is to allow the system to shape the data streams to 

automatically adhere to QoS requirements. This philosophy is based on the concept 

that a degraded service is better than no service, but it ignores the fact that 

applications themselves know better how to degrade the service than the system. 

Favorers of adaptation suggest methods of data filtering to shape streams. The system 

may perform lossy knowledgeable compression to the data, may drop frames out of 

video streams or may ignore the high-quality information in scalable multimedia 

documents. 

2.1.2.10 Renegotiation 

Renegotiation is the process of repeating the QoS specification and QoS negotiation 

phases. It is frequently the outcome of a QoS degradation notification to the 

application. Other purposes for renegotiations are also commonplace. Applications 

may wish to save system QoS by degrading their services when they do not need the 

already agreed high QoS levels. Applications also tend to use the same flow for 

several uses, which may need different QoS levels. An example for this could be the 

use of a multimedia flow in a music radio broadcasting application. The application 

could transmit both the commentator’s voice and the songs in the same stream. 

Naturally, commentator’s voice would do with QoS levels for telephone-quality audio 

whereas songs would preferably be transmitted at CD-quality audio if possible. 

Renegotiations would have to occur every time the switch from commentator to song, 

or vice versa, occurs. 
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2.1.2.11 Accounting 

Accounting activities are essential when cost is taken into account. Multimedia 

channels are normally attached with costs. The costs range from copyright costs of the 

material being transmitted to QoS-related costs of system resource usage. The QoS-

related costs can be calculated in the QoS accounting phase. QoS-related costs are 

typically costs associated with the QoS values contracted, service guarantee types, 

duration of service, amount of data exchanged and security level [Hafid 96b]. 

2.1.2.12 Termination 

QoS termination is concerned with the graceful termination of applications having 

QoS contracts. During termination, the system should ensure that all resources 

allocated to the application are released and all system structures created to support 

the flow are freed. Checking should also be performed to check the dependencies 

among applications. Applications requesting termination should be checked to ensure 

that all flows created by the application are not closed before the clients of those flows 

have ended their contract for the flow. 

2.1.3 QoS Architecture Concept 

QoS contracts cannot be guaranteed with the provision of QoS at a single layer of the 

distributed multimedia system. Early systems in QoS literature were only concerned 

with provision of QoS at the network and transport layers. This lead to an incomplete 

discussion of QoS provision. A more global look into the QoS management process as 

an end-to-end process needed to be considered. Later work in QoS research was aimed 

at integrating QoS-driven end system architecture with the network configurable QoS 

services and protocols in order to meet application-to-application requirements. The 
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result were communication architectures which were broader in scope, and covered 

both network and end-system domains. The complete view of QoS provision that 

covers the QoS management functions on an end-to-end basis on all layers of the 

distributed multimedia system is called QoS architecture. The rest of this paper will 

focus on the evolution of QoS architectures from single layer QoS provision, into 

tentative standards and then full-blown QoS architectures. 

2.2 QoS Standards 

Earlier QoS work in distributed multimedia literature has been focused on QoS 

aspects in individual layers of the QoS architecture. A more complete look to the QoS 

story has started only recently. Since then, several QoS architectures have emerged in 

the research arena aiming at satisfying QoS requirements for distributed multimedia 

using a general approach. Due to the short age of the field of QoS management 

architectures, there are no agreed upon standards for the functionality of a QoS 

management system. A few standardization efforts have emerged aiming at providing 

guidelines for building QoS frameworks. This section presents three standards 

developed so far: ISO OSI, CCITT/ITU and IEEE frameworks. 

2.2.1 ISO 

The ISO standardization attempts aim at providing QoS support for the widely 

accepted ISO Reference Model for Open Systems Interconnection (ISO/OSI-RM) 

communication protocol. The ISO/OSI-RM protocol is a seven-layer protocol with 

every layer responsible for a phase of communication. Communication occurs by the 

processing and forwarding of data at each layer to an adjacent layer. The ISO QoS 

framework [ISO 95] defines a set of QoS characteristics. Applications have the 
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facility to specify, statically at connection establishment time, the QoS values for the 

QoS characteristics they desire. QoS management is now a problem of mapping the 

QoS characteristics across layers and the maintaining the desired QoS level through a 

set of QoS management functions (QMFs). QMFs are a set of QoS mechanisms that 

can be combined in several ways in order to meet the defined QoS requirements. 

The ISO model defines three levels of agreement for QoS management. An 

application may request best-effort agreement where no QoS requirements have to be 

maintained. Another option is compulsory agreement, where QoS requirements are 

specified but not guaranteed. They may be deliberately degraded to allow for other 

guaranteed applications to perform. Guaranteed agreements are for applications 

demanding a certain rate that has to be maintained. Guaranteed applications will not 

start unless the system is certain they will complete with the required QoS. 

The framework also outlines a number of QoS categories for applications to fall into. 

The QoS categories supplied are: secure systems, safety critical systems, time critical 

systems, highly reliable systems, easy to use systems, low cost systems, flexible 

systems and testable systems. Different default QoS policies apply for the different 

QoS categories presented. 

The ISO framework is not a complete framework for QoS management. It does not 

provide critical solutions to the QoS problems but rather give guidelines on how a 

complete QoS management architecture should behave. Moreover, the ISO framework 

relies on simple mapping for network level QoS. It assumes that the network provider 

will always support QoS provision, which is not always the case. 

2.2.2 CCITT (ITU) 
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CCITT work on QoS is merely to recognize the needs for QoS provision in ATM 

networks [Hutchison 95]. The CCITT standard provides QoS characterization at three 

different levels. The call control and connection levels are concerned with the 

establishment and release of calls and the allocation of resources along the path of 

ATM switch nodes. The cell control level is concerned with the data transfer phase 

itself. 

CCITT provides a set of manageable QoS characteristics similar to those defined by 

the ISO framework for equivalent functionality. The QoS characteristics are directly 

mapped to QoS values for the ATM circuits. It also provides for a process of in-call 

renegotiations as a form of QoS renegotiations phase. 

The CCITT work lacks the view of a complete architecture. It does not show how the 

QoS characteristics are derived from user-level QoS characteristics above the network 

layer. There is, also, a deficiency in the definition of how QoS levels are monitored 

and maintained in the ATM network. 

2.2.3 IEEE 

IEEE provides guidelines for QoS provision for its definition of the interface 

requirements of realtime distributed systems communication [IEEE 95]. IEEE 

discusses QoS with respect to the operating system and the communication system. 

The operating system provides priorities for applications that are dynamically 

modifiable to indicate which processes need more realtime data. At the 

communication layer, four kinds of communication are presented for both unicast and 

multicast communication: acknowledged, unacknowledged, reliable and unreliable 

transfers. This is a very vague and qualitative understanding of QoS provision that 
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needs further revision in order to enable acceptable QoS provision for realtime 

distributed systems. 

2.3 Layer-Specific QoS 

Most of the early QoS work in research literature focused on allowing QoS aspects at 

individual layers of the distributed multimedia systems rather than providing a 

complete solution for the QoS availability problem in terms of a full QoS architecture. 

One of two sides was generally considered by early QoS systems: the application level 

and the transport level. 

2.3.1 Application Level 

The application level includes both the distributed multimedia system level and 

operating system running at the end-system. Enhancements for distributed multimedia 

system aimed at providing new general concepts that would allow the applications to 

specify their QoS requirements and that would allow the system to obey these 

requirements. Enhancements at the operating system level aimed at adapting the 

operating system to provide for the transfer of continuous media instead of the static 

media support that already exists. 

Early experiments aimed at providing QoS support for the ANSA architecture 

[Campbell 93]. ANSA RPC interface descriptions were modified to include QoS 

parameters in order for the system to know the applications’ QoS requirements. 

Similar research has been performed at CNET and BBN and Rome Labs [Campbell 

96]. Other work aimed at inserting QoS filters [Yeadon 96] at different locations in 

the distributed system layer to filter the continuous media information to match the 
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current QoS levels of the system. This is based on knowledgeable filters that 

understand the continuous media contents and can selectively drop the details out of 

the media at times of heavy system loading. More recently, the problems for network 

heterogeneity have been addressed [Banerjea 97] [Gecsei 97]. This aimed at providing 

QoS with continuous media spanning heterogeneous networks as opposed to the 

homogenous or single networks addressed in early QoS discussions. 

At the operating system level, work has been going on to provide UNIX 

enhancements or UNIX-like adaptations of operating systems to provide for 

continuous media transfer and facilitate QoS handling. Significant work has been 

carried to support continuous media in Amoeba-based UNIX environments, Mach, 

Chorus, Pegasus and YARTOS [Campbell 96]. The work aimed at optimizing 

communication protocols and operating system scheduling. Work has also been done 

to adapt the UNIX SVR4 scheduler to deal with continuous media applications and to 

provide user level threads in the ARTS operating system [Blair 93]. Yau [Yau 96a] 

[Yau 96b] has had recent work on I/O efficient buffers, fast system calls, kernel 

threads and fast direct media streaming to allow continuous media to be effectively 

handled in the operating system with QoS guarantees. 

At the application level, also, comes the matter of storage servers. The main aim was 

to support simultaneous access to stored services with QoS guarantees. Work has been 

done on assignment of media to discs, realtime request handling as well as disc layout 

strategies [Blair 93]. 



 
23 

2.3.2 Transport Level 

At and below the transport layer, the concern has been to provide the capability of 

specifying QoS parameters with communications connections and to study network 

topologies that would allow QoS parameters to be specified and honored. 

Several attempts to design transport protocols have been carried out, most of which 

were later adapted into a full QoS architecture. The HeiTS transport service [Volg 96] 

was designed to allow for transport QoS and resource management and was later 

bundled into the HeiProject. The Multimedia Enhanced Transport Protocol (METS) 

[Campbell 94] [Campbell 97] was designed and later incorporated in the QoS-A. The 

MMTS protocol [Vogel 95] was later attached to Montreal’s architecture. Lately, Yau 

developed a migrating sockets protocol [Yau 97] as an extension to Berkeley sockets 

at the user level to provide QoS handling. 

Several efforts to provide QoS support to Internet protocols were carried out. RTP 

[Schulzrinne 95] is a protocol that aims at providing realtime extensions to IP. RSVP 

[Braden 96] is a resource reservation protocol that runs on top of IP and allows for 

advanced resource reservation as an extension to IP. IPv6 [Deering 95] is the next 

generation Internet Protocols that allow for multicast communication and QoS 

specification for continuous media. IPng allows for extended addressing, QoS 

handling and enhanced security [Braun 97]. ST-II+ [Delgrossi 95] is a connection 

oriented network protocol, which allows resource reservation started by the origin of 

the flow.  The associated SCMP protocol allows the initiation and modification of 

connections allowing resource specifications to be changed dynamically. 
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Recent research has been performed on network-level topologies to compare and 

evaluate existing networks with regards to their support for QoS [Stuttgen 97] 

[Worsley 97].  

2.4 QoS Architectures 

Earlier QoS work in distributed multimedia literature has been focused on QoS 

aspects in individual layers of the QoS architecture. A more complete look to the QoS 

issue has started only recently. Since then, several QoS architectures have emerged in 

the research arena aiming at satisfying QoS requirements for distributed multimedia 

using a more general approach. Due to the short age of the field of QoS management 

architectures, there are no agreed upon standards for the functionality of a QoS 

management system. A few standardization efforts exist and will be discussed in the 

early part of this section. The QoS architectures that emerged in research literature 

will be discussed in the remaining parts of the section. The QoS architectures 

presented do not all speak the same QoS language. Most presented architectures 

address QoS management from different viewpoints that are sometimes incomplete 

when looked at from the perspectives of what has been provided by other 

architectures. The viewpoints of architectures will be discussed along with the 

discussion of the architectures themselves. 

The current work surveys the following QoS architectures that are available in 

research literature: 

 Tenet Architecture (Berkeley University) [Ferrari 96] 

 HeiProject (IBM’s European Networking Center, Heidelberg) [Volg 96] 
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 QoS-A (University of Lancaster, UK) [Campbell 94] 

 OMEGA (University of Pennsylvania) [Nahrstedt 95] 

 XRM (COMET Group, Columbia University) [Lazar 94] 

 Int-serv (Internet Engineering Task Force, IETF) [Braden 94] 

 TINA QoS Framework [Bosco 96] 

 MASI End-to-End Architecture (Université Pierre et Marie Curie) [Besse 94] 

 QoS Framework (Washington University) [Gopalakrishna 94] 

 CORBA (Open Management Group, OMG) [OMG 96] 

 Siqueria’s Thesis (Trinity College, Dublin) [Siqueria 97] 

 Univ. of Montreal (Université de Montreal, Canada) [Hafid 96a] 

 DJINN (Queen Mary, London) [Mitchell 97] 

2.4.1 Tenet Group 

The Tenet architecture is an early attempt at providing a complete QoS architecture 

for QoS management. Nevertheless, the architecture is heavily biased at the network 

and transport layers with little discussion on the end-system support. The architecture 

provides a set of protocols to be used for communications. The defined protocols run 

on top of the Realtime Internet Protocol (RTIP) that is concerned with data transfer. 

The Continuous Media Transport Protocol (CMTP) runs on top of RTIP and is 

responsible for the sequenced and periodic delivery of continuous media samples. The 

Realtime Message Transport Protocol (RMTP) is concerned with message based 

communication between points. Two control protocols are provided for channel 

administration and data transfer management. The Realtime Channel Administration 

Protocol (RCAP) provides generic connection establishment and resource reservation 
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functions. The Realtime Message Control Protocol (RTCMP) manages data transfers 

and detects error conditions. 

The operation of the protocols occurs in two phases. In the first phase, the source node 

issues a request to establish a realtime communication channel to a sink source. The 

request message passes along the nodes connecting the source to the sink. Every node 

will either accept the message and the QoS level defined in the message or reject it if 

it cannot attain the required QoS. If the message is accepted, resources are allocated to 

guarantee the specified QoS level and the message is forwarded to the next node. 

When the message reaches the sink, the second phase starts by forwarding an 

acceptance packet back to the source with the agreed upon QoS levels. The nodes in 

the path make fine adjustments to the allocated resources if needed depending on the 

agreed QoS. In case of rejection, the nodes free the resources allocated on receiving 

the rejection message, and forward the message to the previous nodes. The result is 

either a reserved channel with guaranteed QoS or a rejected request indicating the 

inability to attain the requested QoS levels. 
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Figure 1 – Tenet Architecture 
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The defined protocols allow for two kinds of guarantees: deterministic and statistical. 

Deterministic guarantees provide hard limit bounds on the performance within a 

session. Statistical guarantees promise a maximum of a certain percentage on delayed 

and lost packets.  

2.4.2 HeiProject 

The HeiProject is an advanced QoS model that incorporates both the network level 

structures with the end-system management structures to provide QoS guarantees.  

At the heart of the transport system is a proposed protocol for continuous media 

transfers, the HeiTS/TP protocol. HeiTS/TP provides the QoS mapping layer and also 

provides media scaling functions for QoS adaptation. Below the transport layer is the 

internetworking layer that is based on the ST-II protocol. The ST-II protocol, which 

was further developed into the ST-II+ protocol [Delgrossi 95], provides both 

deterministic and statistical service guarantees. 
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Figure 2 - HeiProject Framework 

The end-system support for QoS is accomplished using the HeiRAT management 

technique. HeiRAT is a resource administration technique that constitutes a full QoS 
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management scheme that includes QoS negotiation, QoS calculation, admission 

control, QoS enforcement and resource scheduling. The HeiRAT operating system 

also takes care of priority thread scheduling. 

The HeiProject was designed to handle heterogeneous QoS requests from the 

individual receivers in a multicast group. This is accomplished through two 

techniques: filtering and media scaling. In filtering, various network filters are run in 

different parts of the system, typically at gateways, where they automatically shape the 

incoming streams based on their knowledge of the stream contents. Media scaling 

techniques are based on an encoding that allow for progressive representation of data 

where high quality parts of the data can be dropped at the network areas where low 

QoS values are required. 

2.4.3 QoS-A 

The QoS-A [Campbell 93] is a layered architecture of services and mechanisms for 

QoS management of continuous media flows in multi-service networks. The basic 

element in the QoS-A is the flow concept, which designates the production, 

consumption and transfer of media. Flows are always simplex but are either unicast or 

multicast transfers. They may contain both media and control data. 

QoS-A is divided into five layers with QoS functions performed at each layer. The 

five layers are the network, physical, data-link, transport, and distributed platform 

layers. The distributed platform layer is the highest layer and contains a multimedia 

interface that allows for QoS configuration, multimedia functions, synchronization 

mechanisms and realtime scheduling mechanisms. The orchestration layer provides 

services that control temporal parameters of flows such as jitter and transfer rate. It 
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also provides primitives that ensure synchronization. QoS-A also defines a special 

protocol for the transport layer to allow for QoS provision, the Multimedia Enhanced 

Transport Service (METS). METS provides an interface for QoS to be specified, 

negotiated and contracted. METS allows for deterministic, statistical and best-effort 

communication. 
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Figure 3 - QoS-A Framework 

Each of the five layers is represented in three different planes: protocol, QoS 

maintenance and flow management planes. The protocol plane consists of a user plane 

and a control plane. Both planes are separated due to the different QoS requirements 

for both user data and control data. The QoS maintenance plane contains layer-

specific QoS managers for monitoring and maintaining the associated protocol 

entities. QoS managers are responsible for the maintenance of the QoS contract. The 

flow management plane is responsible for the flow establishment, QoS renegotiations, 

QoS mapping and QoS adaptation. 

2.4.4 OMEGA 
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The OMEGA architecture [Nahrstedt 95] aims at including the application layer with 

the end systems and network to the QoS management mechanism. By including the 

application layer, OMEGA aims at providing a simple QoS specification phase for its 

applications, relieving the applications of the burden of having to deal with 

complicated QoS parameters and values. End-system negotiation is a part of the 

internal working of the OMEGA system. It is performed during session establishment 

between the applications. QoS parameters negotiated in OMEGA are parameters for 

the application as a whole. This is to be contrasted with other architectures that aim at 

providing per-flow QoS management. 
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Figure 4 - OMEGA Framework 

OMEGA assumes a network that is capable of delivering packets with a bound on the 

delays and errors as well as a guaranteed bandwidth. This way, OMEGA frees itself 

from the hassles of having to simulate guaranteed throughput on a non-guaranteed 

network. OMEGA provides an application layer and a transport layer. The application 

layer provides functions for connection establishment and rate management. The 

transport layer provides basic functions, such as connection establishment and 

termination. OMEGA keeps a QoS broker that negotiates the guarantees required by 
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the applications with the guarantees provided by the network and transport layer. The 

QoS broker has a QoS buyer and QoS seller. The buyer receives high-level requests 

from applications and sends resource queries for the QoS buyer to reserve resources. 

The seller manages resources and answers the queries sent by the buyer. The QoS 

broker handles the admission control functions internally.  

2.4.5 XRM 

XRM is an architecture that provides QoS management at end-system and network 

levels through dividing its architecture into five planes. 

 The network management plane is responsible for OSI model of 

communication. 

 The resource control plane provides cell scheduling and call-management in 

the network. It also handles memory management and admission control at 

the end-system level. 

 The connection management and control plane handles running connections 

and traffic control functions. 

 The user transport plane is responsible for providing a multimedia transport 

interface for end-systems that is capable of transferring multimedia 

information. 

 The data abstraction and management plane represents abstractions of the data 

provided in the system. It implements data sharing among all other planes. 
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Figure 5 - XRM Framework 

XRM is based on a network that provides QoS guarantees such as ATM networks. 

Packets in XRM are classified into one of four classes (class I, class II, class III and 

class C). Each class represents a set of QoS requirements. QoS requirements are met 

through providing algorithms for cell scheduling and buffer management to 

dynamically manage communication of cells. 

At the end-system level, applications specify QoS requirements in terms of known 

standards such as MPEG-I video or CD-quality audio. The QoS requirements for the 

known classes are translated into QoS parameters to the system to provide QoS 

guarantees for the application. 

2.4.6 Int-serv (IETF) 

The Internet Engineering Task Force proposed a QoS management architecture that 

attempts to provide QoS management to Internet communication. The framework tries 

to add QoS management to the various elements involved in communication making 
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them “QoS aware.” The architecture provides models for QoS management in various 

network elements, such as routers and sub-networks and end-systems. The 

architecture is essentially a network level architecture that could be adapted to end-

systems.  

Application

RTP, etc

UDP

IP

Dispatcher

SA SA SA

RSVP, etc

User

Interface

Data packets Control packets
SA: service agent

Quality management interface:

 

Figure 6 - Int-serv Framework 

IETF provides for four types of delay: best effort, controlled, predicted and 

guaranteed. Best effort delays are the normal Internet delays that depend on the 

current system and network load levels. Controlled delay provides for a choice of one 

of several typical delays. Predicted delay provides a statistical delay bound. The 

guaranteed delay is an absolute guaranteed value for delay. 

At the application level, applications submit two sets of information to the QoS 

manager. First, the application provides the traffic specification, which indicates the 

patterns of use the application expects. Later, the application provides the service 

request specification, which shows the QoS requirements for the application from the 

different elements of the system. 
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The IETF architecture is made up of four components: 

 The packet scheduler handles packet communication based on queues and 

timers. 

 The classifier is responsible for grouping the packets into their respective QoS 

levels. 

 The admission controller is responsible for QoS parameter calculations and 

connection acceptance or refusal. 

 The reservation setup protocol is responsible for reserving resources along the 

path of the flow during the existence of the connection. 

The architecture later describes a QoS manager (QM) which acts as an abstract layer 

that separates applications from the details of underlying networks enabling 

applications to specify QoS requirements independently. 

2.4.7 TINA 

The TINA QoS framework is based on the differentiation between 

telecommunications applications and the distributed processing environment. 

Applications specify their QoS requirements in terms of service attributes in the 

context of the Computing Architecture [Aurrecoechea 98]. Resource managers 

employ QoS mechanisms to adhere to agreed QoS contexts. By separating 

applications from the processing environment, QoS declaration can be performed 

without having to deal with the complexes of resource management mechanisms 

required by the system. 
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The TINA project was further enhanced [Bosco 96] to support realtime and 

multimedia traffic through the use of the CORBA and ODP (Open Distributed 

Processing) standards, while keeping compatibility with the original TINA 

architecture. The new project is called ReTINA and is funded by Chorus Systems, 

Alcatel, Siemens, HP, CSELT, France Telecom, British Telecom, Telenor, APM, O2 

Technology and Broadcom. The project provides extensions to the CORBA IDL to 

incorporate stream abstractions. 

2.4.8 MASI 

The MASI project [Besse 94] aims at developing end-to-end QoS support in 

multimedia systems. The QoS framework specifies QoS requirements at the 

application level and considers resource management at the application level as well 

as at the transport and network levels. MASI operates on ATM-based networks. 
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Figure 7 - MASI Framework 

MASI research is motivated by the following parameters [Aurrecoechea 98]: 
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 The need to map QoS requirements from the ODP layer to specific resource 

modules efficiently and cleanly. 

 The need to resolve multimedia synchronization issues. 

 The need to provide suitable support for the communication protocols for 

multimedia services. 

2.4.9 Washington Univ. 

The Washington University model is based on QoS specification for end-to-end 

systems. The system provides four main functions: QoS specification, QoS mapping, 

QoS enforcement and transport-level realtime communication. QoS specification is 

performed through providing a limited set of QoS parameters for the applications to 

specify to make it simpler for applications to state their requirements. QoS mapping 

translates the QoS values into network level resources to be managed. Three types of 

resources are managed in this architecture: CPU, memory and network. QoS 

enforcement aims at providing realtime performance guarantees for the applications. 

This is performed using realtime upcalls (RTUs). RTUs are a means of transferring 

control to the system through a rate monotonic policy. This eliminates the need for 

frequent context switching and provides the rate required for realtime communication. 

RTUs are also used in sending packets at the transport layer at rates implied by the 

QoS values specified by the applications. 
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Figure 8 - Washington U. Framework 

2.4.10 CORBA 

The Object Management Group has created a Special Interest Group on QoS 

management in CORBA. The QoS SIG proposed a QoS architecture [OMG 96] that 

extends CORBA to support QoS management. The proposed architecture allows 

objects to specify their functional and non-functional requirements as multi-valued 

parameters. This allows clients to request more from objects than the normal binary 

(yes/no) behavior. Clients request data from objects based on QoS levels that the 

object can supply. The system allows the client to request the required QoS along with 

the service request. The QoS architecture is responsible for maintaining the agreed 

QoS levels within specified system constraints. 

The QoS manager in CORBA has the following goals: 

 Allowing clients to request and renegotiate QoS. 

 Allowing servers to describe QoS characteristics and QoS ranges that they can 

provide. 
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 Arbitrating resources in order to contain the system’s acceptable behavior within 

the desired bounds and to enforce QoS guarantees. 

The CORBA QoS manager proposes the concept of performance polymorphism as a 

technique to provide several QoS levels. The CORBA objects have their methods 

overloaded to provide different outputs at different operating QoS levels. 

2.4.11 Siqueria’s Thesis 

Frank Siqueria [Siqueria 97] proposed the adoption of CORBA on top of IP networks 

to provide for QoS management. The proposed architecture allows the transmission of 

control data using CORBA as a middleware on TCP/IP networks and stream data 

using more advanced IP protocols. Siqueria proposed the use of IPng along with RTP 

and RSVP on Integrated Services Networks. RTP (Realtime Transport Protocol) and 

RSVP (Resource ReSereVation Protocol) are newly produced Internet protocols that 

do not have middleware support yet. The architecture provides a transparent layer that 

the applications use to handle stream data. 

Siqueria’s improvements on the adopted core are: 

 The implementation of the CORBA stream mechanism on novel Internet 

protocols. 

 The definition of sets of QoS parameters for different categories of multimedia 

applications. 

 The definition of algebra for translating application QoS parameters to 

network-level QoS parameters or resource reservation messages whenever 

possible. 
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 The provision of a multimedia component hierarchy addition to the CORBA 

framework to facilitate the construction of distributed multimedia applications 

using CORBA. 

2.4.12 Univ. of Montreal 

Hafid and Kerherve [Hafid 96a] proposed a QoS architecture that provides 

application-level and transport-level QoS management. The architecture is composed 

of three QoS interfaces for the client, server and transport systems. In addition to the 

QoS interfaces, the architecture employs a transport protocol that allows for the QoS 

negotiation of the three parties. The client interface is a qualitative interface that 

allows the application to set its QoS requirements in terms of belonging to specific 

QoS groups, such as video, audio or still images. Server QoS interfaces allow the 

server to specify similar information for the multimedia documents it is capable of 

providing. The architecture provides its own multimedia transport service (MMTS) 

that allows for connection oriented services and unidirectional point-to-point 

transmission with adhering to given QoS parameters. QoS parameters at the transport 

level are quantitative values that map directly to the network level. The architecture 

provides an extensive QoS negotiation mechanism [Kerherve 94] that works with 

MMTS. 

2.4.13 DJINN 

The DJINN framework [Mitchell 97] developed at Queen Mary tackles the QoS 

problem for groupware applications. Groupware have different requirements than 

those of normal static distributed multimedia applications. Groupware rely on the 

dynamic functions of several cooperating applications with applications joining and 
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leaving communication channels dynamically. This has implications on admission 

control and resource reservation policies. 

The DJINN system takes the approach of developing a QoS model for the application 

where high-level QoS requirements are captured and expressed. The encapsulated 

QoS properties form a natural form for later reconfiguration. The QoS model is 

separate from the application. This allows the model to be created and admission 

control performed on the model before the actual application is created. This saves the 

trouble of creating the application, which could be a long and remote process. 
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CChhaapptteerr  33  TTRRAANNSSPPOORRTT--LLAAYYEERR  PPRROOTTOOCCOOLLSS  

3.1 Introduction 

The QoS architectures introduced in the previous chapter incorporate a transport level 

protocol to provide the heart of the guaranteed communication service in distributed 

multimedia systems. Transport protocols are the fourth layer of the seven-layer ISO 

OSI model shown in Figure 9. They provide the basic end-to-end communication 

requirements of collaborating entities and applications. Other layer protocols, 

although needed, are less important to designers and far less complex [Stallings94]. 

Applications can easily be programmed to access the transport layer directly to 

achieve its communication requirements. This is the normal mode of operation for the 

DOD’s transport protocols as well as all the QoS architectures surveyed in the 

previous chapter. 

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Figure 9 - ISO OSI Model Layers 
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In the past two decades, there were huge leaps in network architectures and important 

advances in physical network layers. Unfortunately, the physical layer advances were 

not matched with an equivalent progression in the design of the transport protocols 

that operate on the new physical layers. This reduced the benefit of the great physical 

advances to the application users, as the introduction of highways does not help a lot 

if bicycles are still used for transportation. New transport protocols had to be 

individually developed by QoS architectures to provide their end-to-end 

communication means. Existing protocols could not be used due to their lack of QoS 

definition, which now exists in many physical layers such as FDDI and ATM. The 

new protocols make use of the QoS-enabled hardware to provide QoS-enabled 

protocols. 

QoS-enabled transport protocols are a requirement for distributed multimedia 

communication since the advancement in hardware alone does not eliminate the need 

for a matching advancement in transport protocols. Braden [Braden 94] answers the 

myths raised that QoS-enabled transport protocols are not required because the 

bandwidth will eventually be infinite causing the existing protocols to suffice. It is 

impractical to assume in the short or medium term that bandwidth will be so abundant 

and cheap that there will be no communication delays other than the speed of light 

eliminating the need to reserve resources. While raw bandwidth may seem 

inexpensive, bandwidth provided as network service is not likely to become so cheap 

that wasting it will be the most cost-effective design principle. Unless we provide for 

the possibility of dealing with congested links, then realtime applications will simply 

be precluded in those cases. Furthermore, simple priority provided by existing 

protocols is insufficient. Existing priority levels are not likely to be adequate for 
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defining all realtime streams in the future. If too many applications are tied together in 

a single priority level, they will all compete for the priorities of that level causing 

degradation for all applications in the level. Unless some quantitative means are 

provided to differentiate among applications, no true prioritization can be achieved. 

This adds to our belief that enabling QoS functionality in transport protocols is 

necessary for meeting the requirements of advanced multimedia applications of the 

current and upcoming decades. 

3.2 Transport Services 

Transport protocols operate by providing a set of services that are available to higher 

level layers and user applications. The specified services shield the user from the 

underlying details of the lower layers. The transport protocol, in turn, makes use of the 

services supplied by the available lower layers to provide its named services. The 

transport protocol provides the named services through a set of known access points; 

each called a Transport Service Access Point (TSAP). The users of the transport 

service utilize a TSAP to communicate with the transport entity as shown in Figure 

10. The transport entity abstracts the details of lower layers to provide the same 

functionality to all its users irrespective of the underlying layers. 
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Figure 10 - Transport Service Dynamics 

Modern transport protocols are expected to provide QoS guarantees for the intelligible 

transmission of continuous media in distributed multimedia systems. Current transport 

protocols, which do not provide QoS support, will not be able to correctly manage 

coexisting flows of traditional burst data and continuous media. At many times, 

traditional burst data will overwhelm the transport service with large amounts of data 

that is not time-critical. The transport protocol, not being able to differentiate, will 

send the data that comes to it first, delaying the other until the send is over with no 

clever multiplexing of data on the shared communication link. The cuts in continuous 

media transmission in order to send the traditional burst data will cause the continuous 

media to arrive after a delay. This delay is unacceptable for continuous media since it 

breaks the continuity of multimedia playback. QoS guarantees help the application in 

obtaining the desired level of service to ensure correct playback. They also help the 

transport protocol to correctly multiplex data on the shared communication link to 
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satisfy the needs of different kinds of applications as permissible by the available 

resources. 

Communication in distributed multimedia systems is allowed in either the single 

sender to single receiver mode, known as unicast, or in single sender to multiple 

receiver mode, known as multicast. A single binding between a sender and one or 

many receivers is termed a continuous media data flow, or shortly a flow. Transport 

protocols primarily require the definition of several quantitative QoS parameters to 

characterize continuous media flows in order to be able to manage them correctly. The 

most important parameters to consider are throughput, transit delay, transit delay jitter 

and error rate. These parameters help the transport protocol in scheduling the 

transmission of the flows’ data units, named Transport Service Data Units (TSDU). 

Figure 11 provides a graphical rationalization of the main QoS parameters. 

 

Figure 11 - QoS Parameters Definition 
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 Throughput is a quality that defines the rate at which TSDUs are transmitted from 

the sender to the receiver. It is defined in the ISO standard [ISO8072] as the 

smaller of the sender’s throughput and the receiver’s throughput. The sender’s 

throughput is the TSDU size divided by the time interval between the previous 

and the last TSDUs being presented by the sender. The receiver’s throughput is 

the TSDU size divided by the time interval between the previous and the last 

TSDUs being indicated for receipt by the receiver. 

 Transit delay refers to the time between the signaling of a TSDU-send invocation 

on the sender side and the receipt of a TSDU-receive indication on the receiver 

side. 

 Transit delay jitter, or shortly jitter, is the variance in transit delay. Jitter is defined 

as the difference between the longest and the shortest transit delays observed for 

TSDU transmissions for a flow. 

 Error rate is a measure of the tolerance of the flow to communication impairments. 

Continuous media flows tend to have stringent timing parameters with more 

relaxed error rates. This allows for TSDUs to reach the receiver in a timely fashion 

but not necessarily in a reliable way. TSDUs arriving with errors simply appear as 

noise during the playback of the media stream. Burst data, on the other hand, tend 

to have relaxed timing requirements with strict error rate demands. 

The commitment of the transport protocol to the contracted QoS values for a flow is 

not necessarily a guarantee of full abidance. The strictness of abiding by the 

contracted QoS context depends on the QoS policies employed by the transport 
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protocol. The contracted QoS values can be totally ignored to provide best-effort QoS. 

This is the case with the current transport protocols. QoS values can also be used as 

predictive tools to aid the transport protocol in scheduling its TSDUs. The most 

common use for QoS values is to provide statistical guarantees on TSDU delivery, 

where it is guaranteed that a certain contracted percentage of the TSDUs will exhibit 

the contracted QoS values. The most stringent manner for applying the QoS values is 

to provide full guaranteed QoS delivery. This ensures that all TSDUs in a flow will be 

delivered with the contracted QoS values. Although, at first sight, this might seem the 

only logical way to implement QoS provision, guaranteed QoS delivery has severe 

impact on resource utilization patterns. Resources have to be reserved for the single 

usage of the contracting flow with no sharing even if they will be wasted most of the 

time. 

The transport layer provides QoS management at different stages during the lifetime 

of a flow. The first QoS role played by the transport protocol is during connection 

establishment. At connection establishment, the service user files a request for flow 

setup at a TSAP using a set of QoS values, called QoS context. The transport protocol 

validates the context and performs admission control strategies to either accept or 

reject the establishment request. If the resources required for the requested QoS 

context are not available, the service user is notified to start a series of QoS 

negotiation ending in either a modified QoS context that can be accepted or the 

cancellation of the establishment request. Subsequently, resources are reserved along 

the path from the sender to the receiver to ensure the contracted QoS context 

according to the QoS policies of the transport service. The managed resources are the 

network bandwidth, protocol buffers, and CPU cycles. During the lifetime of the flow, 
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TSDUs are accepted from the sender, classified by the transport service in one of it 

sending queues and routed appropriately to reach its receiver. TSDUs are scheduled 

according to the timing constraints of the flow’s QoS context. TSDUs may be 

dropped, within the allowable error rate, to meet the QoS constraints of the current 

flow and other flows in the network. The transport protocol employs flow control 

mechanisms on the TSDUs transmitted from the sender to the receiver in order to 

ensure proper usage of the reserved resources. QoS monitoring is performed along the 

lifetime of flows to indicate any failures in achieving contracted QoS contexts. Upon 

failure detection, QoS degradation signaling can be performed to indicate QoS 

problems to the contracting user. The result can vary from ignoring the signal, starting 

QoS re-negotiation, or flow termination. At any time, the flow creator may ask for 

flow termination. The transport layer processes termination requests and releases all 

reserved resources related to the flow being terminated. 

Transport protocols are expected to provide QoS irrespective of the underlying 

network. The existence of a network layer that supports QoS relieves the transport 

layer from many burdens. Nevertheless, network layers that support QoS are not 

widely spread nowadays and they are not expected to be dominant in the near future. 

The vast majority of existing LANs still rely on Ethernet technologies, which are not 

QoS aware. This adds to the complexity of the QoS-aware transport layer. QoS-aware 

transport protocols should be able to deal with the heterogeneity of the existing 

Internet. 

The rest of this chapter surveys a number of transport protocols being developed in 

current research literature. Some of the protocols discussed were developed mainly for 
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QoS architectures while others are enhanced protocols for the Internet. The protocols 

developed for QoS architectures assume an QoS-aware network layer in order to 

provide QoS guarantees. The presented Internet protocols provide only guidelines for 

realtime scheduling of TSDUs and predictive QoS management. The chapter 

concludes with a description of what is needed for a transport protocol that is capable 

of providing QoS-aware functionality irrespective of the underlying network layers. 

3.3 Transport Protocols in QoS Architectures 

The QoS architectures presented in the previous chapter rely on an integrated transport 

protocol that provides the core functionality of QoS provision. The developed 

transport protocols vary in several aspects. Not all protocols provide guaranteed 

delivery policies. Furthermore, several protocols provide their own flavor and 

combination of QoS policies to create new policies. The mechanisms employed by the 

transport protocols are diverse. Connection establishment and termination 

mechanisms vary from handshaking to timer-based connections. The employed flow 

and error control mechanisms are another point of concern. The presented protocols 

also differ in the type of QoS monitoring and signaling employed as well as the QoS 

negotiation models available. 

3.3.1 OSI95 

The OSI 95 Project [DBL94] was developed at the Université de Liège in Belgium. 

The project provides a transport service with multimedia support. QoS enhancements 

in OSI 95 include a new set of negotiation mechanisms as well as a set of QoS 

policies for the transport protocol to provide. The transport protocol allows for QoS 

specification, negotiation and monitoring. QoS re-negotiation facilities are not 
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provided. OSI 95 does not require an QoS-aware network layer and, in turn, it does 

not guarantee bounds on service. However, the obligation is on the behavior when the 

service bounds are not satisfied. 

OSI 95 provides three types of QoS policies: compulsory, threshold, and maximum 

quality. Compulsory QoS values are specified when the required values are to be 

strictly adhered to. The transport service terminates a flow if it cannot maintain the 

contracted compulsory QoS values at the required level. Threshold QoS is similar to 

the best-effort QoS provided by traditional transport protocols except that the 

transport protocol is obliged to signal the service users when the instantaneous QoS of 

the flow falls below the specified threshold QoS. Maximum quality QoS is provided 

to limit the resources used by the transport layer for a particular flow. Normally, flows 

will not complain if the actual QoS is more than what is required. Maximum quality 

QoS is based on the philosophy of minimizing unnecessary usage for cost-saving 

purposes. This suits environments where users are charged for the resources used. 

OSI 95 provides two negotiation mechanisms to specify the three QoS values of a 

flow. Both negotiation mechanisms are based on the classical 4-primitive exchange: 

request, indication, response, and confirmation as shown in Figure 12. 
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Figure 12 - The Classical 4-Primitive Exchange 

The first mechanism is the “Triangular Negotiation for Information Exchange”. In this 

type of negotiation, the sender suggests a QoS value in the request primitive. The 

transport service may weaken the suggested value before passing it to the receiver in 

an indication primitive. The receiver may further weaken the QoS value in the 

response primitive. The sender finally accepts or rejects the final QoS value in the 

confirm primitive. This type of negotiation is performed for the maximum quality 

QoS values. 

The second mechanism is the “Triangular Negotiation for a Contractual Value”. The 

goal in this type of negotiation is to find a contractual value that binds both the service 

provider and its users. The user provides a minimal requested QoS value and a bound 

for strengthening this value. The service provider may decrease this bound in the 

indication primitive. The receiver may finally reduce this bound to select a QoS value 

that is still stronger than the minimal value. The sender finally accepts or rejects the 

selected QoS value in the confirm primitive. This negotiation mechanism is used for 

negotiating compulsory and threshold QoS values. 

3.3.2 QoS-A 
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The QoS-A [Campbell94a] developed at Lancaster uses a locally developed 

Multimedia Enhanced Transport Service (METS) [Campbell94b] to provide its 

transport layer requirements. METS provides access points for end-to-end multicast 

communication of service users. QoS levels are contracted through well-defined 

primitives that build a service QoS contract. Service contracts QoS levels are achieved 

in the context of a local ATM network. 

METS works with the notion of flows. A METS flow is an end-to-end communication 

binding between a sender and its receivers. Service users establish a continuous media 

flow with an agreed service contract via the following primitive: 

FLOW_ID FLOW_CONNECT_REQUEST 

( TSAP_T *SOURCE, *SINK ; SERVICE_CONTRACT_T *QOS ); 

The sink TSAP may also represent a group address to accommodate multicast flows. 

The service contract subsumes the well-accepted QoS parameters of jitter, error, delay 

and throughput, but also allows the specification of a wider range of options. These 

are characterized in terms of the following clauses: 

 Flow_spec_t characterizes the user’s traffic performance requirements. 

 Commitment_t specifies the degree of resource commitment required from the 

lower layers. 

 Adaptation_t identifies actions to be taken in the event of violations to the 

contracted services. 
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 Maintenance_t selects the degree of monitoring and active QoS maintenance 

required of the QoS-A. 

 Connection_t selects from negotiated, fast reservation and forward reservation 

connection services. 

 Cost_t the costs the user is willing to incur for the services requested. 

Flow management is the key function of the METS protocol. METS provides two 

kinds of TSAPs: flow management (FM-TSAP) and data (DATA-TSAP). Flow 

management data taken from the FM-TSAP are sent using a separate out-of-bound 

channel used for control and signaling. Each FM-TSAP provides the primitives of 

get_tsap, free_tsap, flow_connect, qos_renegotiation, qos_degradation, qos_report, 

monitor_flow, flow_assessment, maintain_flow and flow_disconnect. Every DATA-

TSAP provides the primitives data_request, data_indication, data_response and 

data_confirm. 

METS works in three planes: the protocol plane, the QoS maintenance plane and the 

flow management plane. The protocol plane consists of a flow regulator, a flow 

scheduler, a flow monitor and a resource manager. The QoS maintenance plane is 

responsible for maintaining and monitoring QoS values for periodic QoS assessment. 

The flow management plane is composed of a signaling infrastructure, a flow 

reservation protocol and a QoS adaptation layer. 

3.4 Internet Transport Protocols 

The Internet is based on the historic Internet Protocol (IP) developed more than two 

decades ago. The fundamental goal of IP was to provide an efficient protocol capable 
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of interconnecting heterogeneous networks without any change. It was based on 

datagrams, which held all the state required for their routing and transmission. Routers 

and gateways along communications paths were stateless and did not need to carry 

any information about the established communication flows. This was critical to 

provide the fate-sharing model of IP. The fate-sharing model is a philosophy where 

the information of an end-user may be lost only if that end-user is lost, too. It also 

satisfied the goal of robustness where intermediate nodes were allowed to break down 

without affecting existing communication paths. Two protocols were developed on 

top of IP: TCP and UDP. UDP provides a connectionless datagram service that allows 

sending small packets of data in an ordered fashion. Routers can drop datagrams in 

case of network congestion. TCP provides a reliable, connection-oriented service that 

allows a path to be established from sender to receiver. Packets flow along the 

established path in a reliable and ordered fashion. IP, in its first specifications, does 

not provide for multicast communication. IP also lacks QoS provision. 

Two major attempts to add multicast and QoS support to IP are ST-II and RSVP. ST-

II and RSVP are discussed in this section. 

3.4.1 ST-II 

STream protocol II (ST-II) [Delgrossi95] models a resource reservation as a simplex 

data stream rooted at the source and extending to all receivers via a multicast 

distribution tree. ST-II provides for multicast group creation and does not assume that 

the underlying layer supports multicasting. Streams are initiated by Connect-requests 

at the sender. Connect-requests travel along the paths of a network until they reach the 

receiver. Along the communication path, routers reserve the appropriate resources 
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specified by the Connect-request and update the request with lower values in case the 

original values cannot be met. The receiver finally accepts or rejects the values that 

arrive in the Connect request and propagate the packet back to the sender in order to 

confirm the resource reservation. A multicast channel is built along the 

communication path in a tree structure. Receivers refuse Connect requests by sending 

a Disconnect message. Group communication is allowed by adding and removing 

receivers dynamically after the initial stream setup.  

ST-II routers maintain hard state for the active connections in a network by creating a 

virtual circuit. This strategy defies the original philosophy of fate sharing in IP. 

Control messages in ST-II are sent using reliable, acknowledged transmission. A 

Hello protocol is employed to periodically check the reliability of an already existing 

connection from host to host. When a change in host routing is detected due to a 

failure in an intermediate node, stream recovery procedures are attempted. ST-II does 

not provide means for QoS monitoring and QoS signaling in case of degradation. QoS 

values specified in Connect requests are only used as a predictive measure for 

resource reservation. 

3.4.2 RSVP 

The Resource reSerVation Protocol (RSVP) [Braden94] is another enhancement to the 

IP protocol. It also employs the concept of a path along which resources are reserved 

to provide better QoS-enabled communication. RSVP is different from ST-II in that it 

does not provide its own multicast mechanisms. RSVP relies on the multicast 

capabilities of the underlying layers.  
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RSVP flows are receiver-initiated. Receivers start a Path request to join a multicast 

flow group and identify its flow requirements. This allows different receivers to define 

different QoS context for the same flow according to its capabilities. This way, 

receivers with less-capable networks can ask for lower QoS levels in the same 

multicast flow. 

RSVP incorporates a datagram messaging protocol with periodic refreshes to maintain 

soft state in the intermediate switches to provide reliability and robustness. Soft state, 

as opposed to hard state in ST-II, means that path data are stored in intermediate 

switches temporarily. Soft state is deleted if not periodically refreshed. This allows 

orphaned reservations to be deleted automatically. Maintaining soft state, as opposed 

to hard state, complies with the fate-sharing model of IP. Soft state is also more robust 

because it allows intermediate nodes to fail without interrupting already existing 

flows. 

RSVP models a reservation as two distinct components: a resource allocation and a 

packet filter. The resource allocation specifies what amount of resources is reserved 

while the packet filter selects which packets can use the resources. This allows for 

sharing resources among flows. 
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CChhaapptteerr  44  PPRROOPPOOSSEEDD  AARRCCHHIITTEECCTTUURREE  

4.1 Overview 

Research in the field of QoS management is mostly directed towards either providing 

a complete QoS management architecture, or enhancing one or more of the 

architecture aspects discussed in the previous chapters. Most QoS research assumes a 

network that is capable of delivering packets with a bound on the delays and errors as 

well as a guaranteed bandwidth. The research is mainly aimed at utilizing the existing 

QoS features of modern QoS-aware platforms, such as ATM networks. Little research 

has been directed towards non-QoS-aware platforms, which, unfortunately, comprise 

most existing physical networks.  

The majority of QoS research for non-QoS-aware networks adopted one of two 

approaches: resource reservation and/or notification. In the resource reservation 

approach, mechanisms are developed to allow allocating resources to data flows on 

platforms that do not inherently provide support for resource allocation and 

reservation. This allows non-QoS-aware networks to be transformed into being QoS-

aware by dividing their resources among existing and expected data flows and hence 

allowing the mechanisms developed for QoS-aware networks to be used on non-QoS-

aware platforms. The other approach was to develop software notification 

mechanisms for data flows that exceed the capabilities of the underlying network. 

This allows data flows to cooperatively work towards reducing their requirements at 

times of peak demand. 
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The present work aims at bringing QoS awareness to platforms that do not have 

inherent support for QoS. The goal of this thesis is to borrow, adapt and develop 

mechanisms for porting the QoS concepts that were originally developed for 

QoS-aware platforms to work with the non-QoS-aware platforms. The approach 

used in this thesis is a combination of the complete QoS-architecture model, originally 

developed for QoS-aware platforms, and a modified notification approach. The 

approach includes a heuristic admission control mechanism to avoid accepting data 

flow requests that the underlying network will probably not be able to serve. The 

benefit of this approach is that it does not make any assumptions about the underlying 

network, its capacity, or any applications that are currently running on it. This allows 

controlled QoS flows to coexist with non-controlled data on the network, such as an 

FTP session. 

A complete QoS architecture is designed including the essential aspects of a QoS 

architecture. The proposed architecture provides for QoS specification, mapping, 

maintenance, monitoring and notification. The architecture also allows for QoS 

admission based on fuzzy logic and a neural network. The QoS admission mechanism 

decides whether new data flows should be accepted or not based on the parameters of 

the new flow and the existing network status as monitored in the existing flows. 

In order to verify the results of the designed architecture, a prototype QoS architecture 

is developed in C++ under the Linux operating system. The prototype includes an 

implementation of all the proposed QoS architecture aspects as well as the neuro-

fuzzy admission control mechanism. A distributed multimedia application is also 

developed and deployed across a non-dedicated LAN where other uncontrolled data is 
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running. The application demonstrates the effectiveness of the designed solution in 

allowing more multimedia flows to arrive comprehensibly to their destinations than an 

uncontrolled system would permit. 

4.2 Design 

The design of the proposed system adopts the concept of a flow. The flow is a single 

logical instance that binds a sender with a receiver. The flow is used to pass 

multimedia information from the sender to the receiver. It is similar to a data 

connection between two points except for the fact that the data passed is time-

sensitive multimedia data. 

The proposed system provides a middle layer between applications and the operating 

system to add QoS awareness to the operating system transport protocols. This middle 

layer allows for the creation, maintenance and termination of flows.  

The system design follows the client/server model. Servers (daemons) that take QoS-

related decisions and perform flow-prioritization provide the QoS functionality of the 

middle layer. The clients of the system (applications) use a system library that 

provides QoS-related functions to communicate with the QoS servers. The system 

library is made up of stubs that perform remote procedure call (RPC) connections to 

the servers to complete the required operations on behalf of the clients. 

4.2.1 Goals 

The design of the system was made with the following goals in mind: 

 Transparency to the user: Sending and receiving applications should manipulate 

QoS-aware multimedia flows in the same manner that normal data is handled. 
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Multimedia data that was originally transmitted using traditional communication 

should be easily ported to the concept of flows. 

 No network utilization assumptions: The proposed QoS system should neither 

assume that it is the sole entity that utilizes the underlying network, nor assume a 

certain level of network utilization. The QoS-aware flows should coexist with 

current non-QoS-aware data being transmitted on the network, such as FTP 

sessions and burst application communication. No utilization pattern shall be 

assumed for the underlying network. 

 Avoiding bottlenecks: The design of the system should avoid having a single 

entity where QoS-related information is stored. This avoids having a single point 

of failure to increase the fault-tolerance of the system. This design would also 

reduce the possibility of a having a bottleneck that would degrade the performance 

of the system as a whole. 

 Application-level structures: The proposed system should all run in user space. 

The system should make use of current traditional transport protocols provided by 

operating systems by building on them rather than modifying them at the system 

level. This allows applications that were already developed to use existing 

traditional protocols to run unmodified when the new additions are used. 

4.2.2 Decisions 

In order to achieve the design goals defined earlier, the following design decisions 

were made: 
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 Out-of-bound control: Control information sent between the different system 

elements will be sent on a channel different from that used by the flows. The flow 

will only be used to send multimedia information sent by the system users. Any 

control data is sent directly using the underlying non-QoS-aware transport 

protocol. 

 Sender-initiated flows: Flows are to be created by the sender of the multimedia 

data. The receiver of the data should be expecting the data and waiting for it.  

 Sender and receiver QoS selection: Both senders and receivers should be 

allowed to change the QoS required by the flow. The sender changes the QoS 

according to the properties of the data being sent and the receiver may reduce the 

QoS according to the limitations of the network or workstation at the receiver side. 

 Flow is one-way: Multimedia data flows in one direction, from sender to receiver, 

in a single flow. If a reply is required by the receiver, the receiver may elect to use 

another flow for replying if the reply requires QoS support, or the receiver may 

use traditional communication if the reply does not include multimedia. 

 Single type of data: A single flow has a single type of multimedia data flowing at 

one time. Two different flows are required to transmit a video presentation and an 

audio song to the same recipient. The same flow may not be used for both 

transmissions, as the QoS parameters of both types of multimedia data are 

different. It is also the case for two audio connections as both audio connections 

may require different QoS parameters. 
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 Connection-less communication: Connection-less communication will be used 

for sending packets of multimedia data on the underlying network. This allows a 

better performance by eliminating the overhead of packet re-sending and ordering 

which are normally performed by connection-oriented transport protocols. The 

need for packet re-sending and ordering does not exist with multimedia data, 

since, by definition, multimedia data is not useful if not transmitted on time. 

4.2.3 Architecture 

QoS architectures are typically composed of three cooperating components: a sender, 

a receiver and the system layer. The sender is typically an application developed by 

the user, which requires a QoS controlled channel to send information to the second 

entity, the receiver. The receiver is also a user-level application that consumes the 

information it receives. One application may be a sender for some data and a receiver 

for others, such as a distant learning server that sends video presentations to other 

destinations and receives their audio questions on another channel. The system layer is 

the QoS-aware transport protocol that allows QoS specification and maintenance for 

the flows created by the senders. The proposed work involves a sender-side 

component and a system-level component. The first component allows user 

applications to create and manage QoS-capable flows, whereas the latter is 

responsible for the internal maintenance, management of flows and the prioritization 

of flow data. Figure 13 shows the main component-interaction diagram for the 

proposed work. 
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Figure 13 - Main System Component Interaction Diagram 

The proposed work does not include any receiver-side components. The receiver is 

assumed the same for QoS-aware flows and traditional burst data. A receiver that was 

designed to receive multimedia data in burst mode will be the same as the one that 

receives controlled flow data. All QoS management functions can be performed at 

either the sender-side or the system level without the need for the interference of the 

receiver. 

The system-level component is made up of two main components: the QoS Daemon 

(MQOSD) and the Realtime Scheduling Daemon (MRTSD). The MQOSD is 

responsible for receiving the requests for creating new flows. It allows for QoS 

specification and performs the required QoS mapping to translate user-level QoS 

parameters to network-level QoS parameters. The MQOSD is also responsible for the 

initial admission control for the new flows. Furthermore, the MQOSD stores 

information related to every flow in the system. The information stored includes 
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required QoS parameters as well as the current attainable QoS levels for every flow. 

The MQOSD performs QoS notification when the attainable QoS levels do not match 

the levels agreed upon in the specified QoS. 

The MRTSD is responsible for the transmission of flow packets. The MRTSD 

receives the data to send from user applications and creates deadlines for them 

according to the QoS data for the flow stored in the MQOSD. The MRTSD calculates 

a deadline for every packet and performs priority scheduling of packets in order to 

dispatch them in a manner that meets the QoS specified by each flow in the MQOSD. 

The MRTSD performs QoS monitoring operations for every flow and reports its 

results to the MQOSD for storage with the flow information. QoS monitoring is 

performed by sending out-of-bound packets to the remote MQOSD and measuring the 

required QoS parameters on these packets. 

The MQOSD and the MRTSD processes are designed to exist once per workstation 

that participates in the QoS managed system. The MQOSD for the workstation stores 

information relating to all flows whose senders originate from this same workstation. 

The MRTSD for the workstation dispatches and monitors the packets of the flows 

whose QoS data are stored in the MQOSD of the local workstation. The proposed 

work assumes that, in a LAN, the monitoring information collected by a single 

MRTSD is representative of the information collected by other MRTSD processes in 

the LAN. Consequently, MRTSD processes in a LAN are not required to 

communicate together to form a complete picture of the LAN utilization. Figure 14 

shows the detailed component interaction diagram for the proposed system. 
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Figure 14 - Detailed Component Interaction Diagram 

4.2.4 QoS Specification and Mapping 

Before a sender is allowed to send QoS controlled data, it must register a flow for the 

stream of data to be sent. During flow creation, the sender specifies the QoS 

requirements for the data. The specified QoS level is registered as a contract between 

the user application and the system. The system guarantees that the required QoS will 

be provided, or a notification will be sent if the registered QoS level cannot be kept. 

The system, also, uses the specified QoS in all the calculations that it performs on the 

packets belonging to this flow. 

The present work adopts a QoS specification set that directly matches the need of 

multimedia applications. A multimedia application can send either audio or video 

data. For both types of data, threshold values are specified to indicate the QoS 

requirements for the different parameters. For audio types, the application needs to 

specify the frequency of sampling, number of bits per sample, and the number of 
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audio channels. Video flows have to specify the horizontal and vertical resolution, 

number of colors per pixel, and number of frames per second of display. Both audio 

and video flows need to specify the average used compression ratio in order to 

estimate the throughput requirements of the flow correctly. All the preceding 

parameters are used to calculate a lower threshold for the throughput required by the 

flow. Interactivity can be specified by flows to indicate whether they require HIGH or 

LOW interactivity. Interactivity measures are required to estimate the level of 

synchronization required between the sender and the receiver. The tolerance level, 

also, needs to be defined for every flow. The tolerance level is the level of acceptable 

deviation from the specified threshold values. Figure 15 shows the list of QoS 

parameters required for the creation of a flow. 

Data type 

Audio 

Frequency 

Sample size 

Channels 

 Video 

Resolution 

Color 

Frames 

Compression 

Interactivity 

Tolerance 

Figure 15 - QoS Specification Parameters 

The QoS specification process begins at the sender-side components, where the sender 

uses these components to specify its QoS requirements. The sender-side components 

interact with the local MQOSD which maps the QoS request into network QoS 

parameters to determine the availability of the requested QoS. The MQOSD replies 

with an accept/deny result to the sender through the sender-side components. 
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QoS mapping is performed at the local MQOSD by calculating network-level 

parameters from the specified user-level QoS. The network-level parameters of 

relevance to continuous media are throughput, end-to-end delay and error rate. 

Throughput is the bandwidth to be used by the continuous media data in order to be 

transferred to the receiver on time. This specifies the amount of data flowing through 

in a certain period. Throughput is important because it provides the system with an 

indication on how much of the shared network bandwidth is required by each flow. 

End-to-end delay is the amount of time spent from when the data was ready for 

transmission at the sender until the data was ready for consumption at the receiver. 

The importance of end-to-end delay is that it directly affects the interactivity between 

the sender and the receiver and consequently it affects the human perception of the 

continuous media sent in a flow. The error rate is the ratio of packets that may be 

transmitted at a lower QoS level. The human perception of continuous media 

transmitted varies inversely with the loss rate. Together, throughput, end-to-end delay, 

and loss rate define the behavior of a flow and the acceptable level of quality that is 

allowable for correct perception at the receiving side. The three parameters also define 

the aspects of the network that affect the level of quality of the transmitted continuous 

media. 

QoS mapping is performed by mathematically deriving the three network parameters 

from the user-level QoS parameters requested during QoS specification. Throughput 

calculation depends on the type of media specified. Throughput is specified in bytes 

per second. 

For audio flows: 
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Equation 1:  
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For video flows: 

Equation 2: 
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The end-to-end delay parameter is derived from the interactivity parameter of the user-

level QoS. End-to-end delay is specified in milliseconds. The user-level interactivity 

parameter was assumed for simplicity to be one of two values: either high or low. The 

mapping mechanism assumes a hard-wired value of 500 ms for high interactivity and 

1000 ms for low interactivity. The error rate parameter is the same as the user-level 

tolerance parameter. Error rate is measured in percentage of packets that do not arrive 

at the receiver side. This may be due to either network error, packet loss, or packet 

dropping due to buffer overflows. 

4.2.5 QoS Maintenance 

In order to allow a sender to specify flow parameters using QoS specification, the 

system must provide an interface to its senders. This interface is provided by the 

sender-side components mentioned in section 4.2.3. The sender interface is 

responsible for granting the sender access to all the functions of the QoS maintenance 

subsystem. The QoS maintenance subsystem provides the following functions: 
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 Flow creation: establishing a dedicated connection to a specific receiver 

 Sending data: sending data packets to the flow receiver 

 QoS selection: altering the contracted QoS level 

 Flow termination: close connection with the flow receiver 

Flow creation starts by a request from the sender to the local MQOSD to create a flow 

with a specified QoS. The local MQOSD evaluates the request and returns the result 

of the QoS admission process back to the sender. The local MQOSD stores the 

contracted QoS level together with the flow information for later usage during QoS 

management. Each local MQOSD stores the contracted QoS levels for all the senders 

on its workstation. 

After the flow is created, the sender may send continuous media on the flow by 

submitting the packets to the sender-side components. The packets are then forwarded 

to the local MRTSD, which stores the packet together with the identifier of the flow 

sending in a priority queue for scheduling and delayed transmission. The local 

MRTSD contacts the local MQOSD to retrieve the QoS level required by the flow to 

which the packet belongs. This allows the MRTSD to take smart decisions as to how 

to schedule the packets. The MRTSD schedules packets according to a realtime-

scheduling algorithm. When a packet is ready for transmission, the MRTSD contacts 

the receiver and sends the packet directly using the underlying transport protocol. The 

MRTSD performs no checking to ensure that the packet has reached its destination 

correctly. 
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The MRTSD uses an Earliest-Deadline-First realtime-scheduling algorithm to 

prioritize the packets from different flows. A deadline is calculated for every packet 

using the following equation: 

Equation 3: 
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Where: 

t: the deadline for sending the packet 

t0: time when the packet was submitted for sending 

s: the size of the packet in bytes 

Qd: the desired throughput as per the QoS contract for the flow  

Qa: the actual network throughput as measured in QoS monitoring 

An actual throughput (Qa) of zero denotes that no measurements have been taken for 

the network yet. `The term (S / Qd) represents the maximum time allowed until the 

packet to reaches its destination as specified in the QoS level of the flow. The term 

(S/Qa) denotes the time required for sending the packet using the network parameters 

that were measured earlier during QoS monitoring. If the deadline is zero or negative, 

the packet should be sent immediately. A negative deadline implies that the packet 

will be late for its recipient. Corrective action for the late packets will be taken during 

QoS monitoring. 



 
71 

During flow operation, the sender may wish to change the contracted QoS level. The 

sender may elect to increase the required QoS level to send more detail or may wish to 

decrease the level in order to release some burden from the network. The sender 

contacts the local MQOSD with a Select-QoS request. The local MQOSD evaluates 

the new request and performs the QoS admission process again. The new QoS level is 

stored with the flow data in the local MQOSD. 

After the sender has finished transmitting all the data it requires, it should release the 

flow by sending a termination request to the local MQOSD. All termination requests 

are instantly accepted by the local MQOSD and all the flow information is marked for 

removal once all its pending packets have been sent. Figure 16 shows the typical 

operation of the QoS maintenance system. 
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Figure 16 - Typical QoS Maintenance System Operation 
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4.2.6 QoS Monitoring and Notification 

QoS monitoring is performed on every flow during normal flow operation to ensure 

that the QoS management system adheres to the contract signed with the sender 

during QoS specification. When the contracted QoS level cannot be maintained, the 

QoS monitoring subsystem notifies the sender of the QoS degradation in order for the 

sender to take corrective action. This allows the various senders in the system to 

cooperate in making room for each other during times of congestion. It also allows 

flows to terminate if the contracted QoS level cannot be kept. 

The QoS monitoring subsystem adopts the packet injection technique in measuring 

flow performance. Monitoring is performed by sending probe out-of-bound packets 

together with flow data. The ratio of probe packets to the actual data is determined by 

the system-level monitoring rate parameter. A monitoring rate of 0.1 denotes that 

10% of all flowing data on the network is probe data. The scheduler of the MRTSD is 

responsible for injecting probe packets together with the data packets at the specified 

monitoring rate. The probe packets are sent out-of-bound to the MQOSD of the 

receiver instead of being in-bound directly to the receiver. This has the advantage of 

reducing the overall end-to-end delay of the QoS maintenance subsystem by not 

introducing further processing at the receiver side. The disadvantage is that more 

processing needs to be performed at the MQOSD to allow for processing and 

returning probe requests. Probe packets are used to measure all network QoS 

parameters: end-to-end delay, throughput and error rate. Monitoring is performed 

independently on every MRTSD. The various MRTSD in the network do not 

communicate to share monitoring information. It is assumed that over a large network, 
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the senders and receivers will be evenly distributed and hence measuring network 

performance will be similar from any point in the network. 

End-to-end delay is measured by calculating the roundtrip delay of a null packet. A 

null probe packet is transmitted from the local MRTSD to the remote MQOSD. The 

packet is first delayed by the sender transport protocol, which adds some system delay 

(Ds). The packet further undergoes network delay (Dn) before it is ready for 

consumption at the receiver. The remote transport protocol processes the packet, 

which adds some system delay (Dr), and makes it available to the receiver. The total 

end-to-end delay is the aggregate of both the network delay and the system delays. 

Measuring the end-to-end delay at the remote MQOSD requires that the clocks of both 

the sender and the receiver be synchronized. This adds to the complexity of the overall 

system and directly affects the operation of other processes at the remote system. The 

adopted alternative to clock synchronization is to return the null probe packet with a 

reply consisting of another null packet. Theoretically, the reply packet should undergo 

as much delay as the original probe packet. The round-trip delay is now the sum of the 

delay of the probe packet and the delay of its reply. Consequently, the end-to-end 

delay is approximately half the round trip delay. End-to-end delay calculation is 

illustrated in Figure 17 and Equation 4. The equation assumes that the time taken in 

processing the probe packet at the MQOSD and initiating a reply is negligible. 
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Figure 17 - End-to-End Delay Calculation 

Equation 4: 
2

2D
DDDD rns   

Throughput is measured by sending a stream of probe packets and computing the 

difference between the time of arrival for the first packet and the time of arrival for the 

last packet. The local MRTSD sends a known number of packets (NP), which is set by 

a system parameter, to the remote MQOSD with the rate specified by the measuring 

rate system parameter. The size of the probe packet (S) is determined by the measured 

average packet size for the flow. The remote MQOSD starts counting the time as soon 

as the first packet is received (ta). Time calculation is stopped when a certain number 

of probe packets are received. An assumption is made for the upper bound on the 

network loss rate (denoted Lu). The remote MQOSD stops the time count at time tb, 

when LuNP probe packets are received. This ensures that the MQOSD will not wait 

indefinitely for a probe packet that was lost. When enough probe packets are received, 

the remote MQOSD calculates the actual throughput (Qa) using the following 

formula: 
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Equation 5: 
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The remote MQOSD composes a reply packet and replies to the MRTSD of the 

sender with the measured throughput.  Figure 18 shows an illustration for the 

throughput calculation process. 
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Figure 18 - Throughput Calculation 

Error rate is measured by computing the difference between the aggregate of the 

desired throughput (Qq) for all flows that share the same network and the actual 

measured throughput (Qa) of that network during monitoring. In the proposed design, 

the assumption of a single LAN is made and hence all flows (NF) are counted in the 

sum of desired throughput. The error rate is calculated using the formula shown in 

Equation 6. 

Equation 6: 
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A negative error rate means that the network can provide a higher throughput than 

what it is asked to grant. This means that there is no error (error rate is zero). 

Monitoring results for every flow are eventually stored in the local MQOSD for the 

sender of every flow. End-to-end delay is calculated at the local MRTSD and then 

reported to the local MQOSD. Throughput is calculated at the remote MQOSD and 

then sent back to the local MRTSD, which, in turn, reports it to the local MQOSD. 

Error rate is calculated at the local MQOSD because it requires knowledge about the 

desired throughput of all local flows. 

The local MQOSD keeps history of previous monitoring results rather than saving the 

only the latest values. This has the advantage of averaging the monitoring results and 

thus excluding any spontaneous and temporary spikes in the results. This reduces any 

unnecessary notification of low performance that may have lasted for only a short 

period. The ratio of new to old data to keep is defined by the History Ratio system 

parameter. Equation 7 shows the formula for calculating the new values while keeping 

history of the old values. 

Equation 7: newoldcurrent XXX )1(    

Where: 

 Xcurrent: the value (delay, throughput or error rate) to store 

 Xold: the old stored value for delay, throughput or error rate 

 Xnew: the current measured value for delay, throughput or error rate 

 : the history-ratio system parameter 
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After every new set of measured network parameters is calculated, the MQOSD 

compares the calculated measured QoS with the contracted QoS to check for 

performance degradation. If the calculated throughput is lower than the desired 

throughput by an amount greater than the error rate, the sender is notified of 

degradation in QoS level. Similarly, if the calculated delay is larger than the desired 

delay, the sender is notified of the degradation in QoS level. The sender is expected 

to, but without any obligation, to take corrective action that would either reduce the 

requested QoS-level or terminate the flow due to insufficient resources. 

4.2.7 QoS Admission 

The QoS admission process attempts to perform a pre-entry QoS assessment for flows 

prior to flow creation at the local MQOSD. The QoS level specified by a flow during 

QoS specification is assessed against the current network status before deciding 

whether to admit the flow into the system. A flow will be allowed access only if the 

system “believes” that it can provide the desired QoS-level. The QoS admission 

subsystem uses fuzzy logic and a neural network to make a sensible decision. 

QoS admission is performed on a flow that has a desired QoS level with a desired 

throughput (Qq), delay (Dq) and error rate (Eq). The QoS admission subsystem also 

utilizes the current network status, which provides information on the actual measured 

throughput (Qa), delay (Da) and error rate (Ea). The system uses the preceding six 

parameters as inputs to the QoS admission process. The output of the process is a 

single decision to either accept or deny the creation of the flow.  

The QoS admission subsystem is composed of two main components: the fuzzy 

network that assesses the inputs and the neural network that produces a decision. The 
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fuzzy network employs fuzzy logic to compare the requested parameters with the 

measured actual network parameters to produce an intermediate “acceptability” level 

for these parameters. The acceptability level of each parameter describes the extent to 

which the network can satisfy the requested parameter. A higher acceptability means 

that the network is more likely to meet the requested parameter. Three acceptability 

levels are produced from the fuzzy network for the three network parameters: delay, 

throughput and error rate. The acceptability levels are fed as inputs to a neural 

network that produces the final decision. The neural network combines the three 

acceptability levels and produces a sensible decision to accept or deny the flow 

creation request based on the relative importance of each of the three parameters. 

Figure 19 illustrates the details of the QoS admission subsystem. 
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Figure 19 - QoS Admission Subsystem 
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The fuzzy network uses the following algorithm to produce the acceptability levels: 

1. Obtain the average network status from the average of the monitored results for all 

flows stored at the local MQOSD. 

2. Normalize the network status parameters in the range [0-1]. Use the normalization 

formulas shown in Equation 8, Equation 9 and Equation 10. 

Equation 8: 
 


 


throughputrequested

throughputmeasuredthroughputrequested
Throughput  

Equation 9: 
delayrequestedmaximum

delaymeasured
Delay   

Equation 10: rateerrormeasuredrateError   

3. Fuzzify the network status using the fuzzification graph shown in Figure 20. 
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Figure 20 - Fuzzification and Defuzzification Graph 

4. Normalize the user request in the range [0-1] using the normalization formulas 

shown in Equation 11, Equation 12 and Equation 13. 
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Equation 11: 
1.5 


t throughpumeasured average

throughputrequested
Throughput  

Equation 12: 
delayrequestedmaximum

delaymeasureddelayrequestedmaximum
Delay


  

Equation 13: rateerrormeasuredrateError  1  

5. Fuzzify the user request using the fuzzification graph shown in Figure 20. 

6. Use the fuzzy decision table shown in Table 1 to get fuzzy values for the 

acceptability levels. A higher fuzzy value denotes a higher potential for acceptance 

by the network. 

Table 1 - Fuzzy Decision Table 

 Requested Value for Parameter 

 

Measured 

Value for 

Parameter 

 L ML M MH H 

L H H H H H 

ML H H MH M M 

M H MH M M ML 

MH MH M M ML L 

H M ML ML L L 

 Where: (H= high; MH= medium high; M= medium;  

ML= medium low; L= low) 
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7. Defuzzify the acceptability levels to get crisp values for the acceptance potential in 

the range [0-1] using Figure 20. 

8. Feed the acceptance levels to the next stage for obtaining a single decision. 

The next stage is the neural network phase. The neural network takes as input the 

acceptability potentials for the three network parameters and produces one output 

which is the acceptance decision (YES or NO). The neural network is a feed-forward 

neural network with one hidden layer containing three nodes and one output layer 

containing one node. The proposed network is shown in Figure 21. The network is 

trained using the back-propagation algorithm using the training set shown in 

Appendix A. 
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Figure 21 - QoS Admission Neural Network 

4.3 Prototype 

A prototype system was developed to verify the design and simulate its functionality. 

The prototype is also used to measure results for the effectiveness and performance of 

the proposed system. The prototype is composed of a library and a high-level 

language interface that provide senders with access to QoS functions of the proposed 
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QoS management system. The prototype also includes two system applications that 

represent the MQOSD and the MRTSD, which should be run on every host 

participating in the QoS-managed network. 

The developed prototype has the limitations of running on a single LAN as opposed to 

a WAN that is a necessity for real-life multimedia applications. The LAN assumption 

was made to conform to the assumptions made earlier in the system design. The 

prototype is also limited to the implementation of unicast flows instead of multicast 

flows that are commonplace in multimedia applications. The design of the prototype 

allows flows to use multicast facilities but the implementation was limited to unicast 

for simplicity. 

4.3.1 Platform 

Object-oriented design (OOD) was employed in the course of designing the prototype 

system. Object-oriented design was mainly selected because it allows for simple 

additions to the design and for providing placeholders for extras that need to be added 

to the design later. OOD is also useful due to its readiness to easily reuse design 

components. 

The prototype system is implemented in C++ on the Linux platform. The prototype is 

compiled with Gnu C++ on Red-Hat Linux. The developed prototype completely runs 

in user-mode and does not modify any system-level operating system components. 

The system builds on TCP/IP’s UDP protocol to provide the transport protocol 

functionality. The developed system is built on top of UDP to change its interface and 

add to its functionality. Inter-process communication (IPC) is employed in all 

communication within a single host for optimization. 
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The prototype is designed using the Booch object-oriented design methodology 

[Booch 94]. The important design elements of the Booch methodology are the class 

diagram and the object diagrams. The class diagram identifies the main system 

components and their interaction. The object diagrams identify the main scenarios of 

system operation and shows how instances of the class components would interact 

during each scenario. 

4.3.2 Class Diagram 

The main classes of the prototype are the SenderFlow, MQOSD, and MRTSD. These 

represent the sender-side interface, the MQOSD process and the MRTSD process, 

respectively. Figure 22 shows the class diagram for the prototype system. Class details 

and member functions are listed in Appendix B. 

The main interface to the sender application is the SenderFlow class. The sender 

should create an instance of this class for every flow it wishes to create. The class 

contains member functions for flow creation and termination, QoS selection as well as 

data sending. The sender interacts with the Buffer class to send data using the flow. 

The Buffer class provides easy handling of data for simple sending of different data 

types. The SenderFlow can only send data encapsulated in a Buffer object. The 

SenderFlow itself is a specialization of the Flow class, which is an abstract class 

providing general flow functionality. The Flow class may be used as a base class for 

further classes that provide enhanced system functionality and/or a different user 

interface to the sender. This may also be useful in providing a class that allows 

multicast group membership and handling. 
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Figure 22 - Class Diagram for Prototype 

The SenderFlow uses the IPC class for interacting with the local MQOSD and 

MRTSD processes. The IPC class is a specialization of the Comm class, which 
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provides general communication capability. The IPC class interacts with Buffer 

classes to extract the data to send to the MQOSD. Data sent to the MRTSD are 

contained in a SharedMemoryBuffer class, which uses shared-memory IPC to 

minimize the memory copying operations in order to enhance the overall system 

performance and reduce sending delays. SharedMemoryBuffer is a specialized Buffer 

that uses shared memory IPC storage instead of main memory storage. 

The MQOSD class provides the functionality of the MQOSD process as described 

earlier in the proposed design. The MQOSD waits for control packets from any sender 

to provide QoS management functionality. It acts as the main storage and QoS 

decision-maker on every host. The MQOSD uses a ControlPacket class to receive and 

identify any control packets it receives. It also contains a QoSTable that stores all 

information related to the flows created on its host. The QoSTable is a descendant of 

the FlowTable class, which is a parent class that provides generic indexing on flow 

identifiers. The MQOSD utilizes the IPC class for inter-process communication with 

senders to receive flow management requests from the SenderFlow classes. The 

MQOSD also uses the UDP class, which allows UDP communication over the 

network with remote MRTSD processes. The UDP class is another descendent of the 

Comm general communication class. The MQOSD also contains a 

QoSAdmissionTable class that stores the QoS admission-control table that uses fuzzy 

logic to take admission control decisions. 

The MRTSD class provides the functionality for the MRTSD process, which is to send 

flow data using the specified QoS levels. The MRTSD interacts with the local MRTSD 

using IPC classes and with the remote MRTSD processes using UDP classes. The 
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MRTSD receives data to be sent in ControlPacket classes that contain references to the 

original data in stored in SharedMemoryBuffer classes. The MRTSD stores the packet 

in a PacketTable prior to sending them. Packets in the PacketTable are first prioritized 

according to QoS-driven deadlines. The MRTSD contains an Earliest-Deadline-First 

scheduler that schedules and sends the packet while the MRTSD is receiving control 

packets from senders. The PacketTable class is another descendant of the FlowTable 

class because it is indexed on the flow identifier. The MRTSD contains a CountTable, 

which contains statistics for the data sent by each flow. This allows for the calculation 

of the time of sending probe packets. Probe packets are sent as ControlPacket classes 

using UDP to the remote MQOSD processes. 

Various specialized classes of the ControlPacket class exist to provide the out-of-

bound control functionality. CreatePacket, CreateReplyPacket, TerminatePacket, 

SelectQoSPacket and SelectQoSReplyPacket are used by the SenderFlow and the 

MQOSD to manage QoS flows. SendPacket is used by the SenderFlow and the 

MRTSD to send flow data. PingDelayPacket, StartPingThroughputPacket, 

PingThroughputPacket, and PingThroughputReplyPacket are used to perform 

monitoring operations by both the MRTSD class and the remote MQOSD processes. 

ReportPacket is used by the MRTSD to report results of the monitoring process. 

NotifyPacket is used by the MQOSD and the SenderFlow to notify senders of QoS 

degradation. QueryPacket and QueryReplyPacket are used by the SenderFlow and the 

MQOSD to inquire about the current operating QoS level for a flow. KillPacket is 

used by the system developer to gracefully terminate MQOSD and MRTSD processes 

prior to system shutdown. 
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4.3.3 Scenarios 

The typical scenarios in the proposed system are those involving QoS management 

functions. The operation of these functions exhibits the most important object 

interactions. These functions are: 

 Flow creation 

 Data sending 

 Realtime packet scheduling 

 QoS monitoring 

 QoS degradation 

 QoS selection 

 Flow termination 

4.3.3.1 Flow Creation 

Flow creation occurs when a sender wishes to establish a new multimedia data flow. It 

involves QoS specification by the sender and QoS admission by the MQOSD. The 

result of this process is either the denial of service or the creation of a flow and the 

storage of its parameters in the MQOSD. Figure 23 shows the object diagram for a 

typical flow creation process that results in acceptance. 
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Figure 23 - Flow Create Object Diagram 

Flow creation starts with a Create request from the sender to the SenderFlow. 

Meanwhile, the MQOSD is already ready for receiving data from any sender. The 

SenderFlow sets the specified QoS data into a CreatePacket and sends it using IPC. 

The MQOSD receives the request using IPC and gets the data from the CreatePacket. 

It identifies the data as a Create request and issues a Create operation in the MQOSD. 

The operation proceeds by mapping the specified QoS into network parameters and 

then performing QoS admission on the mapped parameters. The admission control 

mechanism gets QoS totals and averages from the QoSTable. The QoS averages are 
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input to the QoSAdmissionTable together with the user-specified QoS and a decision 

is requested. When the decision is positive, the flow is added to the QoSTable. 

Success information is composed in a CreateReplyPacket and then sent back using 

IPC to the sender. The sender receives the reply and gets the decision from the 

CreateReplyPacket. The decision is passed back as the result of the Create operation. 

4.3.3.2 Data Sending 

Data sending is performed by the sender in order to transfer data to the receiver using 

the specified QoS. It involves scheduling and transmission at the MRTSD. Figure 24 

shows the object interactions for a typical send operation. 

Data sending starts by the sender inserting data into the shared memory buffer. The 

sender requests to send the buffer from the SenderFlow. The SenderFlow packs the 

data into a SendPacket and sends the data using IPC to the MRTSD. Meanwhile, the 

MRTSD was waiting for a send request from any sender. The MRTSD unpacks the 

data from the SendPacket and composes a QueryPacket to be sent to the local 

MQOSD. The local MQOSD receives the QueryPacket and contacts the QoSTable to 

get flow QoS information. The MQOSD composes a QueryReplyPacket and sends it 

back to the MRTSD. The MRTSD gets the QoS information from the 

QueryReplyPacket and inserts the packet into the PacketTable along with its 

calculated deadline. The CountTable is also incremented for the flow to adjust QoS 

monitoring counters. Once the packet is in the packet table, it is ready for 

consumption by the realtime scheduler of the MRTSD. 
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Figure 24 - Data Sending Object Diagram 

4.3.3.3 Realtime Packet Scheduling 

Realtime packet scheduling is performed whenever the packet queue in the MRTSD is 

non-empty. The MRTSD utilizes an Earliest-Deadline-First realtime scheduling 

technique using the deadlines that were set during packet acceptance by the MRTSD. 

The highest priority packet is extracted and sent to its destination. Figure 25 shows the 

object diagram for a typical scheduling scenario. 



 
91 

MRTSD PacketTable

1: GetEarliestDeadline

2: GetData

UDP

SharedMemory

Buffer

3
: G

e
tD

a
ta

4: Send

 

Figure 25 - Realtime Packet Scheduling Object Diagram 

The MRTSD scheduler process is synchronized with the MRTSD using semaphores 

in order to detect any packet arrival. Whenever packets are ready, the MRTSD 

contacts the PacketTable to get the packet with the earliest deadline. The MRTSD gets 

the packet data and extracts the shared memory buffer containing the data to send it to 

the receiver using UDP. The receiver is a normal TCP/IP application executing the 

recvfrom system call to receive UDP packets. 

4.3.3.4 QoS Monitoring 

QoS monitoring is performed regularly at the specified system rate for all flows. QoS 

monitoring involves probing for network performance and storage of results at the 

local MQOSD. Figure 26 shows a typical scenario for QoS monitoring. 
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Figure 26 - QoS Monitoring Object Diagram 

QoS monitoring starts by the MRTSD scheduler counting the size of the packets sent 

for the flow. When the threshold is reached, QoS monitoring is initiated. First, the 

MRTSD creates a PingDelayPacket and sends it using UDP to the remote MQOSD. 

The MRTSD waits for the results of the PingDelayPacket and starts the process of 

throughput measurement. The MRTSD sends a StartPingThroughputPacket using 

UDP followed by multiple PingThroughputPacket datagrams. The MRTSD collects 

the results in a PingThroughputReplyPacket. After all measurements were made, the 

MRTSD creates a ReportPacket and sends it using IPC to the local MQOSD. The 
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local MQOSD receives the packet and unpacks the ReportPacket. After that, the 

MQOSD retrieves old QoS measurements for the flow from the QoSTable and stores 

the newly calculated measurements in the QoSTable. 

4.3.3.5 QoS Degradation 

QoS degradation occurs when the local MQOSD detects that the QoS measurements 

being stored for a flow are lower than the contracted QoS level. QoS degradation 

notifies the sender of the situation in order to take appropriate corrective action. 

Figure 27 shows the object diagram for a typical QoS degradation scenario. 
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Figure 27 - QoS Degradation Object Diagram 

When the MQOSD gets the desired QoS level for the flow, it compares it with the 

measured values obtained during QoS monitoring and reporting. If the measured level 

is lower than requested, the MQOSD composes a NotifyPacket and sends it using IPC 

to the SenderFlow. The SenderFlow is already waiting for any notifications in a 

separate QoSNotificationHandler process. The SenderFlow reads the contents of the 
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NotifyPacket and executes the overloaded QoSNotification member function. Sender 

applications override the QoSNotification member function to achieve custom 

functionality upon QoS degradation notification. 

4.3.3.6 QoS Selection 

QoS Selection is performed at the sender’s request. A sender may wish to perform 

QoS selection when the contracted QoS levels need to be altered. The QoS selection 

process involves QoS specification and QoS admission (readmission). Figure 28 

shows the object diagram for a typical QoS selection request. 

SenderFlow

SelectQoS

Packet

SelectQoS

ReplyPacket

IPC

IPC

MQOSD SelectQoS

Packet

SelectQoS

ReplyPacket

1
: S

e
tD

a
ta

2: Send3: Receive

1:
 R

ec
ei

ve

14
: S

en
d

3: GetData

4: SelectQoS

5: MapQoS

6: AdmitQoS

QoSTable

7:
 G

et
Q
oS

Tot
al

8:
 G

et
Q
oS

A
ve

ra
ge

12
: S

et
D
es

ire
dQ

oS

QoSAdmission

Table

9
: In

p
u
tN

e
tw

o
rk

S
ta

tu
s

1
0
: In

p
u
tU

s
e
rR

e
q
u
e
s
t

1
1
: D

e
c
is

io
n

13: S
etD

ata

15: GetData

 

Figure 28 - QoS Selection Object Diagram 
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The sender initiates the process by requesting QoS selection from the SenderFlow. 

The SenderFlow, in turn, creates a SelectQoSPacket and sends it through IPC to the 

local MQOSD. The local MQOSD receives the data, unpacks the SelectQoSPacket, 

and invokes the local QoS selection code. The QoS selection process involves QoS 

mapping and QoS admission similar to that performed during the flow creation 

process described in section 4.3.3.1. The result of QoS admission is stored in the QoS 

table for later usage. The result is then packed in a SelectQoSReplyPacket and sent 

back to the SenderFlow using IPC. The SenderFlow gets the result from the 

SelectQoSReplyPacket and passes it to the sender. 

4.3.3.7 Flow Termination 

The sender chooses to terminate a flow when it has finished sending all the data in the 

flow. Figure 29 shows a typical flow termination scenario. 
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Figure 29 - Flow Termination Object Diagram 
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The SenderFlow creates a TerminatePacket and sends it using IPC to the MQOSD. 

The MQOSD decodes the packet and executes the local terminate procedure. The 

procedure removes all the deleted flow’s data from the QoSTable. 
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CChhaapptteerr  55  EEXXPPEERRIIMMEENNTTAALL  RREESSUULLTTSS  

A test system was set up to perform performance measurements of the prototype 

system. A test lab, consisting of three dedicated workstations, was used to run the test 

applications. The workstations were connected using a non-dedicated 10-Mbps 

coaxial Ethernet network. The network layout of the test lab is shown in Figure 30. 

All workstations used (test01, test02 and test03) had a single Intel P-II 450 MHz 

processor with 512K of cache and 64MB RAM. All three workstations had only an 

MQOSD and an MRTSD running per workstation. In addition to the test 

workstations, the network contained two servers and many other workstations that 

were in constant use by other party. The traffic generated on the network from the 

uncontrolled workstations and servers was unknown and variable with time. When a 

dedicated network was required, the network was used off working hours. This 

provided a near-dedicated network where the traffic generated by the uncontrolled 

workstations was minimal. 

 Coaxial Ethernet (10-Mbps)

test01 test02 test03

Uncontrolled Servers Uncontrolled Workstations

 

Figure 30 - Testing Platform 
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The tests used concentrated on measuring two aspects of the system: enhancements 

and costs. The experiments measure the enhancements made to the timely arrival of 

transmitted data. The experiments also measure the overheads incurred by the system 

to provide the measured enhancements. 

5.1 Goodput Enhancement 

Goodput is an invented term that denotes the percentage of transmitted packets that 

arrived to the receiver before or at their deadline time. The higher the goodput, the 

more comprehendible a transmitted multimedia flow becomes. A goodput of 100% 

means that all the packets in the flow were received on time by the receiver. 

To measure goodput, three flows were created on the three workstations. Each sender 

sent 10,000 packets of 5-Kbytes each before terminating the flow. The pattern of 

sending the packets was dependent on the throughput being measured. The receiver 

timed the packets as they were received and discarded any packets that did not arrive 

on time. The ratio of the number of packets received on time to the total number of 

packets sent is the goodput of the flow. The total goodput of the network was the 

average goodput for the three flows. The same test was repeated with different 

throughputs. Varying the throughput allowed testing the effect of increasing the 

requested throughput on the goodput measured at the receiver. The test was further 

repeated using UDP/IP for sending the packets instead of the controlled QoS system. 

Figure 31 shows the measured goodput for different requested cumulative throughput. 

The cumulative throughput is the sum of the requested throughputs for all three flows. 
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Figure 31 – Percentage of good packets at variable requested throughput 

The ideal values for the goodput were calculated using the 10-Mbps (1280 

Kbytes/sec) nominal bandwidth for the underlying network. The ideal network was 

assumed to only allow 1280 Kbytes to be transmitted per second. If more is requested, 

the ideal network will only pass 1280 Kbytes of the requested throughput and hence 

the percentage of correct packets would be estimated on this ground. 

The QoS-controlled flows demonstrated a worse goodput at lower cumulative 

throughputs than that of normal UDP streams. This can be attributed to the overheads 

of QoS maintenance and monitoring which use a portion of the network bandwidth 

that could have otherwise been used by flow data. The advantages of the QoS system 

are much less than the overheads of the system at this stage. At higher requested 

throughputs, the controlled flows exhibit a higher goodput than normal UDP streams 

that send data using the same throughput. At this stage, the network bandwidth saved 

due to the realtime packet scheduling performed at the MRTSD is more than that 
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wasted by QoS maintenance and monitoring. At 5000 Kbytes/sec (approximately 1.6 

Mbytes/sec per flow), 10% of the packets arrive on time when sent using the QoS 

system as opposed to only 3% arriving on time using UDP streams. 

5.2 Throughput Overhead 

The proposed QoS system was developed as a layer above UDP/IP. This ports all the 

overheads of UDP to the system and adds to them the overhead of the system itself. 

UDP has overheads due to data copying and checksum creation and validation. The 

proposed system adds throughput overheads due to packet scheduling.  

One flow was created to send packets at the maximum rate possible. The flow 

attempts to send 10,000 packets of data in a tight loop. The experiment was repeated 

for different packet sizes and the throughput was measured at the receiver. The 

exercise was performed using QoS flows, UDP/IP and raw IP. Figure 32 shows the 

measured system throughput at different packet sizes. 
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Figure 32 - Measured throughput for different packet sizes 
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Raw IP, expectedly, outperformed all higher level protocols. Raw IP is the basis of all 

other protocols and contains minimal overheads. UDP/IP performed at almost 50% of 

raw IP due to data-copying overhead as well as checksum generation and transport-

level overheads. The throughput for the proposed system was slightly less than 

UDP/IP due to the overhead of the realtime packet scheduler. 

5.3 Network Bandwidth 

The network capacity used by the QoS system is not entirely used for the transmission 

of data packets. The QoS system uses probe packets for performing QoS monitoring. 

The percentage of network bandwidth used for QoS monitoring is determined 

according to a system-level parameter as described in section 4.2.6.  

A single flow was created to send data at different QoS levels. Counters were inserted 

at the MRTSD to measure the total number of bytes sent for data packets and the 

corresponding number of bytes sent for probe packets. The system-level monitoring 

parameter was set at 0.1 (10%). The distribution of the utilized network bandwidth is 

shown in Figure 33. 
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Figure 33 - Breakdown of network bandwidth utilization 

The network bandwidth utilization was split into exactly 90% for data and 10% for 

probe packets. This is in agreement with the system-level monitoring parameter that 

was set at 0.1. 

5.4 Delay Overhead 

The added system layer in the proposed system adds to the latency of the overall 

network. First, there is the copying required by the sender to make the data ready for 

transmission. The data pointers to the shared memory are then transmitted using IPC 

to the MRTSD without actually copying the data. The MRTSD uses realtime 

scheduling to prioritize packet transmission, which adds to the delay of sending every 

packet. Figure 34 shows the breakdown of system latency into its different 

components. 
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Figure 34 – System latency as a function of packet size (using log-scale) 

The largest part of latency is that caused by the network itself. This includes the delay 

due to UDP, the network delay and the transmission time. The elements of the latency 

introduced by the QoS system are an average delay of approximately 1000s for the 

realtime scheduler and a constant delay (approximately 150s) for IPC transmission of 

the data pointers. There is also a variable delay for copying data into shared memory 

by the sender, which depends on the size of the data being copied. The dominant part 

of the QoS system delay is due to the realtime scheduler. This is attributed to the 

usage of semaphores for signaling the arrival and consumption of packets in the 

packet queue. 

5.5 Summary 

The measured performance of the proposed system indicates that realtime scheduling 

indeed helps in the correct multiplexing of multimedia data. Realtime scheduling 

avoids sending data that has expired and makes room for data that has a chance of 

reaching its destination on time. The added overhead in throughput is significant with 
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comparison to raw IP transmission. A system that is built directly on top of raw IP 

instead of UDP/IP would provide a higher throughput for applications. The added 

latency to the system (approx. 1300s) is acceptable for high-latency networks such as 

the one used in the test system. This latency might not be acceptable in networks with 

lower-latency. 

The experiments performed in this section did not count the effect of cooperation 

among multimedia flows. In reality, QoS notification significantly adds to the 

collective performance of multimedia applications by allowing applications to reduce 

their QoS requirements during network congestion and relaxing them again when the 

network is less congested. This can significantly increase goodput to allow more 

multimedia flows to coexist on the same network. Moreover, the effect of admission 

control was not tested. Admission control notably protects the network bandwidth 

from being overwhelmed by a flow whose requested QoS-level could not be satisfied. 
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CChhaapptteerr  66  SSUUMMMMAARRYY  AANNDD  CCOONNCCLLUUSSIIOONN  

This thesis researched the different aspects of providing a QoS management solution 

for multimedia communication. QoS management functions were normally provided 

with networks that have an inherent capacity for reserving resources. The thesis aimed 

at adapting the concepts of QoS management to the world of non-guaranteed 

networks. This research has been conducted in the context of an environment where 

network performance cannot be guaranteed and where performance may be changing 

with time.  

6.1 Development 

An abstraction layer was developed on top of a standard transport protocol to provide 

QoS functionality. The abstraction layer used the concept of a flow, which is a stream 

of multimedia data that has specific quality constraints. The abstraction layer includes 

a QoS-management subsystem, a realtime scheduling subsystem, and a user-level 

library. 

The QoS management subsystem (the MQOSD) provides a central point of control for 

QoS functions on every workstation. The MQOSD is the single point for active 

storage of flow-related QoS data. It performs QoS specification, mapping, and 

admission prior to flow creation by utilizing the stored QoS information in taking QoS 

decisions. The MQOSD also performs QoS notification for flows whose desired QoS 

levels could not be satisfied due to network constraints. 
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The realtime scheduling subsystem (the MRTSD) performs QoS maintenance 

functions on every workstation. It communicates with senders of the same workstation 

to receive and prioritize flow data packets before sending them to their destinations. 

The MRTSD is also responsible for QoS monitoring by measuring actual QoS values 

and reporting them to the MQOSD. 

The user-level library provides a high-end interface to the users of the QoS system 

(senders). The library defines a highly portable interface on top of high-level 

languages. It allows senders to create flows, manage their QoS requirements as well as 

receive and handle notifications for QoS degradation. Receivers of multimedia flows 

are oblivious to whether the information they receive is QoS managed. Receivers are 

not involved in the QoS management process. 

The complete system allows senders to create flows and simply specify their QoS 

requirements. It also manages the data being transferred to maximize the utilization of 

the network using the knowledge it has from the specified QoS requirements. This is 

performed while coexisting with other time-varying, non-controlled data on the same 

network. 

6.2 Results 

The core design features of the system were implemented on Linux using UDP/IP as 

the base transport protocol. User libraries were provided for C++ to extend QoS 

functionality to the language. IPC was used for local communication between the user 

libraries and the QoS subsystems (the MQOSD and the MRTSD). 
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The testing of the implemented system indicated that the system provides better 

network traffic management but with a high overhead. Goodput was used as a basis 

for measuring the performance of QoS management system. It indicates the 

percentage of flow data packets that arrived on time according to the contracted QoS 

levels for the flow. Goodput during network overload for the QoS managed system 

was significantly higher than an uncontrolled system. The system provided triple the 

goodput (10% versus 3%) when the total concurrent requests were triple the network 

capacity. 

The runtime of the system encompassed a high throughput overhead. Being 

implemented on top of UDP/IP, the system provided a performance that was slightly 

lower than that of UDP/IP but almost half that of raw IP. At low throughput requests, 

the system provided performance that was poorer than that of uncontrolled systems 

due to the high system overhead. A system implemented on top of raw IP instead of 

UDP/IP would provide higher goodput results. 

The overhead in overall system delay was not as severe as the throughput overhead. 

The end-to-end delay was increased by less than 10% of the minimum measured 

network delay during system testing. This is attributed to the usage of out-of-bound 

control channels. Sending control data on separate channels rather than using 

piggybacking mechanisms reduces the overhead of handling flow data and reduces the 

operations performed at the sender and receiver. This significantly reduced the 

increase in system delay. The notable constituent (90%) of the added delay is the delay 

caused by realtime scheduling of packets at the MRTSD. The algorithm used was an 

non-optimized Earliest Deadline First scheme. 
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6.3 Conclusions 

The goal of this thesis has been to provide QoS management for flows on non-

guaranteed networks. This goal has been achieved through the design of the model 

presented in this thesis. Instead of relying on the network to perform resource 

reservation for the specified QoS levels, the system actively performs QoS assessment 

and monitoring. The model also presents a novel predictive approach for QoS 

admission by anticipating current network QoS levels and intelligently admitting or 

denying acceptance of future QoS requests. QoS contracts are constantly monitored 

and evaluated to provide proper notification of any instances where the contracted 

levels are not met.  

The proposed model provides a threshold level for QoS. Threshold QoS provides a 

higher level than the common best-effort QoS that is adopted in non-guaranteed 

networks. The testing and measurement of the proposed model has shown 

improvements in quality over best-effort QoS. This is to be compared to the 

compulsory QoS levels that are warranted in guaranteed networks. The adopted model 

provides a medium level between best-effort QoS and compulsory QoS.  

Finally, the proposed model was implemented on a common LAN and showed that 

QoS managed flows can coexist with non-managed data streams. Applications were 

written using the high-level interface provided by the user libraries of the proposed 

system. Applications were able to work with the notion of threshold QoS and were 

able to coordinate at times of congestion to work with lower QoS levels and provide 

maximum quality for the available network resources. 

6.4 Future Research 
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The proposed model provides a framework for the study of further aspects of QoS 

management. This work has mainly focused on providing breadth coverage of QoS 

functions to verify the feasibility of the concept. One QoS aspect, predictive QoS 

admission, was studied in depth. However, the proposed model provides a rich 

research platform for the investigation of the following aspects: 

 Realtime scheduling 

 Elaborate notification and adaptation to QoS feedback 

 Comprehensive specification and mapping for QoS levels 

 Multicast and group management 

 QoS negotiation and renegotiation mechanisms 

The proposed model implements a simple Earliest Deadline First realtime scheduling 

algorithm. The realtime-scheduling algorithm is currently a bottleneck in the proposed 

system. Effective realtime scheduling can increase network bandwidth utilization and 

provide better management for network traffic. This should lead to better system 

performance and increased goodput at higher requested QoS levels. 

At present, the proposed model employs primitive QoS notification. Elaborate QoS 

notification should allow user specification of the events requiring notification. 

Moreover, it the mechanism should allow for intelligent distribution of the exceeded 

network capacity. Currently, the system notifies all active flows of QoS degradation in 

order to cooperate in reducing the requested QoS levels. This proves efficient to the 

network but too downgrading to the applications. Approaches that are more formal 
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include the identification of which flows contribute to the network congestion and 

only notifying those flows that are creating the problem. 

Comprehensive QoS specification can allow a versatile set of parameters for 

specifying user-level QoS parameters. QoS specification should allow specifying all 

multimedia formats as well as having a generic way of defining the transmission 

patterns of flow data. Elaborate specification should also differentiate between stored 

data and data generated using live multimedia sources. This should allow QoS 

mapping to tighter network-level QoS parameters leading to effective management of 

network bandwidth. 

The proposed work has been designed with the assumption of having only unicast 

flows. Typical multimedia applications involve multicast operation and group 

communication. The proposed system provides a basic framework that can be 

modified to include group handling functionality to allow group creation and 

membership. This is the first step in providing a complete multicast solution for multi-

point communication. Moreover, multicast flows face the challenge of having 

different QoS levels requested by different receivers, which introduces the concept of 

multi QoS levels per flow. 

The current model allows only acceptance or denial of flow creation. A more 

complete system should provide mechanisms for negotiating QoS levels. QoS 

renegotiation during operation is also essential to adequately adapt to the varying 

network performance. QoS negotiation and renegotiation mechanisms allow the 

system to recommend QoS levels to the applications instead of denying them the 
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service. It also allows applications to reach better agreement with the system on what 

QoS levels it requires. 

Finally, it is hoped that continuous analysis and further development of the proposed 

system will lead to a more complete study of all aspects of QoS management on non-

guaranteed networks. 
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Appendix A: Neural Network Training 

The neural network used as the second step of QoS admission was trained using 

MATLAB. A feed-forward neural network was defined using MATLAB to match the 

network shown in Figure 21. The network was trained using the back-propagation 

algorithm using the following data: 

Throughput 

Acceptability 

Delay 

Acceptability 

Error-Rate 

Acceptability 

Decision 
[1=accept, 0=deny] 

0.00 0.00 0.00 0 

0.25 0.00 0.00 0 

0.50 0.00 0.00 0 

0.75 0.00 0.00 0 

1.00 0.00 0.00 0 

0.00 0.25 0.25 0 

0.25 0.25 0.25 0 

0.50 0.25 0.25 0 

0.75 0.25 0.25 0 

1.00 0.25 0.25 0 

0.00 0.50 0.50 0 

0.25 0.50 0.50 0 

0.50 0.50 0.50 0 

0.75 0.50 0.50 0 

1.00 0.50 0.50 1 

0.00 0.75 0.75 0 

0.25 0.75 0.75 0 

0.50 0.75 0.75 0 

0.75 0.75 0.75 1 

1.00 0.75 0.75 1 

0.00 1.00 1.00 0 

0.25 1.00 1.00 0 

0.50 1.00 1.00 1 

0.75 1.00 1.00 1 

1.00 1.00 1.00 1 

0.00 0.25 0.00 0 

0.00 0.50 0.00 0 

0.00 0.75 0.00 0 

0.00 1.00 0.00 0 

0.25 0.00 0.25 0 

0.25 0.50 0.25 0 

0.25 0.75 0.25 0 

0.25 1.00 0.25 0 
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Throughput 

Acceptability 

Delay 

Acceptability 

Error-Rate 

Acceptability 

Decision 
[1=accept, 0=deny] 

0.50 0.00 0.50 0 

0.50 0.25 0.50 0 

0.50 0.75 0.50 0 

0.50 1.00 0.50 0 

0.75 0.00 0.75 0 

0.75 0.25 0.75 0 

0.75 0.50 0.75 1 

0.75 1.00 0.75 1 

1.00 0.00 1.00 0 

1.00 0.25 1.00 0 

1.00 0.5 1.00 1 

1.00 0.75 1.00 1 

0.00 0.00 0.25 0 

0.00 0.00 0.50 0 

0.00 0.00 0.75 0 

0.00 0.00 1.00 0 

0.25 0.25 0.00 0 

0.25 0.25 0.50 0 

0.25 0.25 0.75 0 

0.25 0.25 1.00 0 

0.50 0.50 0.00 0 

0.50 0.50 0.25 0 

0.50 0.50 0.75 0 

0.50 0.50 1.00 1 

0.75 0.75 0.00 0 

0.75 0.75 0.25 0 

0.75 0.75 0.50 1 

0.75 0.75 1.00 1 

1.00 1.00 0.00 0 

1.00 1.00 0.25 0 

1.00 1.00 0.50 1 

1.00 1.00 0.75 1 

The training set was developed using common sense. The strategy was to accept flows 

when the inputs were high and to reject flows that had low inputs. Preference was 

given to throughput as the most important input. A flow needs to have high 

throughput acceptability but only medium delay and error rate acceptability to get 

accepted into the network. 
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The set of weights and biases obtained after training the network were stored in a text 

file called “nn-weights.dat” for usage by the MQOSD during runtime.  

The following file was used for creating and training the neural network in MATLAB 

version 4.1: 

% INITIALIZE 

inputrange = [0 1; 0 1; 0 1]; 

[w1, b1, w2, b2] = initff (inputrange, 3, 'logsig', 1, 

'logsig'); 

 

% TRAIN 

trainingset = [ 

0.00 0.00 0.00 0; 

0.25 0.00 0.00 0; 

0.50 0.00 0.00 0; 

0.75 0.00 0.00 0; 

1.00 0.00 0.00 0; 

 

0.00 0.25 0.25 0; 

0.25 0.25 0.25 0; 

0.50 0.25 0.25 0; 

0.75 0.25 0.25 0; 

1.00 0.25 0.25 0; 

 

0.00 0.50 0.50 0; 

0.25 0.50 0.50 0; 

0.50 0.50 0.50 0; 

0.75 0.50 0.50 0; 

1.00 0.50 0.50 1; 

 

0.00 0.75 0.75 0; 

0.25 0.75 0.75 0; 

0.50 0.75 0.75 0; 

0.75 0.75 0.75 1; 

1.00 0.75 0.75 1; 

 

0.00 1.00 1.00 0; 

0.25 1.00 1.00 0; 

0.50 1.00 1.00 1; 

0.75 1.00 1.00 1; 

1.00 1.00 1.00 1; 

 

0.00 0.25 0.00 0; 

0.00 0.50 0.00 0; 

0.00 0.75 0.00 0; 

0.00 1.00 0.00 0; 

 

0.25 0.00 0.25 0; 

0.25 0.50 0.25 0; 

0.25 0.75 0.25 0; 

0.25 1.00 0.25 0; 

 

0.50 0.00 0.50 0; 

0.50 0.25 0.50 0; 

0.50 0.75 0.50 0; 

0.50 1.00 0.50 0; 

 

0.75 0.00 0.75 0; 
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0.75 0.25 0.75 0; 

0.75 0.50 0.75 1; 

0.75 1.00 0.75 1; 

 

1.00 0.00 1.00 0; 

1.00 0.25 1.00 0; 

1.00 0.5 1.00 1; 

1.00 0.75 1.00 1; 

 

0.00 0.00 0.25 0; 

0.00 0.00 0.50 0; 

0.00 0.00 0.75 0; 

0.00 0.00 1.00 0; 

 

0.25 0.25 0.00 0; 

0.25 0.25 0.50 0; 

0.25 0.25 0.75 0; 

0.25 0.25 1.00 0; 

 

0.50 0.50 0.00 0; 

0.50 0.50 0.25 0; 

0.50 0.50 0.75 0; 

0.50 0.50 1.00 1; 

 

0.75 0.75 0.00 0; 

0.75 0.75 0.25 0; 

0.75 0.75 0.50 1; 

0.75 0.75 1.00 1; 

 

1.00 1.00 0.00 0; 

1.00 1.00 0.25 0; 

1.00 1.00 0.50 1; 

1.00 1.00 0.75 1; 

]'; 

 

p=trainingset(1:3,1:size(trainingset,2)); 

t=trainingset(4,1:size(trainingset,2)); 

tp=[100 3000 nan nan nan nan nan nan]; 

 

[w1, b1, w2, b2, te, tr] = trainbpx (w1, b1, 'logsig', w2, b2, 

'logsig', p, t, tp); 

 

% SIMULATE 

i=[1;1;1]; 

while i(1)~=0 | i(2)~=0 | i(3)~=0, 

   i = input('input? ')'; 

 

x1 = (w1*i); 

x2 = x1+b1*ones(1,size(x1,2)); 

x3 = 1 ./ (1+exp(-x2)); 

 

x4 = (w2*x3); 

x5 = x4+b2*ones(1,size(x4,2)); 

x6 = 1 ./ (1+exp(-x5)); 

r = x6 

 

   simuff (i, w1, b1, 'logsig', w2, b2, 'logsig') 

end 
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Appendix B: Object-Oriented Design Class Details 

QoS Structures 

#ifndef QOS_H 

#define QOS_H 

 

#include <iostream.h> 

 

struct NetworkQoS { 

   int throughput; 

   int delay; 

   int jitter; 

   int errorrate; 

   NetworkQoS &operator =(const NetworkQoS &src); 

   int operator <(const NetworkQoS &rhs); 

   friend ostream &operator <<(ostream &ostream, NetworkQoS 

&qos); 

}; 

 

struct AudioQoS { 

   int freq; 

   int channels; 

   int samplesize; 

}; 

 

struct VideoQoS { 

   struct { 

      int x, y; 

   } resolution; 

   int colors; 

   int frames; 

}; 

 

struct UserQoS { 

   enum {  

      AUDIO, VIDEO  

   } datatype; 

   union { 

      struct AudioQoS audio; 

      struct VideoQoS video; 

   } data; 

   int compression; 

   enum { 

      INTERACTIVE, NONINTERACTIVE 

   } interactivity; 

   int tolerance; 

    

   UserQoS &operator =(const UserQoS &src); 

   friend ostream &operator <<(ostream &ostream, UserQoS &qos); 

}; 

#endif  
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Buffer Class 

#ifndef BUFFER_H 

#define BUFFER_H 

 

// if not in Linux, inline may not work (undefine it), and NULL 

might 

// not be defined (include stdio.h to define it) 

#ifndef LINUX 

#define inline 

#include <stdio.h> 

#endif 

 

#include <iostream.h> 

 

class Buffer 

{ 

 protected: 

   struct { 

      int size;                      // allocated size for 

buffer 

      int extra;                     // extra bytes allocated 

at beginning 

                                     //   of buffer for 

application use 

      int localbuffer;               // buffer allocated here 

or by caller 

      char *buffer;                  // buffer pointer 

      int inptr, outptr;             // indeces to current 

positions in buffer 

      int opaquedatasize;            // size of opaque data to 

be sent 

                                     //   opaque data (void*) 

when being 

                                     //   marshalled take the 

first int 

                                     //   before them as the 

size. that 

                                     //   int gets sent before 

the data. 

   } data; 

   char *bufferdata; 

    

 public: 

   Buffer (unsigned short bufsize=8196, unsigned short 

extrasize=0, 

    char *buf=NULL); 

   Buffer (Buffer &rhs); 

   virtual ~Buffer (); 

 

   inline void clear (); 

   inline void rewind (); 

   inline int maxsize (); 

   inline int datasize (); 

   inline int extrasize (); 

    

   inline char *databuffer (); 

   inline char *wholebuffer (); 

   void setdatasize (int datasize); 

   void setbuffer (char *buffer); 

 

   void extra (void *extrabuf, int bufsize); 

    

   virtual Buffer &operator =(Buffer &rhs); 
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   virtual Buffer &operator <<(Buffer &rhs); 

 

   virtual Buffer &operator <<(int n); 

   virtual Buffer &operator <<(short n); 

   virtual Buffer &operator <<(long n); 

   virtual Buffer &operator <<(unsigned n); 

   virtual Buffer &operator <<(unsigned short n); 

   virtual Buffer &operator <<(unsigned long n); 

   virtual Buffer &operator <<(char c); 

   virtual Buffer &operator <<(char *s); 

   virtual Buffer &operator <<(void *v); 

    

   virtual Buffer &operator >>(int &n); 

   virtual Buffer &operator >>(short &n); 

   virtual Buffer &operator >>(long &n); 

   virtual Buffer &operator >>(unsigned &n); 

   virtual Buffer &operator >>(unsigned short &n); 

   virtual Buffer &operator >>(unsigned long &n); 

   virtual Buffer &operator >>(char &c); 

   virtual Buffer &operator >>(char *s); 

   virtual Buffer &operator >>(void *v); 

}; 

 

#endif 
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Comm Class 

#ifndef COMM_H 

#define COMM_H 

 

#include "buffer.h" 

 

class Comm 

{ 

 public: 

   virtual int Send (Buffer &buffer)=0; 

   virtual int Receive (Buffer &buffer)=0; 

   virtual int NonBlockingReceive (Buffer &buffer)=0; 

}; 

 

#endif 
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ControlPacket Class 

#ifndef CONTROLPACKET_H 

#define CONTROLPACKET_H 

 

#include "buffer.h" 

 

class ControlPacket : public Buffer 

{ 

 public: 

   enum PacketType { 

      KILL, 

      // MQOSD packets 

      CREATE, CREATEREPLY, TERMINATE, SELECTQOS, 

SELECTQOSREPLY, NOTIFY, 

      PINGDELAY, STARTPINGTHROUGHPUT, PINGTHROUGHPUT,  

      PINGTHROUGHPUTREPLY, 

      // MRTSD packets 

      SEND, QUERY, QUERYREPLY, REPORT 

   }; 

 public: 

   ControlPacket (unsigned short bufsize, unsigned short 

extrasize, char *buf); 

   virtual PacketType Type (); 

   virtual void Type (PacketType type); 

}; 

 

#endif 
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CountTable Class 

#ifndef COUNTTABLE_H 

#define COUNTTABLE_H 

 

#include "flowtable.h" 

 

class CountTable : public FlowTable { 

 protected: 

   struct Entry { 

      int count; 

      long packetmax; 

      long packetmin; 

      long packetavg; 

   }; 

 protected: 

   virtual void DumpEntry (int index); 

   virtual void SetEntry (int index, void *data); 

   virtual void DeleteEntry (int index); 

 public: 

   CountTable (int size); 

   void Inc (flow_t flowid, long packetsize); 

   void Reset (flow_t flowid); 

   int Count (flow_t flowid); 

   long AveragePacketSize (flow_t flowid); 

}; 

 

#endif 
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CreatePacket Class 

#ifndef CREATEPACKET_H 

#define CREATEPACKET_H 

 

#include "flow.h" 

#include "qos.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

#include "pid.h" 

 

class CreatePacket : public ControlPacket 

{ 

 protected: 

   struct PacketCreate { 

      PacketType type; 

      pid_t pid; 

      pid_t notifypid; 

      UserQoS qos; 

      char address[30]; 

      unsigned short port; 

   }; 

   PacketCreate *packet; 

 public: 

   CreatePacket (unsigned short extrasize=0, char *buf=NULL); 

   pid_t pid (); 

   void notifypid (pid_t notifypid); 

   pid_t notifypid (); 

   void pid (pid_t pid); 

   void qos (UserQoS *qos); 

   void qos (UserQoS &qos); 

   char *address (); 

   void address (char *address); 

   unsigned short port (); 

   void port (unsigned short port); 

}; 

 

#endif 
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CreateReplyPacket Class 

#ifndef CREATEREPLYPACKET_H 

#define CREATEREPLYPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

class CreateReplyPacket : public ControlPacket 

{ 

 protected: 

   struct PacketCreateReply { 

      PacketType type; 

      flow_t flowid; 

//      int qos; 

   }; 

   PacketCreateReply *packet; 

 public: 

   CreateReplyPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

//   int qos (); 

//   void qos (int qos); 

}; 

 

#endif 
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Flow Class 

#ifndef FLOW_H 

#define FLOW_H 

 

#include "ipc.h" 

 

// if not in Linux, inline may not work (undefine it) 

#ifndef LINUX 

#define inline 

#endif 

 

#define FLOWERROR (0) 

 

typedef unsigned int flow_t; 

 

class Flow 

{ 

 protected: 

   IPC *mqosd;               // mqosd ipc channel 

   IPC *mrtsd;               // mrtsd ipc channel 

   flow_t flowid; 

    

 public: 

   Flow (); 

   virtual ~Flow (); 

    

   inline flow_t ID(); 

}; 

 

#endif 
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FlowTable Class 

#ifndef FLOWTABLE_H 

#define FLOWTABLE_H 

 

#define FLOWTABLE_EMPTY (0) 

 

// if not in Linux, inline may not work (undefine it) 

#ifndef LINUX 

#define inline 

#endif 

 

#include "flow.h" 

 

class FlowTable { 

 protected: 

   struct Entry { 

      flow_t flowid; 

      void *data; 

   } *table; 

   int tablesize; 

 protected: 

   inline int Empty (int index); 

   virtual int Find (flow_t flowid); 

   virtual int AddEntry (flow_t flowid, void *data); 

   // entry functions 

   virtual void DeleteEntry (int index)=0; 

   virtual void SetEntry (int index, void *data)=0; 

   virtual void DumpEntry (int index)=0; 

 public: 

   FlowTable (int size); 

   virtual ~FlowTable (); 

   virtual int Delete (flow_t flowid); 

   virtual void Dump (); 

}; 

 

#endif 
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IPC Class 

#ifndef IPC_H 

#define IPC_H 

 

// if not in Linux, inline may not work (undefine it) 

#ifndef LINUX 

#define inline 

#endif 

 

#include "comm.h" 

#include "buffer.h" 

 

class IPC : public Comm 

{ 

 public: 

   enum JoinType { 

      CREATE, ATTACH 

   }; 

 protected: 

   JoinType join; 

   int key; 

   int msqid; 

   long sendmsgtype;          // type of messages to send using 

msgsnd() 

   long receivemsgtype;       // type of messages to recv using 

msgrcv() 

 public: 

   IPC (int remotekey, JoinType jointype=ATTACH); 

   IPC (IPC &rhs); 

   virtual ~IPC (); 

    

   inline int MsgQueueID (); 

   inline void SendType (long msgtype); 

   inline void ReceiveType (long msgtype); 

    

   virtual int Send (Buffer &buffer); 

   virtual int Receive (Buffer &buffer); 

   virtual int NonBlockingReceive (Buffer &buffer); 

}; 

 

#endif 
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KillPacket Class 

#ifndef KILLPACKET_H 

#define KILLPACKET_H 

 

#include "controlpacket.h" 

 

class KillPacket : public ControlPacket 

{ 

 protected: 

   struct PacketKill { 

      PacketType type; 

   }; 

   PacketKill *packet; 

 public: 

   KillPacket (unsigned short extrasize=0, char *buf=NULL); 

}; 

 

#endif 
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MQOSD Class 

#ifndef MQOSD_H 

#define MQOSD_H 

 

#define MQOSD_IPCPORT (7776) 

#define MQOSD_UDPPORT (7776) 

 

#define MQOSD_IPCTOMQOSD (1) 

#define MQOSD_IPCTOMRTSD (2) 

 

#include "qos.h" 

#include "qostable.h" 

#include "pid.h" 

 

#include <unistd.h> 

 

//ASSUME: max concurrent flows = 50 

#define MQOSD_MAXCONCURRENTFLOWS (50) 

//ASSUME: max concurrent pinging flows = 50 

#define MQOSD_MAXCONCURRENTPINGS (50) 

//ASSUME: max ping request buffer size = 8K 

#define MQOSD_MAXPINGBUFFER (8*1024) 

//ASSUME: percentage of ping packets expected = 80% 

#define MQOSD_PERCENTPINGPACKETS (80) 

//ASSUME: max receive buffer size = 8K 

#define MQOSD_MAXRECEIVEBUFFER (8*1024) 

//ASSUME: ratio of old qos retained = 40% old, 60% new 

#define MQOSD_OLDDATARATIO (40) 

 

class MQoSDaemon 

{ 

 protected: 

   IPC *ipc; 

   QoSTable *qostable; 

 protected: 

   // functions available to callers 

   void Create (pid_t pid, pid_t notifypid, UserQoS &qos, 

  char *address, unsigned short port); 

   void Terminate (flow_t flowid); 

   void SelectQoS (flow_t flowid, UserQoS &qos); 

   void Query (flow_t flowid, long requestor); 

   void Report (flow_t flowid, NetworkQoS &qos); 

    

   // internal functions 

   virtual int AdmitQoS (NetworkQoS &qos); 

   virtual void MapQoS (UserQoS &userqos, NetworkQoS *netqos); 

 public: 

   MQoSDaemon (int maxflows); 

   virtual ~MQoSDaemon (); 

   static void *HandlePings (void *arg); 

   static void *HandleRequests (void *arg); 

}; 

 

#endif 
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MRTSD Class 

#ifndef MRTSD_H 

#define MRTSD_H 

 

#include <semaphore.h> 

#include <pthread.h> 

 

#include "packettable.h" 

#include "counttable.h" 

#include "ipc.h" 

 

#define MRTSD_IPCPORT (7777) 

#define MRTSD_UDPPORT (7777) 

 

#define MRTSD_IPCTOMRTSD (1) 

 

//ASSUME: max mrtsd received packet size = 8K 

#define MRTSD_MAXPACKETSIZE (8*1024) 

//ASSUME: max packets awaiting send in mrtsd buffer = 500 

#define MRTSD_MAXBUFFERPACKETS (100) 

//ASSUME: max concurrent flows = 50 

#define MRTSD_MAXCONCURRENTFLOWS (50) 

 

#define TIMEDIFF(a,b) ((a.tv_sec-b.tv_sec)*1000000+(a.tv_usec-

b.tv_usec)) 

//TODO: make num of ping packets a user parameter 

#define PING_NUMPACKETS (10) 

//TODO: use alpha from user qos 

#define PING_ALPHA (50) 

 

class MRTSDaemon { 

 protected: 

   sem_t sema; // semaphore to synch receiver and scheduler 

               // receiver posts when new packet is put in 

buffer 

               // scheduler waits until receiver posts a packet 

   pthread_mutex_t mutex; 

   PacketTable *packettable; 

   CountTable *counttable; 

   IPC *ipc; 

   int currentping; 

 protected: 

   virtual void Ping (flow_t flowid, char *address); 

 public: 

   MRTSDaemon (int maxtables, int maxflows); 

   virtual ~MRTSDaemon (); 

    

   static void *Receiver (void *arg); 

   static void *Scheduler (void *arg); 

}; 

 

#endif 
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NotifyPacket Class 

#ifndef NOTIFYPACKET_H 

#define NOTIFYPACKET_H 

 

#include "qos.h" 

#include "controlpacket.h" 

 

class NotifyPacket : public ControlPacket 

{ 

 protected: 

   struct PacketNotify { 

      PacketType type; 

      NetworkQoS actualqos; 

      NetworkQoS desiredqos; 

   }; 

   PacketNotify *packet; 

 public: 

   NotifyPacket (unsigned short extrasize=0, char *buf=NULL); 

   void actualqos (NetworkQoS *qos); 

   void actualqos (NetworkQoS &qos); 

   void desiredqos (NetworkQoS *qos); 

   void desiredqos (NetworkQoS &qos); 

}; 

 

#endif 
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PacketTable Class 

#ifndef PACKETTABLE_H 

#define PACKETTABLE_H 

 

#include "flowtable.h" 

#include "qos.h"  

 

#include <unistd.h> 

#include <sys/time.h> 

 

#include "pid.h" 

 

class PacketTable : public FlowTable { 

 protected: 

   int numentries,maxnumentries,requests;    //TODO: remove 

these two vars 

   struct Entry { 

      pid_t pid; 

      char address[30]; 

      unsigned short port; 

      struct timeval deadline; 

      int shmkey; 

      int datasize; 

   }; 

 protected: 

   virtual void DumpEntry (int index); 

   virtual void SetEntry (int index, void *data); 

   virtual void DeleteEntry (int index); 

 public: 

   PacketTable (int size); 

   virtual ~PacketTable (); 

   flow_t Add (flow_t flowid, pid_t pid, char *address, 

unsigned short port,  

        long sec, long usec, int shmkey, int datasize); 

   int GetData (flow_t flowid, pid_t *pid, char *address, 

unsigned short *port, 

  long *sec, long *usec, int *shmkey, int *datasize); 

   flow_t GetEarliestDeadline (); 

}; 

 

#endif 
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PingDelayPacket Class 

#ifndef PINGDELAYPACKET_H 

#define PINGDELAYPACKET_H 

 

#include "controlpacket.h" 

 

class PingDelayPacket : public ControlPacket 

{ 

 protected: 

   struct PacketPingDelay { 

      PacketType type; 

   }; 

   PacketPingDelay *packet; 

 public: 

   PingDelayPacket (unsigned short extrasize=0, char 

*buf=NULL); 

}; 

 

#endif 
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PingThroughputPacket Class 

#ifndef PINGTHROUGHPUTPACKET_H 

#define PINGTHROUGHPUTPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

 

#define PINGTHROUGHPUT_PACKETSIZE (5*1024) 

 

class PingThroughputPacket : public ControlPacket 

{ 

 protected: 

   struct PacketPingThroughput { 

      PacketType type; 

      flow_t flowid; 

      char data[PINGTHROUGHPUT_PACKETSIZE]; 

   }; 

   PacketPingThroughput *packet; 

 public: 

   PingThroughputPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

}; 

 

#endif 
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PingThroughputReplyPacket Class 

#ifndef PINGTHROUGHPUTREPLYPACKET_H 

#define PINGTHROUGHPUTREPLYPACKET_H 

 

#include "controlpacket.h" 

 

class PingThroughputReplyPacket : public ControlPacket 

{ 

 protected: 

   struct PacketPingThroughputReply { 

      PacketType type; 

      long timetaken; 

   }; 

   PacketPingThroughputReply *packet; 

 public: 

   PingThroughputReplyPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   void timetaken (long timetaken); 

   long timetaken (void); 

}; 

 

#endif 
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QoSAdmissionTable Class 

#ifndef QOSADMISSIONTABLE_H 

#define QOSADMISSIONTABLE_H 

 

#include "qos.h" 

 

class QoSAdmissionTable 

{ 

 protected: 

   enum FuzzyDigit { LOW, MIDLOW, MID, MIDHIGH, HIGH, NONE }; 

   struct FuzzyValue { 

      FuzzyDigit fuzzy; 

      int weight; 

      FuzzyValue &operator =(FuzzyValue &rhs) { 

  fuzzy = rhs.fuzzy; 

  weight = rhs.weight; 

  return *this; 

      } 

   }; 

   NetworkQoS networkstatus; 

   NetworkQoS userrequest; 

   FuzzyDigit decisiontable[5][5] =  

     {   { HIGH,    HIGH,    HIGH,    HIGH,   HIGH   }, 

  { HIGH,    HIGH,    MIDHIGH, MID,    MID    }, 

  { HIGH,    MIDHIGH, MID,     MID,    MIDLOW }, 

  { MIDHIGH, MID,     MID,     MIDLOW, LOW    }, 

  { MID,     MIDLOW,  MIDLOW,  LOW,    LOW    }   }; 

 protected: 

   void Fuzzify (long value, FuzzyValue *low, FuzzyValue 

*high); 

   int FuzzyDecide (FuzzyValue &requestlow, FuzzyValue 

&requesthigh, 

      FuzzyValue &networklow, FuzzyValue 

&networkhigh); 

   int NeuralDecide (int throughput, int delay, int errorrate); 

   void FuzzyAnd (FuzzyValue &value1, FuzzyValue &value2, 

FuzzyValue *result); 

 public: 

   void InputNetworkStatus (NetworkQoS &status); 

   void InputUserRequest (NetworkQoS &request); 

   int Decision (); 

}; 

 

#endif 



 
143 

QoSTable Class 

#ifndef QOSTABLE_H 

#define QOSTABLE_H 

 

#include "flowtable.h" 

#include "qos.h"  

 

#include <unistd.h> 

 

#include "pid.h" 

 

class QoSTable : public FlowTable { 

 protected: 

   flow_t nextflowid; 

   struct Entry { 

      pid_t pid; 

      pid_t notifypid; 

      NetworkQoS desiredqos; 

      NetworkQoS actualqos; 

      char address[30]; 

      unsigned short port; 

   }; 

 protected: 

   virtual void DumpEntry (int index); 

   virtual void SetEntry (int index, void *data); 

   virtual void DeleteEntry (int index); 

 public: 

   QoSTable (int size); 

   flow_t Add (pid_t pid, pid_t notifypid, char *address, 

unsigned short port, NetworkQoS &qos); 

   int SetDesiredQoS (flow_t flowid, NetworkQoS &qos); 

   int SetActualQoS (flow_t flowid, NetworkQoS &qos); 

   int SetDestination (flow_t flowid, char *address, unsigned 

short port); 

   int GetDesiredQoS (flow_t flowid, NetworkQoS *qos); 

   int GetActualQoS (flow_t flowid, NetworkQoS *qos); 

   int GetData (flow_t flowid, pid_t *pid, pid_t *notifypid,  

  NetworkQoS *desiredqos, NetworkQoS *actualqos,  

  char *address, unsigned short *port); 

   void GetQoSTotal (NetworkQoS *desiredqos, NetworkQoS 

*actualqos); 

   void GetQoSMax (NetworkQoS *desiredqos, NetworkQoS 

*actualqos); 

   //TODO: void GetQoSMin (NetworkQoS *desiredqos, NetworkQoS 

*actualqos); 

   void GetQoSAverage (NetworkQoS *desiredqos, NetworkQoS 

*actualqos); 

}; 

 

#endif 
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QueryPacket Class 

#ifndef QUERYPACKET_H 

#define QUERYPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

class QueryPacket : public ControlPacket 

{ 

 protected: 

   struct PacketQuery { 

      PacketType type; 

      flow_t flowid; 

      long requestor; 

   }; 

   PacketQuery *packet; 

 public: 

   QueryPacket (unsigned short extrasize=0, char *buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

   long requestor (); 

   void requestor (long requestor); 

}; 

 

#endif 
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QueryReplyPacket Class 

#ifndef QUERYREPLYPACKET_H 

#define QUERYREPLYPACKET_H 

 

#include "qos.h" 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

#include "pid.h" 

 

class QueryReplyPacket : public ControlPacket 

{ 

 protected: 

   struct PacketQueryReply { 

      PacketType type; 

      pid_t pid; 

      NetworkQoS actualqos; 

      NetworkQoS desiredqos; 

      char address[30]; 

      unsigned short port; 

   }; 

   PacketQueryReply *packet; 

 public: 

   QueryReplyPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   pid_t pid (); 

   void pid (pid_t pid); 

   void actualqos (NetworkQoS *qos); 

   void actualqos (NetworkQoS &qos); 

   void desiredqos (NetworkQoS *qos); 

   void desiredqos (NetworkQoS &qos); 

   char *address (); 

   void address (char *address); 

   unsigned short port (); 

   void port (unsigned short port); 

}; 

 

#endif 
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ReceiverFlow Class 

#ifndef RECEIVERFLOW_H 

#define RECEIVERFLOW_H 

 

#include "flow.h" 

#include "buffer.h" 

 

class ReceiverFlow : public Flow 

{ 

 protected: 

 public: 

 protected: 

 public: 

   int Create (Addr &addr, QoS &qos); 

   int Terminate (); 

   int SelectQoS (QoS &qos); 

   int Receive (Buffer &buffer); 

}; 

 

#endif 
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ReportPacket Class 

#ifndef REPORTPACKET_H 

#define REPORTPACKET_H 

 

#include "qos.h" 

#include "flow.h" 

#include "controlpacket.h" 

 

class ReportPacket : public ControlPacket 

{ 

 protected: 

   struct PacketReport { 

      PacketType type; 

      flow_t flowid; 

      NetworkQoS qos; 

   }; 

   PacketReport *packet; 

 public: 

   ReportPacket (unsigned short extrasize=0, char *buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

   void qos (NetworkQoS *qos); 

   void qos (NetworkQoS &qos); 

}; 

 

#endif 
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SelectQoSPacket Class 

#ifndef SELECTQOSPACKET_H 

#define SELECTQOSPACKET_H 

 

#include "qos.h" 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

class SelectQoSPacket : public ControlPacket 

{ 

 protected: 

   struct PacketSelectQoS { 

      PacketType type; 

      flow_t flowid; 

      UserQoS qos; 

   }; 

   PacketSelectQoS *packet; 

 public: 

   SelectQoSPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

   void qos (UserQoS *qos); 

   void qos (UserQoS &qos); 

}; 

 

#endif 
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SelectQoSReplyPacket Class 

#ifndef SELECTQOSREPLYPACKET_H 

#define SELECTQOSREPLYPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

class SelectQoSReplyPacket : public ControlPacket 

{ 

 protected: 

   struct PacketSelectQoSReply { 

      PacketType type; 

      flow_t flowid; 

//      int qos; 

   }; 

   PacketSelectQoSReply *packet; 

 public: 

   SelectQoSReplyPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

//   int qos (); 

//   void qos (int qos); 

}; 

 

#endif 
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SenderFlow Class 

#ifndef SENDERFLOW_H 

#define SENDERFLOW_H 

 

#include "qos.h" 

#include "flow.h" 

#include "shmbuffer.h" 

 

#include <pthread.h> 

#include <semaphore.h> 

 

class SenderFlow : public Flow 

{ 

 protected: 

   pid_t callerpid; 

   pid_t threadpid; 

   sem_t threadpidsem; 

   pthread_t notificationhandler; 

   virtual void QoSNotification (NetworkQoS &desiredqos, 

NetworkQoS &actualqos)=0; 

   static void *NotificationHandler (void *arg); 

 public: 

   SenderFlow (); 

   virtual ~SenderFlow (); 

   virtual flow_t Create (char *addr, unsigned short port, 

UserQoS &qos); 

   virtual void Terminate (); 

   virtual int SelectQoS (UserQoS &qos); 

   virtual int Send (SharedMemBuffer &buffer); 

   virtual int Assess (); 

}; 

 

#endif 
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SendPacket Class 

#ifndef SENDPACKET_H 

#define SENDPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

class SendPacket : public ControlPacket 

{ 

 protected: 

   struct PacketSend { 

      PacketType type; 

      flow_t flowid; 

      int shmkey; 

      int datasize; 

   }; 

   PacketSend *packet; 

 public: 

   SendPacket (unsigned short extrasize=0, char *buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

   int shmkey (); 

   void shmkey (int shmkey); 

   int datasize (); 

   void datasize (int datasize); 

}; 

 

#endif 
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SharedMemBuffer Class 

#ifndef SHMBUFFER_H 

#define SHMBUFFER_H 

 

#include "buffer.h" 

#include <sys/ipc.h> 

#include <sys/shm.h> 

 

#define SHMBUFFER_SHMSIZE (8196) 

 

class SharedMemBuffer : public Buffer 

{ 

 protected: 

   int creator; 

   int shmid; 

   key_t key; 

 public: 

   SharedMemBuffer (key_t keytouse,  

      int createnew=0, int 

buffersize=SHMBUFFER_SHMSIZE); 

   //SharedMemBuffer (SharedMemBuffer &rhs); 

   ~SharedMemBuffer (); 

    

   key_t Key (); 

    

   //virtual SharedMemBuffer &operator =(SharedMemBuffer &rhs); 

}; 

 

#endif 
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StartPingThroughputPacket Class 

#ifndef STARTPINGTHROUGHPUTPACKET_H 

#define STARTPINGTHROUGHPUTPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

 

class StartPingThroughputPacket : public ControlPacket 

{ 

 protected: 

   struct PacketStartPingThroughput { 

      PacketType type; 

      flow_t flowid; 

   }; 

   PacketStartPingThroughput *packet; 

 public: 

   StartPingThroughputPacket (unsigned short extrasize=0, char 

*buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

}; 

 

#endif 
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TerminatePacket Class 

#ifndef TERMINATEPACKET_H 

#define TERMINATEPACKET_H 

 

#include "flow.h" 

#include "controlpacket.h" 

#include <unistd.h> 

 

class TerminatePacket : public ControlPacket 

{ 

 protected: 

   struct PacketTerminate { 

      PacketType type; 

      flow_t flowid; 

   }; 

   PacketTerminate *packet; 

 public: 

   TerminatePacket (unsigned short extrasize=0, char 

*buf=NULL); 

   flow_t flowid (); 

   void flowid (flow_t flowid); 

}; 

 

#endif 
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UDP Class 

#ifndef UDP_H 

#define UDP_H 

 

#include "comm.h" 

#include "buffer.h" 

#include <netinet/in.h> 

 

class UDP : public Comm 

{ 

 protected: 

   int sockfd; 

   unsigned short port; 

   struct sockaddr_in remoteaddr; 

   struct sockaddr_in lastrecvaddr;    // last address from 

which data was received 

 public: 

   struct Addr { 

      char host[30]; 

      unsigned short port; 

   }; 

 public: 

   UDP (unsigned short localport); 

   UDP (Addr &raddr, unsigned short localport=INADDR_ANY); 

   UDP (char *host, unsigned short port, unsigned short 

localport=INADDR_ANY); 

   UDP (UDP &rhs); 

   virtual ~UDP (); 

   virtual int Send (Buffer &buffer); 

   virtual int Send (Buffer &buffer, struct sockaddr_in *dest); 

   virtual int Reply (Buffer &buffer); 

   virtual int Receive (Buffer &buffer); 

   virtual int NonBlockingReceive (Buffer &buffer); 

}; 

 

#endif 
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