
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Archived Theses and Dissertations

6-1-2001

Quality of service management for non-guaranteed networks Quality of service management for non-guaranteed networks

Tarek Madkour

Follow this and additional works at: https://fount.aucegypt.edu/retro_etds

Recommended Citation Recommended Citation

APA Citation
Madkour, T. (2001).Quality of service management for non-guaranteed networks [Master’s thesis, the
American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/2362

MLA Citation
Madkour, Tarek. Quality of service management for non-guaranteed networks. 2001. American University
in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/retro_etds/2362

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Archived Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For
more information, please contact mark.muehlhaeusler@aucegypt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AUC Knowledge Fountain (American Univ. in Cairo)

https://core.ac.uk/display/333726787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://fount.aucegypt.edu/
https://fount.aucegypt.edu/retro_etds
https://fount.aucegypt.edu/retro_etds?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2362?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/retro_etds/2362?utm_source=fount.aucegypt.edu%2Fretro_etds%2F2362&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo

Schools of Engineering and Computer Science

QUALITY OF SERVICE MANAGEMENT

FOR NON-GUARANTEED NETWORKS

A Thesis Submitted to

The Computer Science Department

in partial fulfillment of the requirements for

the degree of Master of Science

by

Tarek Madkour

B.Sc. Computer Science, AUC, Feb. 1996

Under the supervision of Dr. Amr El-Kadi

December 1999

ii

The American University in Cairo

QUALITY OF SERVICE MANAGEMENT

FOR NON-GUARANTEED NETWORKS

A Thesis Submitted by Tarek Madkour

To Department of Computer Science

December 1999

in partial fulfillment of the requirements for

The degree of Master of Science

has been approved by

Dr. Amr El-Kadi
Thesis Committee Chair / Adviser

Affiliation

Dr.

Thesis Committee Reader / examiner

Affiliation

Dr.

Thesis Committee Reader / examiner

Affiliation

Department Chair Date Dean Date

iii

TABLE OF CONTENTS

TABLE OF CONTENTS .. III

FIGURES / ILLUSTRATIONS ... VI

TABLES ... VIII

ACKNOWLEDGEMENTS ... IX

ABSTRACT ... X

CHAPTER 1 INTRODUCTION .. 1

1.1 CONTINUOUS MEDIA ... 1

1.2 QUALITY OF SERVICE .. 2

1.3 THE PROBLEM .. 3

1.4 MOTIVATION AND CONTRIBUTION .. 4

1.5 THESIS OUTLINE ... 4

CHAPTER 2 QOS ARCHITECTURES SURVEY ... 6

2.1 QOS BASICS .. 6

2.1.1 QoS Characteristics .. 6

2.1.2 QoS Management ... 8

2.1.3 QoS Architecture Concept .. 17

2.2 QOS STANDARDS .. 18

2.2.1 ISO .. 18

2.2.2 CCITT (ITU) ... 19

2.2.3 IEEE ... 20

2.3 LAYER-SPECIFIC QOS ... 21

2.3.1 Application Level .. 21

2.3.2 Transport Level .. 23

iv

2.4 QOS ARCHITECTURES ... 24

2.4.1 Tenet Group .. 25

2.4.2 HeiProject .. 27

2.4.3 QoS-A ... 28

2.4.4 OMEGA .. 29

2.4.5 XRM .. 31

2.4.6 Int-serv (IETF) .. 32

2.4.7 TINA ... 34

2.4.8 MASI ... 35

2.4.9 Washington Univ. ... 36

2.4.10 CORBA ... 37

2.4.11 Siqueria’s Thesis .. 38

2.4.12 Univ. of Montreal ... 39

2.4.13 DJINN ... 39

CHAPTER 3 TRANSPORT-LAYER PROTOCOLS .. 41

3.1 INTRODUCTION ... 41

3.2 TRANSPORT SERVICES .. 43

3.3 TRANSPORT PROTOCOLS IN QOS ARCHITECTURES ... 49

3.3.1 OSI95 .. 49

3.3.2 QoS-A ... 51

3.4 INTERNET TRANSPORT PROTOCOLS .. 53

3.4.1 ST-II .. 54

3.4.2 RSVP ... 55

CHAPTER 4 PROPOSED ARCHITECTURE ... 57

4.1 OVERVIEW .. 57

4.2 DESIGN ... 59

4.2.1 Goals .. 59

4.2.2 Decisions .. 60

v

4.2.3 Architecture .. 62

4.2.4 QoS Specification and Mapping ... 65

4.2.5 QoS Maintenance ... 68

4.2.6 QoS Monitoring and Notification ... 72

4.2.7 QoS Admission ... 77

4.3 PROTOTYPE ... 81

4.3.1 Platform .. 82

4.3.2 Class Diagram .. 83

4.3.3 Scenarios .. 87

CHAPTER 5 EXPERIMENTAL RESULTS ... 97

5.1 GOODPUT ENHANCEMENT .. 98

5.2 THROUGHPUT OVERHEAD ... 100

5.3 NETWORK BANDWIDTH .. 101

5.4 DELAY OVERHEAD ... 102

5.5 SUMMARY... 103

CHAPTER 6 SUMMARY AND CONCLUSION ... 105

6.1 DEVELOPMENT ... 105

6.2 RESULTS ... 106

6.3 CONCLUSIONS ... 108

6.4 FUTURE RESEARCH ... 108

REFERENCES ... 112

APPENDIX A: NEURAL NETWORK TRAINING ... 119

APPENDIX B: OBJECT-ORIENTED DESIGN CLASS DETAILS ... 123

vi

FIGURES / ILLUSTRATIONS

FIGURE 1 – TENET ARCHITECTURE ... 26

FIGURE 2 - HEIPROJECT FRAMEWORK ... 27

FIGURE 3 - QOS-A FRAMEWORK ... 29

FIGURE 4 - OMEGA FRAMEWORK .. 30

FIGURE 5 - XRM FRAMEWORK ... 32

FIGURE 6 - INT-SERV FRAMEWORK ... 33

FIGURE 7 - MASI FRAMEWORK .. 35

FIGURE 8 - WASHINGTON U. FRAMEWORK .. 37

FIGURE 9 - ISO OSI MODEL LAYERS .. 41

FIGURE 10 - TRANSPORT SERVICE DYNAMICS ... 44

FIGURE 11 - QOS PARAMETERS DEFINITION .. 45

FIGURE 12 - THE CLASSICAL 4-PRIMITIVE EXCHANGE .. 51

FIGURE 13 - MAIN SYSTEM COMPONENT INTERACTION DIAGRAM .. 63

FIGURE 14 - DETAILED COMPONENT INTERACTION DIAGRAM ... 65

FIGURE 15 - QOS SPECIFICATION PARAMETERS .. 66

FIGURE 16 - TYPICAL QOS MAINTENANCE SYSTEM OPERATION ... 71

FIGURE 17 - END-TO-END DELAY CALCULATION .. 74

FIGURE 18 - THROUGHPUT CALCULATION ... 75

FIGURE 19 - QOS ADMISSION SUBSYSTEM .. 78

FIGURE 20 - FUZZIFICATION AND DEFUZZIFICATION GRAPH .. 79

FIGURE 21 - QOS ADMISSION NEURAL NETWORK ... 81

FIGURE 22 - CLASS DIAGRAM FOR PROTOTYPE ... 84

FIGURE 23 - FLOW CREATE OBJECT DIAGRAM .. 88

FIGURE 24 - DATA SENDING OBJECT DIAGRAM ... 90

FIGURE 25 - REALTIME PACKET SCHEDULING OBJECT DIAGRAM .. 91

FIGURE 26 - QOS MONITORING OBJECT DIAGRAM .. 92

vii

FIGURE 27 - QOS DEGRADATION OBJECT DIAGRAM ... 93

FIGURE 28 - QOS SELECTION OBJECT DIAGRAM ... 94

FIGURE 29 - FLOW TERMINATION OBJECT DIAGRAM .. 95

FIGURE 30 - TESTING PLATFORM ... 97

FIGURE 31 – PERCENTAGE OF GOOD PACKETS AT VARIABLE REQUESTED THROUGHPUT 99

FIGURE 32 - MEASURED THROUGHPUT FOR DIFFERENT PACKET SIZES ... 100

FIGURE 33 - BREAKDOWN OF NETWORK BANDWIDTH UTILIZATION ... 102

FIGURE 34 – SYSTEM LATENCY AS A FUNCTION OF PACKET SIZE (USING LOG-SCALE) 103

viii

TABLES

TABLE 1 - FUZZY DECISION TABLE ... 80

ix

ACKNOWLEDGEMENTS

I wish to extend my sincere thanks to my supervisor, Dr. Amr El-Kadi, for his

guidance and support over the past three years. Despite being incredibly busy, he has

always taken the time to discuss this work and pose further questions when required.

His perspective of various issues and the occasional words of encouragement have

been well appreciated.

I wish to express my deep gratitude to my family for their love, understanding and

their unfailing support and assistance. Particularly, I want to thank my father for his

constant help and his ingenious ideas. They have all shared with me the good and bad

moments during the past years. I would not have been writing this today without their

love and care.

In addition, I thank my friends, especially Hisham, for their constant support and

motivation. They never failed to cheer me up when I was feeling down. Their

friendship has always been the reason for my delight.

Finally, my appreciation goes to all of the staff of the Computer Science Department

for their encouragement and friendship. I have enjoyed the challenges, camaraderie,

and many other aspects of postgraduate study at the university.

x

ABSTRACT

The increasing dominance of multimedia communication posed new requirements for

the underlying systems. Multimedia data, formally called continuous media, has time

constraints that impose realtime limitations for their transmission. Certain levels of

service, called Quality of Service (QoS), need to be considered when handling

continuous media.

The present work utilizes QoS concepts for networks that do not have inherent QoS

support. The thesis aims at verifying the possibility of having QoS-controlled

communication on non-guaranteed networks. A basic QoS architecture is designed

where already existing QoS concepts are adapted to work with non-guaranteed

networks. The architecture provides the facilities of QoS specification, mapping,

admission, maintenance, monitoring and notification. In addition, a new concept for

predictive QoS admission is introduced.

The proposed architecture was verified using a prototype system. The results showed

an increased percentage of continuous media that arrive on time to their receivers

(goodput) with higher network loads. The increased goodput was at the expense of

high network overhead.

1

CChhaapptteerr 11 IINNTTRROODDUUCCTTIIOONN

The new requirements posed by the use of multimedia in distributed networks called

for new ways of handling the new type of data that was being treated, continuous

media. Handling continuous media favored the introduction of new mechanisms for

dealing with its realtime aspects. Quality of Service (QoS) management stands out as

a major aspect to be handled.

1.1 Continuous Media

With the advancement in computer hardware and networking technologies, there was

a matching elevation in the anticipation of computer users. Traditional computer

users started demanding more than merely exchanging text data and binary files. The

next step in user expectations was to interchange audio and video data, which are

collectively referred to as multimedia. Multimedia transfer imposed more burdens on

the existing systems for two main reasons: the nature of the data being transferred, the

increasing bandwidth requirements for multimedia data, and the nature of multimedia

applications themselves.

Unlike binary data, multimedia has diverse requirements in terms of bandwidth,

latency levels and jitter. Once multimedia transfer starts, it is expected to flow with a

constant rate. This concept of constant flow rate gave rise to the concept of continuous

media. One cannot expect an audio transfer to be delayed in the middle without

hearing “clicks” in the stream, which renders the audio stream non-comprehendible.

The same applies for the other types of multimedia data. It is this implied rate of

2

exhibition for continuous media that caused problems for traditional distributed

systems. Conventional distributed systems were designed to deal with transmitted data

in a “best-effort” fashion. This “best-effort” technique will destroy the integrity of

continuous media because it does not guarantee the expected rates. This called for the

evolution of new systems that can handle continuous media, whether at the application

level, transport layer level, or distributed system level.

1.2 Quality of Service

The realtime requirements of continuous media imposed a limit on the level of service

that a distributed system can provide to its clients. The guaranteed level of service for

continuous media communication is termed Quality of Service (QoS). QoS refers to

certain characteristics as observed by the transport service users [Reynolds 96].

Most existing distributed systems are based on traditional communication

architectures that have a narrow notion of QoS. The Internet Protocol (IP), for

example, can only specify ‘high’ and ‘low’ throughput or reliability factors. The

underlying network rarely honors such qualitative measures. Furthermore, existing

qualitative QoS parameters are defined statically. Current needs require the ability to

dynamically modify the agreed upon values through processes of negotiation and

renegotiations. The need exists for more quantitative parameters to be specified and

honored [Campbell 94]. Modern multimedia distributed systems should have the

facility to specify and honor agreed QoS levels.

Recent network topologies provide support for QoS definition and management.

Modern networks, such as ATM, allow for the reservation of QoS levels prior to

channel creation. Once a QoS level is granted, the network guarantees to send the

3

transmitted data at the specified level. Older networks, such as Ethernet, do not have a

facility for resource reservation. The network medium is shared among applications

and it is left to the applications to cooperate in sharing the network in a way that

maximizes network utilization and performance.

1.3 The Problem

This thesis addresses one problem that shows with QoS management: the provision

of system-level QoS on non-guaranteed networks. The goal of this thesis is to

borrow, adapt and develop mechanisms for porting the QoS concepts that were

originally developed for guaranteed networks to work with non-guaranteed network

platforms.

This work asserts that QoS provision should be performed at the system level rather

than the application level. Leaving QoS provision to the application level has the

following problems:

 complexity of user applications due to the addition of QoS management to the

applications

 inability to handle multiple coexisting applications with different media types and

varying QoS requirements

Providing a common interface to the applications to access QoS facilities will simplify

the creation of multimedia applications. System-level QoS management also allows

for maximum network utilization by enforcing system-level management of the data

being transmitted. This thesis demonstrates that QoS can be provided at the system

4

level by providing a complete transport-level architecture that facilitates QoS

management of multimedia data.

1.4 Motivation and Contribution

Providing QoS for non-guaranteed networks is essential due to the dominance of

traditional network platforms that do not have inherent QoS support. Facilitating QoS

management for the traditional platforms will allow for the utilization of the new

concepts of multimedia to the old existing networks. It will also lay the foundations

for permitting multimedia communication on heterogeneous networks that comprise a

combination of both traditional and modern network platforms, such as the Internet.

This thesis provides a novel approach to QoS provision, where a complete transport-

level QoS management architecture is designed to provide QoS functionality to non-

QoS-aware platforms. The technique adopted is breadth coverage of all essential

aspects of QoS management. Key QoS management functions are provided in an

elementary form to furnish a basic, yet complete, framework for QoS management on

non-guaranteed networks. One aspect of QoS management, namely admission control,

is studied in depth to provide a new approach for predictive admission control on

networks that do not provide QoS guarantees.

1.5 Thesis Outline

In the next chapter, a survey of current research in the field of QoS management is

presented. The survey includes the current standardization efforts as well as individual

research in the field of QoS management. The survey covers research performed on

guaranteed and non-guaranteed networks.

5

Chapter 3 focuses on QoS management research for transport protocols. Focus is

given on the incorporation of QoS mechanisms at the transport-level. A discussion of

QoS management for the Internet Protocols is also presented.

The proposed architecture is outlined in Chapter 4. The chapter describes the approach

used in design and details the design of the different components of the proposed

system. The chapter also presents the implementation of the proposed system.

Chapter 5 provides the results of the testing and measurement performed on the

implemented system. Results show the benefits of the proposed system and the costs

of achieving those benefits.

Chapter 6 concludes the thesis and provides a summary of the proposed work. The

chapter also outlines future directions for possible fields of research in the area of QoS

management for non-guaranteed networks.

6

CChhaapptteerr 22 QQOOSS AARRCCHHIITTEECCTTUURREESS SSUURRVVEEYY

2.1 QoS Basics

Quality of Service is the collective effect of service performance, which determines

the degree of satisfaction of a user of the service [Hafid 96b]. The level of satisfaction

for a distributed multimedia application is defined in terms of several characteristics,

called QoS characteristics. The distributed multimedia system manages those

characteristics for different application in the process of QoS management. This

section describes different existing QoS characteristics and the steps of QoS

management in a distributed multimedia system.

2.1.1 QoS Characteristics

QoS characteristics define the fundamental aspects of QoS to be managed by the

distributed multimedia system [ISO 95]. They represent some aspects of the system

that are to be identified and quantified. QoS characteristics are represented for every

connection existing in a multimedia system. The QoS characteristics and the values

associated with those characteristics will be assumed to exist by the application as

long as the communication channel exists. In the case of multi-peer communication,

the communication channel is from one sender to several recipients. Here the QoS

characteristics may either be connection-wide or receiver-selected. Connection-wide

characteristics apply to all instances of the communication channel with all the

recipients of the service. Receiver-selected characteristics apply only to a single

instance of the channel that the receiver is connected to. All other instances of the

7

communication channel share the connection-wide characteristics. This permits

custom-configuring QoS requirements per receiver to allow for heterogeneous

receivers.

The proposed ISO standard QoS framework [ISO 95] categorizes the QoS

characteristics of general importance into:

 Time-related characteristics

 Coherence characteristics

 Capacity-related characteristics

 Integrity-related characteristics

 Safety-related characteristics

 Cost-related characteristics

 Security-related characteristics

 Reliability-related characteristics

 Other characteristics

Each category of the characteristics contains a set of generic QoS characteristics that

could be quantified in numbers, vectors, or matrices using a specific unit. The generic

QoS characteristics can be further specialized into specific QoS characteristics.

Specialization is done by limiting a generic characteristic to a certain event or to or

from a specific origin or location or by representing the original characteristic as a

8

statistical function, such as variance of the generic function. For example, the “time

delay” characteristic can be specialized into “transit delay” and “request/reply” delay,

which are two kinds of time delay or can be specialized into mean time delay to

represent the arithmetic mean. The ISO document [ISO 95] gives a detailed discussion

of the QoS characteristics in every category, their definition, quantification and units.

2.1.2 QoS Management

Distributed Multimedia Systems aim at managing QoS characteristics to produce the

expected multimedia performance. QoS management is done through several QoS

management functions (QMFs). QoS management functions refer to all the activities

relating to the control and administration of QoS within a system. QMFs are

composed of several QoS mechanisms. A QoS mechanism is an action performed by

one or more entities in a distributed system to meet one or more QoS requirements.

QoS mechanisms may operate individually or be combined to cooperate in performing

a single QoS management function. The QoS requirements that QMFs act to meet are

represented as QoS parameters, which are values given by the users of the system for

certain QoS characteristics.

The activities supported by QMFs include [ISO 95]:

 Establishment of QoS for a set of QoS characteristics

 Monitoring of the observed values of QoS

 Maintenance of the actual QoS as close as possible to the target QoS

 Control of QoS targets

 Inquiry upon some QoS information or action

 Alerts as a result of some event relating to QoS management.

9

An important notion to QoS management is the notion of a flow. A flow is defined as

the production, transmission and eventual consumption of a single media stream as an

integrated activity governed by a single statement of QoS [Hutchison 95]. QoS

management uses QMFs at different stages during the lifetime of a flow. QoS

management is typically performed a priori, before initiation, at initiation of the flow

and during interaction. A priori management can occur when certain QoS parameters

are preset in the system at design time. For example, a multimedia system may have

preset values for certain video characteristics that are applied system-wide. QoS

management can be performed before initiation by reserving some resources before

communication is initiated. During flow initiation, the application can negotiate with

the system the QoS parameters to use for certain QoS characteristics according to the

application needs and the system’s current state. QoS management can also be

performed during communication within a flow when a certain QoS characteristic

falls below or exceeds the agreed upon parameters. This causes an alert to the

application to either renegotiate QoS or terminate.

QoS management activities can be categorized into three phases: prediction,

establishment and operation. During the prediction phase, current QoS parameters of

the system are examined to be able to predict what kind of parameters an application

can ask of the system. After QoS parameters are predicted, flow establishment takes

place with all the QoS management functions related to establishment taking place,

too. These are typically actions of negotiation, renegotiations and setting of

parameters in case of degradation. Finally, during the operation of a flow, QoS

monitoring and maintenance is done by the system and QoS inquiries are done by the

applications. It is hence useful to categorize QoS management activities into

10

specification, mapping, negotiation, resource reservation, admission control,

maintenance, monitoring, policing, adaptation, renegotiations, accounting and

termination activities.

2.1.2.1 Specification

The purpose of QoS specification is for applications to represent their multimedia

QoS requirements through defining values for the QoS characteristics supported by

the systems. This is known as passing parameters to the QoS system. It is generally

desirable that the system allows applications to specify their QoS requirements in

terms of characteristics that are meaningful to the application. Video applications, for

example, should specify the number of desired frames per second and it is up to the

system to translate that (in the mapping step) to meaningful system-level QoS

parameters such as throughput and jitter. The QoS requirements specified by the

application will act as a service-contract that the system will be expected to adhere to.

The application can specify QoS requirements in several ways. Common ways

include:

 upper or lower limits

 upper or lower thresholds

 a specific operating target value

QoS requirements can also specify actions to be taken as a result of reaching the

specified limits or thresholds in other characteristics. Thresholds are different from

limits in that they carry no restriction on whether or not they should be crossed [ISO

95].

11

2.1.2.2 Mapping

QoS mapping is normally responsible for translating the user-level QoS requirements

into QoS requirements for the different levels of the system. Hafid [Hafid 96b] defines

three main types for mapping:

 QoS – QoS mapping. QoS parameters specified at the higher level are mapped into

QoS parameters for the lower layer. An example of this is mapping a protocol

level time requirement into an ATM cell QoS parameter.

 QoS – resource mapping. QoS parameters of a certain level are mapped into

resources that need to be reserved, such CPU, bandwidth or system buffers.

 Service – system mapping. Services are mapped onto system components that are

required to support the requested service.

Mapping, in conjunction with specification, relieve the application from the burden of

having to specify system-level QoS parameters that might not be meaningful to the

application developer.

2.1.2.3 Negotiation

The role of the negotiation phase of QoS management is to find an agreement on the

values of QoS parameters between the application establishing a flow and the

distributed multimedia system. Typically, applications will ask for the best QoS they

can get. It is the task of the system to check the available resources and report to the

requesting application the levels of QoS that the system can permit. The application

should decide, based on the reported available QoS, whether to abort establishment,

12

establish with a lower QoS, or negotiate a new set of parameters based on the reported

QoS. For example, a video application may require 30 frames per second for its 24-bit

video data. When the system reports back the availability of a 20 frames per second

rate only. The application can either refuse to work with this rate, accept the 20 frames

per second rate, or negotiate having 30 frames per second for 8-bit video data. The

result of the negotiation process should be the establishment of the flow with

acceptable QoS parameters for both the system and the application, or the cancellation

of the process if agreed levels cannot be reached.

2.1.2.4 Resource Reservation

In order to guarantee the agreed QoS levels, the system needs to allocate low-level

resources to the applications. Resources include network bandwidth, CPU cycles

required for multimedia processing, thread scheduling, memory and buffer space.

Normally, only requesting a low-level resource and checking the outcome of the

request can test QoS availability. This shows why resource reservation is a process

that is often tightly coupled with QoS negotiation.

Hafid [Hafid 97] discusses two approaches to resource reservation:

 Pessimistic Approach. Resources are allocated based on the worst-case

scenario. This clearly leads to fully guaranteed QoS but also leads to

under-utilization of the allocated resources because multimedia data

naturally come in bursts.

 Optimistic Approach. Resources are allocated on the average

characteristics. This causes a more efficient utilization for resources but

13

could yield to situations where the “guaranteed” QoS is not guaranteed!

This leads us to other mechanisms of QoS alerting and QoS renegotiations.

2.1.2.5 Admission Control

Together with negotiation and resource reservation, admission control lies at the heart

of QoS establishment in QoS management. Based on the system’s QoS policies and

the current QoS levels, the system makes the decision on whether to admit the QoS

request or not. The decision is based on tests that the system makes internally to

allocate resources (resource reservation) and to inquiries about QoS levels of the

requested QoS parameters. If the QoS parameters can be met without threatening QoS

guarantees the QoS request is admitted. If the QoS parameters cannot be met, system

policies are checked to see whether the request should be admitted. For example, an

application’s request for 20% of the CPU cycles can be met even if it is not attainable

if the requesting application is realtime and the system’s policies are for preempting

normal applications for realtime ones. QoS renegotiations would now need to occur

with the lower priority applications.

2.1.2.6 Maintenance

Since QoS management is an activity that involves the reservation of resources,

distributed multimedia systems are expected to dynamically manage the reserved

resources to make sure that they operate in a way that attains all contracted QoS

levels. Resources are dynamically multiplexed by the system to ensure that high

priority, realtime for instance, applications are guaranteed their levels and that lower

priority applications do not starve. The dynamic multiplexing of resources to achieve

the guaranteed QoS levels is called QoS maintenance. An example of this is the

14

realtime scheduler that is asked to cooperate with the QoS system to provide the

required CPU cycles to the requesting applications. The maintenance of the realtime

scheduler is an action of QoS maintenance.

2.1.2.7 Monitoring

QoS monitoring is another dynamic QoS management activity. It is part of the

operation phase of flow management. During QoS monitoring, higher system layers

constantly supervise the lower layers to ensure proper QoS levels are kept. This

process involves QoS inquiry to inquire about current QoS levels and also involves

comparison with the contracts to guarantee that the contracted QoS values are obeyed.

Fine-grained resource adjustment can be performed as a maintenance action that

results from monitoring. When contracted QoS levels cross the contracted limits,

notifications are sent to the concerned applications. A QoS degradation notification is

sent to applications when the QoS values they contracted cannot be maintained by the

system. Applications are expected to respond to degradation notifications by ignoring

them, renegotiating new levels or terminating. When QoS values exceed the high

limits specified by the application (if any), another notification is sent to the

application notifying it with the change. Applications can respond with renegotiations

for higher QoS values or continue to run with the current levels.

Consider the video application example once more. Assume that during negotiation

the application agrees on 24 frames minimum and 30 frames per second maximum for

its 16 bits per pixel video. Now during operation of the flow, the system cannot keep

the minimum QoS level of 24 fps. The system sends a degradation notification and the

application has the option to terminate, ignore or renegotiate. The system decides to

15

negotiate 24-fps minimum and 30 fps maximum for black and white video. The

system agrees with this and after a while, the burst in the system ceases to exist and

the system can now provide more than 30 fps for black and white video for this flow.

The system sends another notification to the application where it has the option to

either continue with the current level or renegotiate a higher level, 30-fps 16-bit video

again, for instance.

2.1.2.8 Policing

QoS policing is the equivalent of QoS monitoring but from the applications’ side.

Since QoS contracts are constrains to both the system and the application, QoS

policing is responsible for ensuring that the application that agreed to a QoS contract

does adhere to its QoS terms just as QoS monitoring ensures that the system obeys the

contract, too. QoS policing is only valid where administrative or charging rules are

being enforced. For example, if applications are being charged for the data they

transmit and an application agrees to send at 1 MBPS; if the application tries to send

at more than 1 MBPS, QoS policing should detect the situation and react. Actions

expected of QoS policing include ignoring the application’s violation, notifications,

automatically shaping the data in the flow through filters to adhere to the contract or

pure termination of the violating application.

2.1.2.9 Adaptation

QoS adaptation is responsible for automatically altering data in a flow to adapt to

changing QoS context. When QoS values cannot be maintained at the contracted

levels, the system may solve the problem in one of two ways: system and application

policies or adaptation. The first alternative is the normal QoS alerting as a result of

16

QoS monitoring resulting in either renegotiations or termination. Here the application

is the sole controller in case of the system being incapable of delivering the desired

QoS. Another approach is to allow the system to shape the data streams to

automatically adhere to QoS requirements. This philosophy is based on the concept

that a degraded service is better than no service, but it ignores the fact that

applications themselves know better how to degrade the service than the system.

Favorers of adaptation suggest methods of data filtering to shape streams. The system

may perform lossy knowledgeable compression to the data, may drop frames out of

video streams or may ignore the high-quality information in scalable multimedia

documents.

2.1.2.10 Renegotiation

Renegotiation is the process of repeating the QoS specification and QoS negotiation

phases. It is frequently the outcome of a QoS degradation notification to the

application. Other purposes for renegotiations are also commonplace. Applications

may wish to save system QoS by degrading their services when they do not need the

already agreed high QoS levels. Applications also tend to use the same flow for

several uses, which may need different QoS levels. An example for this could be the

use of a multimedia flow in a music radio broadcasting application. The application

could transmit both the commentator’s voice and the songs in the same stream.

Naturally, commentator’s voice would do with QoS levels for telephone-quality audio

whereas songs would preferably be transmitted at CD-quality audio if possible.

Renegotiations would have to occur every time the switch from commentator to song,

or vice versa, occurs.

17

2.1.2.11 Accounting

Accounting activities are essential when cost is taken into account. Multimedia

channels are normally attached with costs. The costs range from copyright costs of the

material being transmitted to QoS-related costs of system resource usage. The QoS-

related costs can be calculated in the QoS accounting phase. QoS-related costs are

typically costs associated with the QoS values contracted, service guarantee types,

duration of service, amount of data exchanged and security level [Hafid 96b].

2.1.2.12 Termination

QoS termination is concerned with the graceful termination of applications having

QoS contracts. During termination, the system should ensure that all resources

allocated to the application are released and all system structures created to support

the flow are freed. Checking should also be performed to check the dependencies

among applications. Applications requesting termination should be checked to ensure

that all flows created by the application are not closed before the clients of those flows

have ended their contract for the flow.

2.1.3 QoS Architecture Concept

QoS contracts cannot be guaranteed with the provision of QoS at a single layer of the

distributed multimedia system. Early systems in QoS literature were only concerned

with provision of QoS at the network and transport layers. This lead to an incomplete

discussion of QoS provision. A more global look into the QoS management process as

an end-to-end process needed to be considered. Later work in QoS research was aimed

at integrating QoS-driven end system architecture with the network configurable QoS

services and protocols in order to meet application-to-application requirements. The

18

result were communication architectures which were broader in scope, and covered

both network and end-system domains. The complete view of QoS provision that

covers the QoS management functions on an end-to-end basis on all layers of the

distributed multimedia system is called QoS architecture. The rest of this paper will

focus on the evolution of QoS architectures from single layer QoS provision, into

tentative standards and then full-blown QoS architectures.

2.2 QoS Standards

Earlier QoS work in distributed multimedia literature has been focused on QoS

aspects in individual layers of the QoS architecture. A more complete look to the QoS

story has started only recently. Since then, several QoS architectures have emerged in

the research arena aiming at satisfying QoS requirements for distributed multimedia

using a general approach. Due to the short age of the field of QoS management

architectures, there are no agreed upon standards for the functionality of a QoS

management system. A few standardization efforts have emerged aiming at providing

guidelines for building QoS frameworks. This section presents three standards

developed so far: ISO OSI, CCITT/ITU and IEEE frameworks.

2.2.1 ISO

The ISO standardization attempts aim at providing QoS support for the widely

accepted ISO Reference Model for Open Systems Interconnection (ISO/OSI-RM)

communication protocol. The ISO/OSI-RM protocol is a seven-layer protocol with

every layer responsible for a phase of communication. Communication occurs by the

processing and forwarding of data at each layer to an adjacent layer. The ISO QoS

framework [ISO 95] defines a set of QoS characteristics. Applications have the

19

facility to specify, statically at connection establishment time, the QoS values for the

QoS characteristics they desire. QoS management is now a problem of mapping the

QoS characteristics across layers and the maintaining the desired QoS level through a

set of QoS management functions (QMFs). QMFs are a set of QoS mechanisms that

can be combined in several ways in order to meet the defined QoS requirements.

The ISO model defines three levels of agreement for QoS management. An

application may request best-effort agreement where no QoS requirements have to be

maintained. Another option is compulsory agreement, where QoS requirements are

specified but not guaranteed. They may be deliberately degraded to allow for other

guaranteed applications to perform. Guaranteed agreements are for applications

demanding a certain rate that has to be maintained. Guaranteed applications will not

start unless the system is certain they will complete with the required QoS.

The framework also outlines a number of QoS categories for applications to fall into.

The QoS categories supplied are: secure systems, safety critical systems, time critical

systems, highly reliable systems, easy to use systems, low cost systems, flexible

systems and testable systems. Different default QoS policies apply for the different

QoS categories presented.

The ISO framework is not a complete framework for QoS management. It does not

provide critical solutions to the QoS problems but rather give guidelines on how a

complete QoS management architecture should behave. Moreover, the ISO framework

relies on simple mapping for network level QoS. It assumes that the network provider

will always support QoS provision, which is not always the case.

2.2.2 CCITT (ITU)

20

CCITT work on QoS is merely to recognize the needs for QoS provision in ATM

networks [Hutchison 95]. The CCITT standard provides QoS characterization at three

different levels. The call control and connection levels are concerned with the

establishment and release of calls and the allocation of resources along the path of

ATM switch nodes. The cell control level is concerned with the data transfer phase

itself.

CCITT provides a set of manageable QoS characteristics similar to those defined by

the ISO framework for equivalent functionality. The QoS characteristics are directly

mapped to QoS values for the ATM circuits. It also provides for a process of in-call

renegotiations as a form of QoS renegotiations phase.

The CCITT work lacks the view of a complete architecture. It does not show how the

QoS characteristics are derived from user-level QoS characteristics above the network

layer. There is, also, a deficiency in the definition of how QoS levels are monitored

and maintained in the ATM network.

2.2.3 IEEE

IEEE provides guidelines for QoS provision for its definition of the interface

requirements of realtime distributed systems communication [IEEE 95]. IEEE

discusses QoS with respect to the operating system and the communication system.

The operating system provides priorities for applications that are dynamically

modifiable to indicate which processes need more realtime data. At the

communication layer, four kinds of communication are presented for both unicast and

multicast communication: acknowledged, unacknowledged, reliable and unreliable

transfers. This is a very vague and qualitative understanding of QoS provision that

21

needs further revision in order to enable acceptable QoS provision for realtime

distributed systems.

2.3 Layer-Specific QoS

Most of the early QoS work in research literature focused on allowing QoS aspects at

individual layers of the distributed multimedia systems rather than providing a

complete solution for the QoS availability problem in terms of a full QoS architecture.

One of two sides was generally considered by early QoS systems: the application level

and the transport level.

2.3.1 Application Level

The application level includes both the distributed multimedia system level and

operating system running at the end-system. Enhancements for distributed multimedia

system aimed at providing new general concepts that would allow the applications to

specify their QoS requirements and that would allow the system to obey these

requirements. Enhancements at the operating system level aimed at adapting the

operating system to provide for the transfer of continuous media instead of the static

media support that already exists.

Early experiments aimed at providing QoS support for the ANSA architecture

[Campbell 93]. ANSA RPC interface descriptions were modified to include QoS

parameters in order for the system to know the applications’ QoS requirements.

Similar research has been performed at CNET and BBN and Rome Labs [Campbell

96]. Other work aimed at inserting QoS filters [Yeadon 96] at different locations in

the distributed system layer to filter the continuous media information to match the

22

current QoS levels of the system. This is based on knowledgeable filters that

understand the continuous media contents and can selectively drop the details out of

the media at times of heavy system loading. More recently, the problems for network

heterogeneity have been addressed [Banerjea 97] [Gecsei 97]. This aimed at providing

QoS with continuous media spanning heterogeneous networks as opposed to the

homogenous or single networks addressed in early QoS discussions.

At the operating system level, work has been going on to provide UNIX

enhancements or UNIX-like adaptations of operating systems to provide for

continuous media transfer and facilitate QoS handling. Significant work has been

carried to support continuous media in Amoeba-based UNIX environments, Mach,

Chorus, Pegasus and YARTOS [Campbell 96]. The work aimed at optimizing

communication protocols and operating system scheduling. Work has also been done

to adapt the UNIX SVR4 scheduler to deal with continuous media applications and to

provide user level threads in the ARTS operating system [Blair 93]. Yau [Yau 96a]

[Yau 96b] has had recent work on I/O efficient buffers, fast system calls, kernel

threads and fast direct media streaming to allow continuous media to be effectively

handled in the operating system with QoS guarantees.

At the application level, also, comes the matter of storage servers. The main aim was

to support simultaneous access to stored services with QoS guarantees. Work has been

done on assignment of media to discs, realtime request handling as well as disc layout

strategies [Blair 93].

23

2.3.2 Transport Level

At and below the transport layer, the concern has been to provide the capability of

specifying QoS parameters with communications connections and to study network

topologies that would allow QoS parameters to be specified and honored.

Several attempts to design transport protocols have been carried out, most of which

were later adapted into a full QoS architecture. The HeiTS transport service [Volg 96]

was designed to allow for transport QoS and resource management and was later

bundled into the HeiProject. The Multimedia Enhanced Transport Protocol (METS)

[Campbell 94] [Campbell 97] was designed and later incorporated in the QoS-A. The

MMTS protocol [Vogel 95] was later attached to Montreal’s architecture. Lately, Yau

developed a migrating sockets protocol [Yau 97] as an extension to Berkeley sockets

at the user level to provide QoS handling.

Several efforts to provide QoS support to Internet protocols were carried out. RTP

[Schulzrinne 95] is a protocol that aims at providing realtime extensions to IP. RSVP

[Braden 96] is a resource reservation protocol that runs on top of IP and allows for

advanced resource reservation as an extension to IP. IPv6 [Deering 95] is the next

generation Internet Protocols that allow for multicast communication and QoS

specification for continuous media. IPng allows for extended addressing, QoS

handling and enhanced security [Braun 97]. ST-II+ [Delgrossi 95] is a connection

oriented network protocol, which allows resource reservation started by the origin of

the flow. The associated SCMP protocol allows the initiation and modification of

connections allowing resource specifications to be changed dynamically.

24

Recent research has been performed on network-level topologies to compare and

evaluate existing networks with regards to their support for QoS [Stuttgen 97]

[Worsley 97].

2.4 QoS Architectures

Earlier QoS work in distributed multimedia literature has been focused on QoS

aspects in individual layers of the QoS architecture. A more complete look to the QoS

issue has started only recently. Since then, several QoS architectures have emerged in

the research arena aiming at satisfying QoS requirements for distributed multimedia

using a more general approach. Due to the short age of the field of QoS management

architectures, there are no agreed upon standards for the functionality of a QoS

management system. A few standardization efforts exist and will be discussed in the

early part of this section. The QoS architectures that emerged in research literature

will be discussed in the remaining parts of the section. The QoS architectures

presented do not all speak the same QoS language. Most presented architectures

address QoS management from different viewpoints that are sometimes incomplete

when looked at from the perspectives of what has been provided by other

architectures. The viewpoints of architectures will be discussed along with the

discussion of the architectures themselves.

The current work surveys the following QoS architectures that are available in

research literature:

 Tenet Architecture (Berkeley University) [Ferrari 96]

 HeiProject (IBM’s European Networking Center, Heidelberg) [Volg 96]

25

 QoS-A (University of Lancaster, UK) [Campbell 94]

 OMEGA (University of Pennsylvania) [Nahrstedt 95]

 XRM (COMET Group, Columbia University) [Lazar 94]

 Int-serv (Internet Engineering Task Force, IETF) [Braden 94]

 TINA QoS Framework [Bosco 96]

 MASI End-to-End Architecture (Université Pierre et Marie Curie) [Besse 94]

 QoS Framework (Washington University) [Gopalakrishna 94]

 CORBA (Open Management Group, OMG) [OMG 96]

 Siqueria’s Thesis (Trinity College, Dublin) [Siqueria 97]

 Univ. of Montreal (Université de Montreal, Canada) [Hafid 96a]

 DJINN (Queen Mary, London) [Mitchell 97]

2.4.1 Tenet Group

The Tenet architecture is an early attempt at providing a complete QoS architecture

for QoS management. Nevertheless, the architecture is heavily biased at the network

and transport layers with little discussion on the end-system support. The architecture

provides a set of protocols to be used for communications. The defined protocols run

on top of the Realtime Internet Protocol (RTIP) that is concerned with data transfer.

The Continuous Media Transport Protocol (CMTP) runs on top of RTIP and is

responsible for the sequenced and periodic delivery of continuous media samples. The

Realtime Message Transport Protocol (RMTP) is concerned with message based

communication between points. Two control protocols are provided for channel

administration and data transfer management. The Realtime Channel Administration

Protocol (RCAP) provides generic connection establishment and resource reservation

26

functions. The Realtime Message Control Protocol (RTCMP) manages data transfers

and detects error conditions.

The operation of the protocols occurs in two phases. In the first phase, the source node

issues a request to establish a realtime communication channel to a sink source. The

request message passes along the nodes connecting the source to the sink. Every node

will either accept the message and the QoS level defined in the message or reject it if

it cannot attain the required QoS. If the message is accepted, resources are allocated to

guarantee the specified QoS level and the message is forwarded to the next node.

When the message reaches the sink, the second phase starts by forwarding an

acceptance packet back to the source with the agreed upon QoS levels. The nodes in

the path make fine adjustments to the allocated resources if needed depending on the

agreed QoS. In case of rejection, the nodes free the resources allocated on receiving

the rejection message, and forward the message to the previous nodes. The result is

either a reserved channel with guaranteed QoS or a rejected request indicating the

inability to attain the requested QoS levels.

Control plane

Data delivery plane

Application layer

TCP UDP RMTP

RTIPIP AAL

Data link ATM Data link

RCAP

Application layer

signalling

Data link

signalling

Figure 1 – Tenet Architecture

27

The defined protocols allow for two kinds of guarantees: deterministic and statistical.

Deterministic guarantees provide hard limit bounds on the performance within a

session. Statistical guarantees promise a maximum of a certain percentage on delayed

and lost packets.

2.4.2 HeiProject

The HeiProject is an advanced QoS model that incorporates both the network level

structures with the end-system management structures to provide QoS guarantees.

At the heart of the transport system is a proposed protocol for continuous media

transfers, the HeiTS/TP protocol. HeiTS/TP provides the QoS mapping layer and also

provides media scaling functions for QoS adaptation. Below the transport layer is the

internetworking layer that is based on the ST-II protocol. The ST-II protocol, which

was further developed into the ST-II+ protocol [Delgrossi 95], provides both

deterministic and statistical service guarantees.

HeiRAT

QoS calculation

Admission testing

Res. reservation

QoS enforcement

Res. Scheduling

Network

QoS finder

QoS filtering

Transport

QoS mapping

Media scaling

Application flow

Data link

ST-II
Network

resources

CPU,

memory,

IO

resources

Figure 2 - HeiProject Framework

The end-system support for QoS is accomplished using the HeiRAT management

technique. HeiRAT is a resource administration technique that constitutes a full QoS

28

management scheme that includes QoS negotiation, QoS calculation, admission

control, QoS enforcement and resource scheduling. The HeiRAT operating system

also takes care of priority thread scheduling.

The HeiProject was designed to handle heterogeneous QoS requests from the

individual receivers in a multicast group. This is accomplished through two

techniques: filtering and media scaling. In filtering, various network filters are run in

different parts of the system, typically at gateways, where they automatically shape the

incoming streams based on their knowledge of the stream contents. Media scaling

techniques are based on an encoding that allow for progressive representation of data

where high quality parts of the data can be dropped at the network areas where low

QoS values are required.

2.4.3 QoS-A

The QoS-A [Campbell 93] is a layered architecture of services and mechanisms for

QoS management of continuous media flows in multi-service networks. The basic

element in the QoS-A is the flow concept, which designates the production,

consumption and transfer of media. Flows are always simplex but are either unicast or

multicast transfers. They may contain both media and control data.

QoS-A is divided into five layers with QoS functions performed at each layer. The

five layers are the network, physical, data-link, transport, and distributed platform

layers. The distributed platform layer is the highest layer and contains a multimedia

interface that allows for QoS configuration, multimedia functions, synchronization

mechanisms and realtime scheduling mechanisms. The orchestration layer provides

services that control temporal parameters of flows such as jitter and transfer rate. It

29

also provides primitives that ensure synchronization. QoS-A also defines a special

protocol for the transport layer to allow for QoS provision, the Multimedia Enhanced

Transport Service (METS). METS provides an interface for QoS to be specified,

negotiated and contracted. METS allows for deterministic, statistical and best-effort

communication.

Distributed systems platform

Orchestration layer

Transport layer

Network layer

Data link layer

Physical layer

Control plane User plane

QoS maintenance plane

Flow management plane

Time scales

Application signaling

QoS scaling

QoS maintenance

QoS monitoring

Media transfer

Flow management

projection

Figure 3 - QoS-A Framework

Each of the five layers is represented in three different planes: protocol, QoS

maintenance and flow management planes. The protocol plane consists of a user plane

and a control plane. Both planes are separated due to the different QoS requirements

for both user data and control data. The QoS maintenance plane contains layer-

specific QoS managers for monitoring and maintaining the associated protocol

entities. QoS managers are responsible for the maintenance of the QoS contract. The

flow management plane is responsible for the flow establishment, QoS renegotiations,

QoS mapping and QoS adaptation.

2.4.4 OMEGA

30

The OMEGA architecture [Nahrstedt 95] aims at including the application layer with

the end systems and network to the QoS management mechanism. By including the

application layer, OMEGA aims at providing a simple QoS specification phase for its

applications, relieving the applications of the burden of having to deal with

complicated QoS parameters and values. End-system negotiation is a part of the

internal working of the OMEGA system. It is performed during session establishment

between the applications. QoS parameters negotiated in OMEGA are parameters for

the application as a whole. This is to be contrasted with other architectures that aim at

providing per-flow QoS management.

Application

subsystem

transport

subsystem

Realtime

application

protocol

(RTAP)

Realtime

network

protocol

(RTNP)

Call

management

QoS

Broker

Connection

management

Figure 4 - OMEGA Framework

OMEGA assumes a network that is capable of delivering packets with a bound on the

delays and errors as well as a guaranteed bandwidth. This way, OMEGA frees itself

from the hassles of having to simulate guaranteed throughput on a non-guaranteed

network. OMEGA provides an application layer and a transport layer. The application

layer provides functions for connection establishment and rate management. The

transport layer provides basic functions, such as connection establishment and

termination. OMEGA keeps a QoS broker that negotiates the guarantees required by

31

the applications with the guarantees provided by the network and transport layer. The

QoS broker has a QoS buyer and QoS seller. The buyer receives high-level requests

from applications and sends resource queries for the QoS buyer to reserve resources.

The seller manages resources and answers the queries sent by the buyer. The QoS

broker handles the admission control functions internally.

2.4.5 XRM

XRM is an architecture that provides QoS management at end-system and network

levels through dividing its architecture into five planes.

 The network management plane is responsible for OSI model of

communication.

 The resource control plane provides cell scheduling and call-management in

the network. It also handles memory management and admission control at

the end-system level.

 The connection management and control plane handles running connections

and traffic control functions.

 The user transport plane is responsible for providing a multimedia transport

interface for end-systems that is capable of transferring multimedia

information.

 The data abstraction and management plane represents abstractions of the data

provided in the system. It implements data sharing among all other planes.

32

N-plane

M-plane

D-plane

C-plane

U-plane

(Management protocol)

(Telebase)

(Media & user access protocols)

Broadband

networking

Multimedia

computing

Network and systems

management

Resource

control

Data abstraction and

management

Connection

management

User information

transports

Figure 5 - XRM Framework

XRM is based on a network that provides QoS guarantees such as ATM networks.

Packets in XRM are classified into one of four classes (class I, class II, class III and

class C). Each class represents a set of QoS requirements. QoS requirements are met

through providing algorithms for cell scheduling and buffer management to

dynamically manage communication of cells.

At the end-system level, applications specify QoS requirements in terms of known

standards such as MPEG-I video or CD-quality audio. The QoS requirements for the

known classes are translated into QoS parameters to the system to provide QoS

guarantees for the application.

2.4.6 Int-serv (IETF)

The Internet Engineering Task Force proposed a QoS management architecture that

attempts to provide QoS management to Internet communication. The framework tries

to add QoS management to the various elements involved in communication making

33

them “QoS aware.” The architecture provides models for QoS management in various

network elements, such as routers and sub-networks and end-systems. The

architecture is essentially a network level architecture that could be adapted to end-

systems.

Application

RTP, etc

UDP

IP

Dispatcher

SA SA SA

RSVP, etc

User

Interface

Data packets Control packets
SA: service agent

Quality management interface:

Figure 6 - Int-serv Framework

IETF provides for four types of delay: best effort, controlled, predicted and

guaranteed. Best effort delays are the normal Internet delays that depend on the

current system and network load levels. Controlled delay provides for a choice of one

of several typical delays. Predicted delay provides a statistical delay bound. The

guaranteed delay is an absolute guaranteed value for delay.

At the application level, applications submit two sets of information to the QoS

manager. First, the application provides the traffic specification, which indicates the

patterns of use the application expects. Later, the application provides the service

request specification, which shows the QoS requirements for the application from the

different elements of the system.

34

The IETF architecture is made up of four components:

 The packet scheduler handles packet communication based on queues and

timers.

 The classifier is responsible for grouping the packets into their respective QoS

levels.

 The admission controller is responsible for QoS parameter calculations and

connection acceptance or refusal.

 The reservation setup protocol is responsible for reserving resources along the

path of the flow during the existence of the connection.

The architecture later describes a QoS manager (QM) which acts as an abstract layer

that separates applications from the details of underlying networks enabling

applications to specify QoS requirements independently.

2.4.7 TINA

The TINA QoS framework is based on the differentiation between

telecommunications applications and the distributed processing environment.

Applications specify their QoS requirements in terms of service attributes in the

context of the Computing Architecture [Aurrecoechea 98]. Resource managers

employ QoS mechanisms to adhere to agreed QoS contexts. By separating

applications from the processing environment, QoS declaration can be performed

without having to deal with the complexes of resource management mechanisms

required by the system.

35

The TINA project was further enhanced [Bosco 96] to support realtime and

multimedia traffic through the use of the CORBA and ODP (Open Distributed

Processing) standards, while keeping compatibility with the original TINA

architecture. The new project is called ReTINA and is funded by Chorus Systems,

Alcatel, Siemens, HP, CSELT, France Telecom, British Telecom, Telenor, APM, O2

Technology and Broadcom. The project provides extensions to the CORBA IDL to

incorporate stream abstractions.

2.4.8 MASI

The MASI project [Besse 94] aims at developing end-to-end QoS support in

multimedia systems. The QoS framework specifies QoS requirements at the

application level and considers resource management at the application level as well

as at the transport and network levels. MASI operates on ATM-based networks.

Connection

management

QoS

management

Resource

management

Application API

Synchronization

Transport

AAL

Network

Figure 7 - MASI Framework

MASI research is motivated by the following parameters [Aurrecoechea 98]:

36

 The need to map QoS requirements from the ODP layer to specific resource

modules efficiently and cleanly.

 The need to resolve multimedia synchronization issues.

 The need to provide suitable support for the communication protocols for

multimedia services.

2.4.9 Washington Univ.

The Washington University model is based on QoS specification for end-to-end

systems. The system provides four main functions: QoS specification, QoS mapping,

QoS enforcement and transport-level realtime communication. QoS specification is

performed through providing a limited set of QoS parameters for the applications to

specify to make it simpler for applications to state their requirements. QoS mapping

translates the QoS values into network level resources to be managed. Three types of

resources are managed in this architecture: CPU, memory and network. QoS

enforcement aims at providing realtime performance guarantees for the applications.

This is performed using realtime upcalls (RTUs). RTUs are a means of transferring

control to the system through a rate monotonic policy. This eliminates the need for

frequent context switching and provides the rate required for realtime communication.

RTUs are also used in sending packets at the transport layer at rates implied by the

QoS values specified by the applications.

37

QoS specification

Processing

requirements

Buffer

requirements

Connection

requirements

Operating system Session manager

CPU Memory Network Connection

Figure 8 - Washington U. Framework

2.4.10 CORBA

The Object Management Group has created a Special Interest Group on QoS

management in CORBA. The QoS SIG proposed a QoS architecture [OMG 96] that

extends CORBA to support QoS management. The proposed architecture allows

objects to specify their functional and non-functional requirements as multi-valued

parameters. This allows clients to request more from objects than the normal binary

(yes/no) behavior. Clients request data from objects based on QoS levels that the

object can supply. The system allows the client to request the required QoS along with

the service request. The QoS architecture is responsible for maintaining the agreed

QoS levels within specified system constraints.

The QoS manager in CORBA has the following goals:

 Allowing clients to request and renegotiate QoS.

 Allowing servers to describe QoS characteristics and QoS ranges that they can

provide.

38

 Arbitrating resources in order to contain the system’s acceptable behavior within

the desired bounds and to enforce QoS guarantees.

The CORBA QoS manager proposes the concept of performance polymorphism as a

technique to provide several QoS levels. The CORBA objects have their methods

overloaded to provide different outputs at different operating QoS levels.

2.4.11 Siqueria’s Thesis

Frank Siqueria [Siqueria 97] proposed the adoption of CORBA on top of IP networks

to provide for QoS management. The proposed architecture allows the transmission of

control data using CORBA as a middleware on TCP/IP networks and stream data

using more advanced IP protocols. Siqueria proposed the use of IPng along with RTP

and RSVP on Integrated Services Networks. RTP (Realtime Transport Protocol) and

RSVP (Resource ReSereVation Protocol) are newly produced Internet protocols that

do not have middleware support yet. The architecture provides a transparent layer that

the applications use to handle stream data.

Siqueria’s improvements on the adopted core are:

 The implementation of the CORBA stream mechanism on novel Internet

protocols.

 The definition of sets of QoS parameters for different categories of multimedia

applications.

 The definition of algebra for translating application QoS parameters to

network-level QoS parameters or resource reservation messages whenever

possible.

39

 The provision of a multimedia component hierarchy addition to the CORBA

framework to facilitate the construction of distributed multimedia applications

using CORBA.

2.4.12 Univ. of Montreal

Hafid and Kerherve [Hafid 96a] proposed a QoS architecture that provides

application-level and transport-level QoS management. The architecture is composed

of three QoS interfaces for the client, server and transport systems. In addition to the

QoS interfaces, the architecture employs a transport protocol that allows for the QoS

negotiation of the three parties. The client interface is a qualitative interface that

allows the application to set its QoS requirements in terms of belonging to specific

QoS groups, such as video, audio or still images. Server QoS interfaces allow the

server to specify similar information for the multimedia documents it is capable of

providing. The architecture provides its own multimedia transport service (MMTS)

that allows for connection oriented services and unidirectional point-to-point

transmission with adhering to given QoS parameters. QoS parameters at the transport

level are quantitative values that map directly to the network level. The architecture

provides an extensive QoS negotiation mechanism [Kerherve 94] that works with

MMTS.

2.4.13 DJINN

The DJINN framework [Mitchell 97] developed at Queen Mary tackles the QoS

problem for groupware applications. Groupware have different requirements than

those of normal static distributed multimedia applications. Groupware rely on the

dynamic functions of several cooperating applications with applications joining and

40

leaving communication channels dynamically. This has implications on admission

control and resource reservation policies.

The DJINN system takes the approach of developing a QoS model for the application

where high-level QoS requirements are captured and expressed. The encapsulated

QoS properties form a natural form for later reconfiguration. The QoS model is

separate from the application. This allows the model to be created and admission

control performed on the model before the actual application is created. This saves the

trouble of creating the application, which could be a long and remote process.

41

CChhaapptteerr 33 TTRRAANNSSPPOORRTT--LLAAYYEERR PPRROOTTOOCCOOLLSS

3.1 Introduction

The QoS architectures introduced in the previous chapter incorporate a transport level

protocol to provide the heart of the guaranteed communication service in distributed

multimedia systems. Transport protocols are the fourth layer of the seven-layer ISO

OSI model shown in Figure 9. They provide the basic end-to-end communication

requirements of collaborating entities and applications. Other layer protocols,

although needed, are less important to designers and far less complex [Stallings94].

Applications can easily be programmed to access the transport layer directly to

achieve its communication requirements. This is the normal mode of operation for the

DOD’s transport protocols as well as all the QoS architectures surveyed in the

previous chapter.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Figure 9 - ISO OSI Model Layers

42

In the past two decades, there were huge leaps in network architectures and important

advances in physical network layers. Unfortunately, the physical layer advances were

not matched with an equivalent progression in the design of the transport protocols

that operate on the new physical layers. This reduced the benefit of the great physical

advances to the application users, as the introduction of highways does not help a lot

if bicycles are still used for transportation. New transport protocols had to be

individually developed by QoS architectures to provide their end-to-end

communication means. Existing protocols could not be used due to their lack of QoS

definition, which now exists in many physical layers such as FDDI and ATM. The

new protocols make use of the QoS-enabled hardware to provide QoS-enabled

protocols.

QoS-enabled transport protocols are a requirement for distributed multimedia

communication since the advancement in hardware alone does not eliminate the need

for a matching advancement in transport protocols. Braden [Braden 94] answers the

myths raised that QoS-enabled transport protocols are not required because the

bandwidth will eventually be infinite causing the existing protocols to suffice. It is

impractical to assume in the short or medium term that bandwidth will be so abundant

and cheap that there will be no communication delays other than the speed of light

eliminating the need to reserve resources. While raw bandwidth may seem

inexpensive, bandwidth provided as network service is not likely to become so cheap

that wasting it will be the most cost-effective design principle. Unless we provide for

the possibility of dealing with congested links, then realtime applications will simply

be precluded in those cases. Furthermore, simple priority provided by existing

protocols is insufficient. Existing priority levels are not likely to be adequate for

43

defining all realtime streams in the future. If too many applications are tied together in

a single priority level, they will all compete for the priorities of that level causing

degradation for all applications in the level. Unless some quantitative means are

provided to differentiate among applications, no true prioritization can be achieved.

This adds to our belief that enabling QoS functionality in transport protocols is

necessary for meeting the requirements of advanced multimedia applications of the

current and upcoming decades.

3.2 Transport Services

Transport protocols operate by providing a set of services that are available to higher

level layers and user applications. The specified services shield the user from the

underlying details of the lower layers. The transport protocol, in turn, makes use of the

services supplied by the available lower layers to provide its named services. The

transport protocol provides the named services through a set of known access points;

each called a Transport Service Access Point (TSAP). The users of the transport

service utilize a TSAP to communicate with the transport entity as shown in Figure

10. The transport entity abstracts the details of lower layers to provide the same

functionality to all its users irrespective of the underlying layers.

44

System

User of transport services

Transport entity

Services provided

to transport user

Services required

from network layer

Interface

System

User of transport services

Transport entity

Interface

Transport

layer

Network

layer

NSAP NSAP

TSAPTSAP

Figure 10 - Transport Service Dynamics

Modern transport protocols are expected to provide QoS guarantees for the intelligible

transmission of continuous media in distributed multimedia systems. Current transport

protocols, which do not provide QoS support, will not be able to correctly manage

coexisting flows of traditional burst data and continuous media. At many times,

traditional burst data will overwhelm the transport service with large amounts of data

that is not time-critical. The transport protocol, not being able to differentiate, will

send the data that comes to it first, delaying the other until the send is over with no

clever multiplexing of data on the shared communication link. The cuts in continuous

media transmission in order to send the traditional burst data will cause the continuous

media to arrive after a delay. This delay is unacceptable for continuous media since it

breaks the continuity of multimedia playback. QoS guarantees help the application in

obtaining the desired level of service to ensure correct playback. They also help the

transport protocol to correctly multiplex data on the shared communication link to

45

satisfy the needs of different kinds of applications as permissible by the available

resources.

Communication in distributed multimedia systems is allowed in either the single

sender to single receiver mode, known as unicast, or in single sender to multiple

receiver mode, known as multicast. A single binding between a sender and one or

many receivers is termed a continuous media data flow, or shortly a flow. Transport

protocols primarily require the definition of several quantitative QoS parameters to

characterize continuous media flows in order to be able to manage them correctly. The

most important parameters to consider are throughput, transit delay, transit delay jitter

and error rate. These parameters help the transport protocol in scheduling the

transmission of the flows’ data units, named Transport Service Data Units (TSDU).

Figure 11 provides a graphical rationalization of the main QoS parameters.

Figure 11 - QoS Parameters Definition

46

 Throughput is a quality that defines the rate at which TSDUs are transmitted from

the sender to the receiver. It is defined in the ISO standard [ISO8072] as the

smaller of the sender’s throughput and the receiver’s throughput. The sender’s

throughput is the TSDU size divided by the time interval between the previous

and the last TSDUs being presented by the sender. The receiver’s throughput is

the TSDU size divided by the time interval between the previous and the last

TSDUs being indicated for receipt by the receiver.

 Transit delay refers to the time between the signaling of a TSDU-send invocation

on the sender side and the receipt of a TSDU-receive indication on the receiver

side.

 Transit delay jitter, or shortly jitter, is the variance in transit delay. Jitter is defined

as the difference between the longest and the shortest transit delays observed for

TSDU transmissions for a flow.

 Error rate is a measure of the tolerance of the flow to communication impairments.

Continuous media flows tend to have stringent timing parameters with more

relaxed error rates. This allows for TSDUs to reach the receiver in a timely fashion

but not necessarily in a reliable way. TSDUs arriving with errors simply appear as

noise during the playback of the media stream. Burst data, on the other hand, tend

to have relaxed timing requirements with strict error rate demands.

The commitment of the transport protocol to the contracted QoS values for a flow is

not necessarily a guarantee of full abidance. The strictness of abiding by the

contracted QoS context depends on the QoS policies employed by the transport

47

protocol. The contracted QoS values can be totally ignored to provide best-effort QoS.

This is the case with the current transport protocols. QoS values can also be used as

predictive tools to aid the transport protocol in scheduling its TSDUs. The most

common use for QoS values is to provide statistical guarantees on TSDU delivery,

where it is guaranteed that a certain contracted percentage of the TSDUs will exhibit

the contracted QoS values. The most stringent manner for applying the QoS values is

to provide full guaranteed QoS delivery. This ensures that all TSDUs in a flow will be

delivered with the contracted QoS values. Although, at first sight, this might seem the

only logical way to implement QoS provision, guaranteed QoS delivery has severe

impact on resource utilization patterns. Resources have to be reserved for the single

usage of the contracting flow with no sharing even if they will be wasted most of the

time.

The transport layer provides QoS management at different stages during the lifetime

of a flow. The first QoS role played by the transport protocol is during connection

establishment. At connection establishment, the service user files a request for flow

setup at a TSAP using a set of QoS values, called QoS context. The transport protocol

validates the context and performs admission control strategies to either accept or

reject the establishment request. If the resources required for the requested QoS

context are not available, the service user is notified to start a series of QoS

negotiation ending in either a modified QoS context that can be accepted or the

cancellation of the establishment request. Subsequently, resources are reserved along

the path from the sender to the receiver to ensure the contracted QoS context

according to the QoS policies of the transport service. The managed resources are the

network bandwidth, protocol buffers, and CPU cycles. During the lifetime of the flow,

48

TSDUs are accepted from the sender, classified by the transport service in one of it

sending queues and routed appropriately to reach its receiver. TSDUs are scheduled

according to the timing constraints of the flow’s QoS context. TSDUs may be

dropped, within the allowable error rate, to meet the QoS constraints of the current

flow and other flows in the network. The transport protocol employs flow control

mechanisms on the TSDUs transmitted from the sender to the receiver in order to

ensure proper usage of the reserved resources. QoS monitoring is performed along the

lifetime of flows to indicate any failures in achieving contracted QoS contexts. Upon

failure detection, QoS degradation signaling can be performed to indicate QoS

problems to the contracting user. The result can vary from ignoring the signal, starting

QoS re-negotiation, or flow termination. At any time, the flow creator may ask for

flow termination. The transport layer processes termination requests and releases all

reserved resources related to the flow being terminated.

Transport protocols are expected to provide QoS irrespective of the underlying

network. The existence of a network layer that supports QoS relieves the transport

layer from many burdens. Nevertheless, network layers that support QoS are not

widely spread nowadays and they are not expected to be dominant in the near future.

The vast majority of existing LANs still rely on Ethernet technologies, which are not

QoS aware. This adds to the complexity of the QoS-aware transport layer. QoS-aware

transport protocols should be able to deal with the heterogeneity of the existing

Internet.

The rest of this chapter surveys a number of transport protocols being developed in

current research literature. Some of the protocols discussed were developed mainly for

49

QoS architectures while others are enhanced protocols for the Internet. The protocols

developed for QoS architectures assume an QoS-aware network layer in order to

provide QoS guarantees. The presented Internet protocols provide only guidelines for

realtime scheduling of TSDUs and predictive QoS management. The chapter

concludes with a description of what is needed for a transport protocol that is capable

of providing QoS-aware functionality irrespective of the underlying network layers.

3.3 Transport Protocols in QoS Architectures

The QoS architectures presented in the previous chapter rely on an integrated transport

protocol that provides the core functionality of QoS provision. The developed

transport protocols vary in several aspects. Not all protocols provide guaranteed

delivery policies. Furthermore, several protocols provide their own flavor and

combination of QoS policies to create new policies. The mechanisms employed by the

transport protocols are diverse. Connection establishment and termination

mechanisms vary from handshaking to timer-based connections. The employed flow

and error control mechanisms are another point of concern. The presented protocols

also differ in the type of QoS monitoring and signaling employed as well as the QoS

negotiation models available.

3.3.1 OSI95

The OSI 95 Project [DBL94] was developed at the Université de Liège in Belgium.

The project provides a transport service with multimedia support. QoS enhancements

in OSI 95 include a new set of negotiation mechanisms as well as a set of QoS

policies for the transport protocol to provide. The transport protocol allows for QoS

specification, negotiation and monitoring. QoS re-negotiation facilities are not

50

provided. OSI 95 does not require an QoS-aware network layer and, in turn, it does

not guarantee bounds on service. However, the obligation is on the behavior when the

service bounds are not satisfied.

OSI 95 provides three types of QoS policies: compulsory, threshold, and maximum

quality. Compulsory QoS values are specified when the required values are to be

strictly adhered to. The transport service terminates a flow if it cannot maintain the

contracted compulsory QoS values at the required level. Threshold QoS is similar to

the best-effort QoS provided by traditional transport protocols except that the

transport protocol is obliged to signal the service users when the instantaneous QoS of

the flow falls below the specified threshold QoS. Maximum quality QoS is provided

to limit the resources used by the transport layer for a particular flow. Normally, flows

will not complain if the actual QoS is more than what is required. Maximum quality

QoS is based on the philosophy of minimizing unnecessary usage for cost-saving

purposes. This suits environments where users are charged for the resources used.

OSI 95 provides two negotiation mechanisms to specify the three QoS values of a

flow. Both negotiation mechanisms are based on the classical 4-primitive exchange:

request, indication, response, and confirmation as shown in Figure 12.

51

Indication

Request

Confirm

Response

Sender Receiver

Figure 12 - The Classical 4-Primitive Exchange

The first mechanism is the “Triangular Negotiation for Information Exchange”. In this

type of negotiation, the sender suggests a QoS value in the request primitive. The

transport service may weaken the suggested value before passing it to the receiver in

an indication primitive. The receiver may further weaken the QoS value in the

response primitive. The sender finally accepts or rejects the final QoS value in the

confirm primitive. This type of negotiation is performed for the maximum quality

QoS values.

The second mechanism is the “Triangular Negotiation for a Contractual Value”. The

goal in this type of negotiation is to find a contractual value that binds both the service

provider and its users. The user provides a minimal requested QoS value and a bound

for strengthening this value. The service provider may decrease this bound in the

indication primitive. The receiver may finally reduce this bound to select a QoS value

that is still stronger than the minimal value. The sender finally accepts or rejects the

selected QoS value in the confirm primitive. This negotiation mechanism is used for

negotiating compulsory and threshold QoS values.

3.3.2 QoS-A

52

The QoS-A [Campbell94a] developed at Lancaster uses a locally developed

Multimedia Enhanced Transport Service (METS) [Campbell94b] to provide its

transport layer requirements. METS provides access points for end-to-end multicast

communication of service users. QoS levels are contracted through well-defined

primitives that build a service QoS contract. Service contracts QoS levels are achieved

in the context of a local ATM network.

METS works with the notion of flows. A METS flow is an end-to-end communication

binding between a sender and its receivers. Service users establish a continuous media

flow with an agreed service contract via the following primitive:

FLOW_ID FLOW_CONNECT_REQUEST

(TSAP_T *SOURCE, *SINK ; SERVICE_CONTRACT_T *QOS);

The sink TSAP may also represent a group address to accommodate multicast flows.

The service contract subsumes the well-accepted QoS parameters of jitter, error, delay

and throughput, but also allows the specification of a wider range of options. These

are characterized in terms of the following clauses:

 Flow_spec_t characterizes the user’s traffic performance requirements.

 Commitment_t specifies the degree of resource commitment required from the

lower layers.

 Adaptation_t identifies actions to be taken in the event of violations to the

contracted services.

53

 Maintenance_t selects the degree of monitoring and active QoS maintenance

required of the QoS-A.

 Connection_t selects from negotiated, fast reservation and forward reservation

connection services.

 Cost_t the costs the user is willing to incur for the services requested.

Flow management is the key function of the METS protocol. METS provides two

kinds of TSAPs: flow management (FM-TSAP) and data (DATA-TSAP). Flow

management data taken from the FM-TSAP are sent using a separate out-of-bound

channel used for control and signaling. Each FM-TSAP provides the primitives of

get_tsap, free_tsap, flow_connect, qos_renegotiation, qos_degradation, qos_report,

monitor_flow, flow_assessment, maintain_flow and flow_disconnect. Every DATA-

TSAP provides the primitives data_request, data_indication, data_response and

data_confirm.

METS works in three planes: the protocol plane, the QoS maintenance plane and the

flow management plane. The protocol plane consists of a flow regulator, a flow

scheduler, a flow monitor and a resource manager. The QoS maintenance plane is

responsible for maintaining and monitoring QoS values for periodic QoS assessment.

The flow management plane is composed of a signaling infrastructure, a flow

reservation protocol and a QoS adaptation layer.

3.4 Internet Transport Protocols

The Internet is based on the historic Internet Protocol (IP) developed more than two

decades ago. The fundamental goal of IP was to provide an efficient protocol capable

54

of interconnecting heterogeneous networks without any change. It was based on

datagrams, which held all the state required for their routing and transmission. Routers

and gateways along communications paths were stateless and did not need to carry

any information about the established communication flows. This was critical to

provide the fate-sharing model of IP. The fate-sharing model is a philosophy where

the information of an end-user may be lost only if that end-user is lost, too. It also

satisfied the goal of robustness where intermediate nodes were allowed to break down

without affecting existing communication paths. Two protocols were developed on

top of IP: TCP and UDP. UDP provides a connectionless datagram service that allows

sending small packets of data in an ordered fashion. Routers can drop datagrams in

case of network congestion. TCP provides a reliable, connection-oriented service that

allows a path to be established from sender to receiver. Packets flow along the

established path in a reliable and ordered fashion. IP, in its first specifications, does

not provide for multicast communication. IP also lacks QoS provision.

Two major attempts to add multicast and QoS support to IP are ST-II and RSVP. ST-

II and RSVP are discussed in this section.

3.4.1 ST-II

STream protocol II (ST-II) [Delgrossi95] models a resource reservation as a simplex

data stream rooted at the source and extending to all receivers via a multicast

distribution tree. ST-II provides for multicast group creation and does not assume that

the underlying layer supports multicasting. Streams are initiated by Connect-requests

at the sender. Connect-requests travel along the paths of a network until they reach the

receiver. Along the communication path, routers reserve the appropriate resources

55

specified by the Connect-request and update the request with lower values in case the

original values cannot be met. The receiver finally accepts or rejects the values that

arrive in the Connect request and propagate the packet back to the sender in order to

confirm the resource reservation. A multicast channel is built along the

communication path in a tree structure. Receivers refuse Connect requests by sending

a Disconnect message. Group communication is allowed by adding and removing

receivers dynamically after the initial stream setup.

ST-II routers maintain hard state for the active connections in a network by creating a

virtual circuit. This strategy defies the original philosophy of fate sharing in IP.

Control messages in ST-II are sent using reliable, acknowledged transmission. A

Hello protocol is employed to periodically check the reliability of an already existing

connection from host to host. When a change in host routing is detected due to a

failure in an intermediate node, stream recovery procedures are attempted. ST-II does

not provide means for QoS monitoring and QoS signaling in case of degradation. QoS

values specified in Connect requests are only used as a predictive measure for

resource reservation.

3.4.2 RSVP

The Resource reSerVation Protocol (RSVP) [Braden94] is another enhancement to the

IP protocol. It also employs the concept of a path along which resources are reserved

to provide better QoS-enabled communication. RSVP is different from ST-II in that it

does not provide its own multicast mechanisms. RSVP relies on the multicast

capabilities of the underlying layers.

56

RSVP flows are receiver-initiated. Receivers start a Path request to join a multicast

flow group and identify its flow requirements. This allows different receivers to define

different QoS context for the same flow according to its capabilities. This way,

receivers with less-capable networks can ask for lower QoS levels in the same

multicast flow.

RSVP incorporates a datagram messaging protocol with periodic refreshes to maintain

soft state in the intermediate switches to provide reliability and robustness. Soft state,

as opposed to hard state in ST-II, means that path data are stored in intermediate

switches temporarily. Soft state is deleted if not periodically refreshed. This allows

orphaned reservations to be deleted automatically. Maintaining soft state, as opposed

to hard state, complies with the fate-sharing model of IP. Soft state is also more robust

because it allows intermediate nodes to fail without interrupting already existing

flows.

RSVP models a reservation as two distinct components: a resource allocation and a

packet filter. The resource allocation specifies what amount of resources is reserved

while the packet filter selects which packets can use the resources. This allows for

sharing resources among flows.

57

CChhaapptteerr 44 PPRROOPPOOSSEEDD AARRCCHHIITTEECCTTUURREE

4.1 Overview

Research in the field of QoS management is mostly directed towards either providing

a complete QoS management architecture, or enhancing one or more of the

architecture aspects discussed in the previous chapters. Most QoS research assumes a

network that is capable of delivering packets with a bound on the delays and errors as

well as a guaranteed bandwidth. The research is mainly aimed at utilizing the existing

QoS features of modern QoS-aware platforms, such as ATM networks. Little research

has been directed towards non-QoS-aware platforms, which, unfortunately, comprise

most existing physical networks.

The majority of QoS research for non-QoS-aware networks adopted one of two

approaches: resource reservation and/or notification. In the resource reservation

approach, mechanisms are developed to allow allocating resources to data flows on

platforms that do not inherently provide support for resource allocation and

reservation. This allows non-QoS-aware networks to be transformed into being QoS-

aware by dividing their resources among existing and expected data flows and hence

allowing the mechanisms developed for QoS-aware networks to be used on non-QoS-

aware platforms. The other approach was to develop software notification

mechanisms for data flows that exceed the capabilities of the underlying network.

This allows data flows to cooperatively work towards reducing their requirements at

times of peak demand.

58

The present work aims at bringing QoS awareness to platforms that do not have

inherent support for QoS. The goal of this thesis is to borrow, adapt and develop

mechanisms for porting the QoS concepts that were originally developed for

QoS-aware platforms to work with the non-QoS-aware platforms. The approach

used in this thesis is a combination of the complete QoS-architecture model, originally

developed for QoS-aware platforms, and a modified notification approach. The

approach includes a heuristic admission control mechanism to avoid accepting data

flow requests that the underlying network will probably not be able to serve. The

benefit of this approach is that it does not make any assumptions about the underlying

network, its capacity, or any applications that are currently running on it. This allows

controlled QoS flows to coexist with non-controlled data on the network, such as an

FTP session.

A complete QoS architecture is designed including the essential aspects of a QoS

architecture. The proposed architecture provides for QoS specification, mapping,

maintenance, monitoring and notification. The architecture also allows for QoS

admission based on fuzzy logic and a neural network. The QoS admission mechanism

decides whether new data flows should be accepted or not based on the parameters of

the new flow and the existing network status as monitored in the existing flows.

In order to verify the results of the designed architecture, a prototype QoS architecture

is developed in C++ under the Linux operating system. The prototype includes an

implementation of all the proposed QoS architecture aspects as well as the neuro-

fuzzy admission control mechanism. A distributed multimedia application is also

developed and deployed across a non-dedicated LAN where other uncontrolled data is

59

running. The application demonstrates the effectiveness of the designed solution in

allowing more multimedia flows to arrive comprehensibly to their destinations than an

uncontrolled system would permit.

4.2 Design

The design of the proposed system adopts the concept of a flow. The flow is a single

logical instance that binds a sender with a receiver. The flow is used to pass

multimedia information from the sender to the receiver. It is similar to a data

connection between two points except for the fact that the data passed is time-

sensitive multimedia data.

The proposed system provides a middle layer between applications and the operating

system to add QoS awareness to the operating system transport protocols. This middle

layer allows for the creation, maintenance and termination of flows.

The system design follows the client/server model. Servers (daemons) that take QoS-

related decisions and perform flow-prioritization provide the QoS functionality of the

middle layer. The clients of the system (applications) use a system library that

provides QoS-related functions to communicate with the QoS servers. The system

library is made up of stubs that perform remote procedure call (RPC) connections to

the servers to complete the required operations on behalf of the clients.

4.2.1 Goals

The design of the system was made with the following goals in mind:

 Transparency to the user: Sending and receiving applications should manipulate

QoS-aware multimedia flows in the same manner that normal data is handled.

60

Multimedia data that was originally transmitted using traditional communication

should be easily ported to the concept of flows.

 No network utilization assumptions: The proposed QoS system should neither

assume that it is the sole entity that utilizes the underlying network, nor assume a

certain level of network utilization. The QoS-aware flows should coexist with

current non-QoS-aware data being transmitted on the network, such as FTP

sessions and burst application communication. No utilization pattern shall be

assumed for the underlying network.

 Avoiding bottlenecks: The design of the system should avoid having a single

entity where QoS-related information is stored. This avoids having a single point

of failure to increase the fault-tolerance of the system. This design would also

reduce the possibility of a having a bottleneck that would degrade the performance

of the system as a whole.

 Application-level structures: The proposed system should all run in user space.

The system should make use of current traditional transport protocols provided by

operating systems by building on them rather than modifying them at the system

level. This allows applications that were already developed to use existing

traditional protocols to run unmodified when the new additions are used.

4.2.2 Decisions

In order to achieve the design goals defined earlier, the following design decisions

were made:

61

 Out-of-bound control: Control information sent between the different system

elements will be sent on a channel different from that used by the flows. The flow

will only be used to send multimedia information sent by the system users. Any

control data is sent directly using the underlying non-QoS-aware transport

protocol.

 Sender-initiated flows: Flows are to be created by the sender of the multimedia

data. The receiver of the data should be expecting the data and waiting for it.

 Sender and receiver QoS selection: Both senders and receivers should be

allowed to change the QoS required by the flow. The sender changes the QoS

according to the properties of the data being sent and the receiver may reduce the

QoS according to the limitations of the network or workstation at the receiver side.

 Flow is one-way: Multimedia data flows in one direction, from sender to receiver,

in a single flow. If a reply is required by the receiver, the receiver may elect to use

another flow for replying if the reply requires QoS support, or the receiver may

use traditional communication if the reply does not include multimedia.

 Single type of data: A single flow has a single type of multimedia data flowing at

one time. Two different flows are required to transmit a video presentation and an

audio song to the same recipient. The same flow may not be used for both

transmissions, as the QoS parameters of both types of multimedia data are

different. It is also the case for two audio connections as both audio connections

may require different QoS parameters.

62

 Connection-less communication: Connection-less communication will be used

for sending packets of multimedia data on the underlying network. This allows a

better performance by eliminating the overhead of packet re-sending and ordering

which are normally performed by connection-oriented transport protocols. The

need for packet re-sending and ordering does not exist with multimedia data,

since, by definition, multimedia data is not useful if not transmitted on time.

4.2.3 Architecture

QoS architectures are typically composed of three cooperating components: a sender,

a receiver and the system layer. The sender is typically an application developed by

the user, which requires a QoS controlled channel to send information to the second

entity, the receiver. The receiver is also a user-level application that consumes the

information it receives. One application may be a sender for some data and a receiver

for others, such as a distant learning server that sends video presentations to other

destinations and receives their audio questions on another channel. The system layer is

the QoS-aware transport protocol that allows QoS specification and maintenance for

the flows created by the senders. The proposed work involves a sender-side

component and a system-level component. The first component allows user

applications to create and manage QoS-capable flows, whereas the latter is

responsible for the internal maintenance, management of flows and the prioritization

of flow data. Figure 13 shows the main component-interaction diagram for the

proposed work.

63

Sender Receiver

NetworkSystem System

Figure 13 - Main System Component Interaction Diagram

The proposed work does not include any receiver-side components. The receiver is

assumed the same for QoS-aware flows and traditional burst data. A receiver that was

designed to receive multimedia data in burst mode will be the same as the one that

receives controlled flow data. All QoS management functions can be performed at

either the sender-side or the system level without the need for the interference of the

receiver.

The system-level component is made up of two main components: the QoS Daemon

(MQOSD) and the Realtime Scheduling Daemon (MRTSD). The MQOSD is

responsible for receiving the requests for creating new flows. It allows for QoS

specification and performs the required QoS mapping to translate user-level QoS

parameters to network-level QoS parameters. The MQOSD is also responsible for the

initial admission control for the new flows. Furthermore, the MQOSD stores

information related to every flow in the system. The information stored includes

64

required QoS parameters as well as the current attainable QoS levels for every flow.

The MQOSD performs QoS notification when the attainable QoS levels do not match

the levels agreed upon in the specified QoS.

The MRTSD is responsible for the transmission of flow packets. The MRTSD

receives the data to send from user applications and creates deadlines for them

according to the QoS data for the flow stored in the MQOSD. The MRTSD calculates

a deadline for every packet and performs priority scheduling of packets in order to

dispatch them in a manner that meets the QoS specified by each flow in the MQOSD.

The MRTSD performs QoS monitoring operations for every flow and reports its

results to the MQOSD for storage with the flow information. QoS monitoring is

performed by sending out-of-bound packets to the remote MQOSD and measuring the

required QoS parameters on these packets.

The MQOSD and the MRTSD processes are designed to exist once per workstation

that participates in the QoS managed system. The MQOSD for the workstation stores

information relating to all flows whose senders originate from this same workstation.

The MRTSD for the workstation dispatches and monitors the packets of the flows

whose QoS data are stored in the MQOSD of the local workstation. The proposed

work assumes that, in a LAN, the monitoring information collected by a single

MRTSD is representative of the information collected by other MRTSD processes in

the LAN. Consequently, MRTSD processes in a LAN are not required to

communicate together to form a complete picture of the LAN utilization. Figure 14

shows the detailed component interaction diagram for the proposed system.

65

Network

MQOSD

M
R

T
S

D

Workstation A

MQOSD

M
R

T
S

D

Workstation B

M
Q

O
S

D MRTSD

W
o

rk
s
ta

ti
o

n
 C

Sender B

Sender C

S
e

n
d

e
r

A

Receiver A

R
e

c
e

iv
e

r
B

Registration

Data transfer

Ping packets

Figure 14 - Detailed Component Interaction Diagram

4.2.4 QoS Specification and Mapping

Before a sender is allowed to send QoS controlled data, it must register a flow for the

stream of data to be sent. During flow creation, the sender specifies the QoS

requirements for the data. The specified QoS level is registered as a contract between

the user application and the system. The system guarantees that the required QoS will

be provided, or a notification will be sent if the registered QoS level cannot be kept.

The system, also, uses the specified QoS in all the calculations that it performs on the

packets belonging to this flow.

The present work adopts a QoS specification set that directly matches the need of

multimedia applications. A multimedia application can send either audio or video

data. For both types of data, threshold values are specified to indicate the QoS

requirements for the different parameters. For audio types, the application needs to

specify the frequency of sampling, number of bits per sample, and the number of

66

audio channels. Video flows have to specify the horizontal and vertical resolution,

number of colors per pixel, and number of frames per second of display. Both audio

and video flows need to specify the average used compression ratio in order to

estimate the throughput requirements of the flow correctly. All the preceding

parameters are used to calculate a lower threshold for the throughput required by the

flow. Interactivity can be specified by flows to indicate whether they require HIGH or

LOW interactivity. Interactivity measures are required to estimate the level of

synchronization required between the sender and the receiver. The tolerance level,

also, needs to be defined for every flow. The tolerance level is the level of acceptable

deviation from the specified threshold values. Figure 15 shows the list of QoS

parameters required for the creation of a flow.

Data type

Audio

Frequency

Sample size

Channels

 Video

Resolution

Color

Frames

Compression

Interactivity

Tolerance

Figure 15 - QoS Specification Parameters

The QoS specification process begins at the sender-side components, where the sender

uses these components to specify its QoS requirements. The sender-side components

interact with the local MQOSD which maps the QoS request into network QoS

parameters to determine the availability of the requested QoS. The MQOSD replies

with an accept/deny result to the sender through the sender-side components.

67

QoS mapping is performed at the local MQOSD by calculating network-level

parameters from the specified user-level QoS. The network-level parameters of

relevance to continuous media are throughput, end-to-end delay and error rate.

Throughput is the bandwidth to be used by the continuous media data in order to be

transferred to the receiver on time. This specifies the amount of data flowing through

in a certain period. Throughput is important because it provides the system with an

indication on how much of the shared network bandwidth is required by each flow.

End-to-end delay is the amount of time spent from when the data was ready for

transmission at the sender until the data was ready for consumption at the receiver.

The importance of end-to-end delay is that it directly affects the interactivity between

the sender and the receiver and consequently it affects the human perception of the

continuous media sent in a flow. The error rate is the ratio of packets that may be

transmitted at a lower QoS level. The human perception of continuous media

transmitted varies inversely with the loss rate. Together, throughput, end-to-end delay,

and loss rate define the behavior of a flow and the acceptable level of quality that is

allowable for correct perception at the receiving side. The three parameters also define

the aspects of the network that affect the level of quality of the transmitted continuous

media.

QoS mapping is performed by mathematically deriving the three network parameters

from the user-level QoS parameters requested during QoS specification. Throughput

calculation depends on the type of media specified. Throughput is specified in bytes

per second.

For audio flows:

68

Equation 1:

ncompressio

samplesize
channelsfrequency

1

8
Throughput

For video flows:

Equation 2:

ncompressio

frames
colors

nyresolutionxresolutio
1

8

)(log
Throughput 2

The end-to-end delay parameter is derived from the interactivity parameter of the user-

level QoS. End-to-end delay is specified in milliseconds. The user-level interactivity

parameter was assumed for simplicity to be one of two values: either high or low. The

mapping mechanism assumes a hard-wired value of 500 ms for high interactivity and

1000 ms for low interactivity. The error rate parameter is the same as the user-level

tolerance parameter. Error rate is measured in percentage of packets that do not arrive

at the receiver side. This may be due to either network error, packet loss, or packet

dropping due to buffer overflows.

4.2.5 QoS Maintenance

In order to allow a sender to specify flow parameters using QoS specification, the

system must provide an interface to its senders. This interface is provided by the

sender-side components mentioned in section 4.2.3. The sender interface is

responsible for granting the sender access to all the functions of the QoS maintenance

subsystem. The QoS maintenance subsystem provides the following functions:

69

 Flow creation: establishing a dedicated connection to a specific receiver

 Sending data: sending data packets to the flow receiver

 QoS selection: altering the contracted QoS level

 Flow termination: close connection with the flow receiver

Flow creation starts by a request from the sender to the local MQOSD to create a flow

with a specified QoS. The local MQOSD evaluates the request and returns the result

of the QoS admission process back to the sender. The local MQOSD stores the

contracted QoS level together with the flow information for later usage during QoS

management. Each local MQOSD stores the contracted QoS levels for all the senders

on its workstation.

After the flow is created, the sender may send continuous media on the flow by

submitting the packets to the sender-side components. The packets are then forwarded

to the local MRTSD, which stores the packet together with the identifier of the flow

sending in a priority queue for scheduling and delayed transmission. The local

MRTSD contacts the local MQOSD to retrieve the QoS level required by the flow to

which the packet belongs. This allows the MRTSD to take smart decisions as to how

to schedule the packets. The MRTSD schedules packets according to a realtime-

scheduling algorithm. When a packet is ready for transmission, the MRTSD contacts

the receiver and sends the packet directly using the underlying transport protocol. The

MRTSD performs no checking to ensure that the packet has reached its destination

correctly.

70

The MRTSD uses an Earliest-Deadline-First realtime-scheduling algorithm to

prioritize the packets from different flows. A deadline is calculated for every packet

using the following equation:

Equation 3:

0for ,

0for ,

0

0

a

ad

a

Q
Q

s

Q

s
t

Qt

t

Where:

t: the deadline for sending the packet

t0: time when the packet was submitted for sending

s: the size of the packet in bytes

Qd: the desired throughput as per the QoS contract for the flow

Qa: the actual network throughput as measured in QoS monitoring

An actual throughput (Qa) of zero denotes that no measurements have been taken for

the network yet. `The term (S / Qd) represents the maximum time allowed until the

packet to reaches its destination as specified in the QoS level of the flow. The term

(S/Qa) denotes the time required for sending the packet using the network parameters

that were measured earlier during QoS monitoring. If the deadline is zero or negative,

the packet should be sent immediately. A negative deadline implies that the packet

will be late for its recipient. Corrective action for the late packets will be taken during

QoS monitoring.

71

During flow operation, the sender may wish to change the contracted QoS level. The

sender may elect to increase the required QoS level to send more detail or may wish to

decrease the level in order to release some burden from the network. The sender

contacts the local MQOSD with a Select-QoS request. The local MQOSD evaluates

the new request and performs the QoS admission process again. The new QoS level is

stored with the flow data in the local MQOSD.

After the sender has finished transmitting all the data it requires, it should release the

flow by sending a termination request to the local MQOSD. All termination requests

are instantly accepted by the local MQOSD and all the flow information is marked for

removal once all its pending packets have been sent. Figure 16 shows the typical

operation of the QoS maintenance system.

MQOSD

Workstation A

M
R

T
S

D

Sender

Receiv er(1
)
C

re
a
te

(2) Send

(4) Transmit

Workstation B

(3) Schedule

*
S

e
le

ct
-Q

o
S

*
T
e
rm

in
a
te

Figure 16 - Typical QoS Maintenance System Operation

72

4.2.6 QoS Monitoring and Notification

QoS monitoring is performed on every flow during normal flow operation to ensure

that the QoS management system adheres to the contract signed with the sender

during QoS specification. When the contracted QoS level cannot be maintained, the

QoS monitoring subsystem notifies the sender of the QoS degradation in order for the

sender to take corrective action. This allows the various senders in the system to

cooperate in making room for each other during times of congestion. It also allows

flows to terminate if the contracted QoS level cannot be kept.

The QoS monitoring subsystem adopts the packet injection technique in measuring

flow performance. Monitoring is performed by sending probe out-of-bound packets

together with flow data. The ratio of probe packets to the actual data is determined by

the system-level monitoring rate parameter. A monitoring rate of 0.1 denotes that

10% of all flowing data on the network is probe data. The scheduler of the MRTSD is

responsible for injecting probe packets together with the data packets at the specified

monitoring rate. The probe packets are sent out-of-bound to the MQOSD of the

receiver instead of being in-bound directly to the receiver. This has the advantage of

reducing the overall end-to-end delay of the QoS maintenance subsystem by not

introducing further processing at the receiver side. The disadvantage is that more

processing needs to be performed at the MQOSD to allow for processing and

returning probe requests. Probe packets are used to measure all network QoS

parameters: end-to-end delay, throughput and error rate. Monitoring is performed

independently on every MRTSD. The various MRTSD in the network do not

communicate to share monitoring information. It is assumed that over a large network,

73

the senders and receivers will be evenly distributed and hence measuring network

performance will be similar from any point in the network.

End-to-end delay is measured by calculating the roundtrip delay of a null packet. A

null probe packet is transmitted from the local MRTSD to the remote MQOSD. The

packet is first delayed by the sender transport protocol, which adds some system delay

(Ds). The packet further undergoes network delay (Dn) before it is ready for

consumption at the receiver. The remote transport protocol processes the packet,

which adds some system delay (Dr), and makes it available to the receiver. The total

end-to-end delay is the aggregate of both the network delay and the system delays.

Measuring the end-to-end delay at the remote MQOSD requires that the clocks of both

the sender and the receiver be synchronized. This adds to the complexity of the overall

system and directly affects the operation of other processes at the remote system. The

adopted alternative to clock synchronization is to return the null probe packet with a

reply consisting of another null packet. Theoretically, the reply packet should undergo

as much delay as the original probe packet. The round-trip delay is now the sum of the

delay of the probe packet and the delay of its reply. Consequently, the end-to-end

delay is approximately half the round trip delay. End-to-end delay calculation is

illustrated in Figure 17 and Equation 4. The equation assumes that the time taken in

processing the probe packet at the MQOSD and initiating a reply is negligible.

74

Sender Receiver

Measure

Packet Sent

Packet Ready

Packet Received

End-to-end Delay

(D)

Reply Initiated

Start Probe

Receiver Delay (Dr)

Sender Delay (Ds)

Network Delay

(Dn)

Round-trip

Delay (D2)

Figure 17 - End-to-End Delay Calculation

Equation 4:
2

2D
DDDD rns

Throughput is measured by sending a stream of probe packets and computing the

difference between the time of arrival for the first packet and the time of arrival for the

last packet. The local MRTSD sends a known number of packets (NP), which is set by

a system parameter, to the remote MQOSD with the rate specified by the measuring

rate system parameter. The size of the probe packet (S) is determined by the measured

average packet size for the flow. The remote MQOSD starts counting the time as soon

as the first packet is received (ta). Time calculation is stopped when a certain number

of probe packets are received. An assumption is made for the upper bound on the

network loss rate (denoted Lu). The remote MQOSD stops the time count at time tb,

when LuNP probe packets are received. This ensures that the MQOSD will not wait

indefinitely for a probe packet that was lost. When enough probe packets are received,

the remote MQOSD calculates the actual throughput (Qa) using the following

formula:

75

Equation 5:
ab

Pu
a

tt

SNL
Q

The remote MQOSD composes a reply packet and replies to the MRTSD of the

sender with the measured throughput. Figure 18 shows an illustration for the

throughput calculation process.

Sender Receiver

Read Results

Start Probe

Total Transmission Time

(tb-ta)

ta

tb

N
p

L
u

 x
 N

p

Figure 18 - Throughput Calculation

Error rate is measured by computing the difference between the aggregate of the

desired throughput (Qq) for all flows that share the same network and the actual

measured throughput (Qa) of that network during monitoring. In the proposed design,

the assumption of a single LAN is made and hence all flows (NF) are counted in the

sum of desired throughput. The error rate is calculated using the formula shown in

Equation 6.

Equation 6:

F

F

N

i

q

a

N

i

q

iQ

QiQ

E

1

1

)(

)(

76

A negative error rate means that the network can provide a higher throughput than

what it is asked to grant. This means that there is no error (error rate is zero).

Monitoring results for every flow are eventually stored in the local MQOSD for the

sender of every flow. End-to-end delay is calculated at the local MRTSD and then

reported to the local MQOSD. Throughput is calculated at the remote MQOSD and

then sent back to the local MRTSD, which, in turn, reports it to the local MQOSD.

Error rate is calculated at the local MQOSD because it requires knowledge about the

desired throughput of all local flows.

The local MQOSD keeps history of previous monitoring results rather than saving the

only the latest values. This has the advantage of averaging the monitoring results and

thus excluding any spontaneous and temporary spikes in the results. This reduces any

unnecessary notification of low performance that may have lasted for only a short

period. The ratio of new to old data to keep is defined by the History Ratio system

parameter. Equation 7 shows the formula for calculating the new values while keeping

history of the old values.

Equation 7: newoldcurrent XXX)1(

Where:

 Xcurrent: the value (delay, throughput or error rate) to store

 Xold: the old stored value for delay, throughput or error rate

 Xnew: the current measured value for delay, throughput or error rate

 : the history-ratio system parameter

77

After every new set of measured network parameters is calculated, the MQOSD

compares the calculated measured QoS with the contracted QoS to check for

performance degradation. If the calculated throughput is lower than the desired

throughput by an amount greater than the error rate, the sender is notified of

degradation in QoS level. Similarly, if the calculated delay is larger than the desired

delay, the sender is notified of the degradation in QoS level. The sender is expected

to, but without any obligation, to take corrective action that would either reduce the

requested QoS-level or terminate the flow due to insufficient resources.

4.2.7 QoS Admission

The QoS admission process attempts to perform a pre-entry QoS assessment for flows

prior to flow creation at the local MQOSD. The QoS level specified by a flow during

QoS specification is assessed against the current network status before deciding

whether to admit the flow into the system. A flow will be allowed access only if the

system “believes” that it can provide the desired QoS-level. The QoS admission

subsystem uses fuzzy logic and a neural network to make a sensible decision.

QoS admission is performed on a flow that has a desired QoS level with a desired

throughput (Qq), delay (Dq) and error rate (Eq). The QoS admission subsystem also

utilizes the current network status, which provides information on the actual measured

throughput (Qa), delay (Da) and error rate (Ea). The system uses the preceding six

parameters as inputs to the QoS admission process. The output of the process is a

single decision to either accept or deny the creation of the flow.

The QoS admission subsystem is composed of two main components: the fuzzy

network that assesses the inputs and the neural network that produces a decision. The

78

fuzzy network employs fuzzy logic to compare the requested parameters with the

measured actual network parameters to produce an intermediate “acceptability” level

for these parameters. The acceptability level of each parameter describes the extent to

which the network can satisfy the requested parameter. A higher acceptability means

that the network is more likely to meet the requested parameter. Three acceptability

levels are produced from the fuzzy network for the three network parameters: delay,

throughput and error rate. The acceptability levels are fed as inputs to a neural

network that produces the final decision. The neural network combines the three

acceptability levels and produces a sensible decision to accept or deny the flow

creation request based on the relative importance of each of the three parameters.

Figure 19 illustrates the details of the QoS admission subsystem.

Stage 1:

Fuzzy

Network

Stage 2:

Neural

Network

Throughput

Acceptabil i ty

Delay

Acceptabil i ty

Error Rate

Acceptabil i ty

Decision

Requested Throughput

Desired Delay

Desired Error Rate

Measured Error Rate

Measured Delay

Measured Throughput

QoS Admission Subsystem

Figure 19 - QoS Admission Subsystem

79

The fuzzy network uses the following algorithm to produce the acceptability levels:

1. Obtain the average network status from the average of the monitored results for all

flows stored at the local MQOSD.

2. Normalize the network status parameters in the range [0-1]. Use the normalization

formulas shown in Equation 8, Equation 9 and Equation 10.

Equation 8:

throughputrequested

throughputmeasuredthroughputrequested
Throughput

Equation 9:
delayrequestedmaximum

delaymeasured
Delay

Equation 10: rateerrormeasuredrateError

3. Fuzzify the network status using the fuzzification graph shown in Figure 20.

ML M MH HL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

0.0

1.0

0.5

Figure 20 - Fuzzification and Defuzzification Graph

4. Normalize the user request in the range [0-1] using the normalization formulas

shown in Equation 11, Equation 12 and Equation 13.

80

Equation 11:
1.5

t throughpumeasured average

throughputrequested
Throughput

Equation 12:
delayrequestedmaximum

delaymeasureddelayrequestedmaximum
Delay

Equation 13: rateerrormeasuredrateError 1

5. Fuzzify the user request using the fuzzification graph shown in Figure 20.

6. Use the fuzzy decision table shown in Table 1 to get fuzzy values for the

acceptability levels. A higher fuzzy value denotes a higher potential for acceptance

by the network.

Table 1 - Fuzzy Decision Table

 Requested Value for Parameter

Measured

Value for

Parameter

 L ML M MH H

L H H H H H

ML H H MH M M

M H MH M M ML

MH MH M M ML L

H M ML ML L L

 Where: (H= high; MH= medium high; M= medium;

ML= medium low; L= low)

81

7. Defuzzify the acceptability levels to get crisp values for the acceptance potential in

the range [0-1] using Figure 20.

8. Feed the acceptance levels to the next stage for obtaining a single decision.

The next stage is the neural network phase. The neural network takes as input the

acceptability potentials for the three network parameters and produces one output

which is the acceptance decision (YES or NO). The neural network is a feed-forward

neural network with one hidden layer containing three nodes and one output layer

containing one node. The proposed network is shown in Figure 21. The network is

trained using the back-propagation algorithm using the training set shown in

Appendix A.

A

B

C

D

Throughput

Acceptabil ity

Delay

Acceptabil ity

Error rate

Acceptabil ity

Decision

Figure 21 - QoS Admission Neural Network

4.3 Prototype

A prototype system was developed to verify the design and simulate its functionality.

The prototype is also used to measure results for the effectiveness and performance of

the proposed system. The prototype is composed of a library and a high-level

language interface that provide senders with access to QoS functions of the proposed

82

QoS management system. The prototype also includes two system applications that

represent the MQOSD and the MRTSD, which should be run on every host

participating in the QoS-managed network.

The developed prototype has the limitations of running on a single LAN as opposed to

a WAN that is a necessity for real-life multimedia applications. The LAN assumption

was made to conform to the assumptions made earlier in the system design. The

prototype is also limited to the implementation of unicast flows instead of multicast

flows that are commonplace in multimedia applications. The design of the prototype

allows flows to use multicast facilities but the implementation was limited to unicast

for simplicity.

4.3.1 Platform

Object-oriented design (OOD) was employed in the course of designing the prototype

system. Object-oriented design was mainly selected because it allows for simple

additions to the design and for providing placeholders for extras that need to be added

to the design later. OOD is also useful due to its readiness to easily reuse design

components.

The prototype system is implemented in C++ on the Linux platform. The prototype is

compiled with Gnu C++ on Red-Hat Linux. The developed prototype completely runs

in user-mode and does not modify any system-level operating system components.

The system builds on TCP/IP’s UDP protocol to provide the transport protocol

functionality. The developed system is built on top of UDP to change its interface and

add to its functionality. Inter-process communication (IPC) is employed in all

communication within a single host for optimization.

83

The prototype is designed using the Booch object-oriented design methodology

[Booch 94]. The important design elements of the Booch methodology are the class

diagram and the object diagrams. The class diagram identifies the main system

components and their interaction. The object diagrams identify the main scenarios of

system operation and shows how instances of the class components would interact

during each scenario.

4.3.2 Class Diagram

The main classes of the prototype are the SenderFlow, MQOSD, and MRTSD. These

represent the sender-side interface, the MQOSD process and the MRTSD process,

respectively. Figure 22 shows the class diagram for the prototype system. Class details

and member functions are listed in Appendix B.

The main interface to the sender application is the SenderFlow class. The sender

should create an instance of this class for every flow it wishes to create. The class

contains member functions for flow creation and termination, QoS selection as well as

data sending. The sender interacts with the Buffer class to send data using the flow.

The Buffer class provides easy handling of data for simple sending of different data

types. The SenderFlow can only send data encapsulated in a Buffer object. The

SenderFlow itself is a specialization of the Flow class, which is an abstract class

providing general flow functionality. The Flow class may be used as a base class for

further classes that provide enhanced system functionality and/or a different user

interface to the sender. This may also be useful in providing a class that allows

multicast group membership and handling.

84

Comm

IPC

UDP

Flow

Buffer

Shared Memory

BufferSender Flow

Flow Table

Control Packet

Create Packet

Count Table

Create Reply

Packet

Kil l Packet

MQoSD

MRTSD

Notify Packet

Packet Table

Ping Delay

Packet

Ping Throughput

Packet

Ping Throughput

Reply Packet

QoS Admission

Table

QoS Table

Query Packet

Query Reply

Packet

Report Packet

Select QoS

Packet

Select QoS

Reply Packet

Send Packet

Start Ping

Throughput

Packet

Terminate

Packet

Figure 22 - Class Diagram for Prototype

The SenderFlow uses the IPC class for interacting with the local MQOSD and

MRTSD processes. The IPC class is a specialization of the Comm class, which

85

provides general communication capability. The IPC class interacts with Buffer

classes to extract the data to send to the MQOSD. Data sent to the MRTSD are

contained in a SharedMemoryBuffer class, which uses shared-memory IPC to

minimize the memory copying operations in order to enhance the overall system

performance and reduce sending delays. SharedMemoryBuffer is a specialized Buffer

that uses shared memory IPC storage instead of main memory storage.

The MQOSD class provides the functionality of the MQOSD process as described

earlier in the proposed design. The MQOSD waits for control packets from any sender

to provide QoS management functionality. It acts as the main storage and QoS

decision-maker on every host. The MQOSD uses a ControlPacket class to receive and

identify any control packets it receives. It also contains a QoSTable that stores all

information related to the flows created on its host. The QoSTable is a descendant of

the FlowTable class, which is a parent class that provides generic indexing on flow

identifiers. The MQOSD utilizes the IPC class for inter-process communication with

senders to receive flow management requests from the SenderFlow classes. The

MQOSD also uses the UDP class, which allows UDP communication over the

network with remote MRTSD processes. The UDP class is another descendent of the

Comm general communication class. The MQOSD also contains a

QoSAdmissionTable class that stores the QoS admission-control table that uses fuzzy

logic to take admission control decisions.

The MRTSD class provides the functionality for the MRTSD process, which is to send

flow data using the specified QoS levels. The MRTSD interacts with the local MRTSD

using IPC classes and with the remote MRTSD processes using UDP classes. The

86

MRTSD receives data to be sent in ControlPacket classes that contain references to the

original data in stored in SharedMemoryBuffer classes. The MRTSD stores the packet

in a PacketTable prior to sending them. Packets in the PacketTable are first prioritized

according to QoS-driven deadlines. The MRTSD contains an Earliest-Deadline-First

scheduler that schedules and sends the packet while the MRTSD is receiving control

packets from senders. The PacketTable class is another descendant of the FlowTable

class because it is indexed on the flow identifier. The MRTSD contains a CountTable,

which contains statistics for the data sent by each flow. This allows for the calculation

of the time of sending probe packets. Probe packets are sent as ControlPacket classes

using UDP to the remote MQOSD processes.

Various specialized classes of the ControlPacket class exist to provide the out-of-

bound control functionality. CreatePacket, CreateReplyPacket, TerminatePacket,

SelectQoSPacket and SelectQoSReplyPacket are used by the SenderFlow and the

MQOSD to manage QoS flows. SendPacket is used by the SenderFlow and the

MRTSD to send flow data. PingDelayPacket, StartPingThroughputPacket,

PingThroughputPacket, and PingThroughputReplyPacket are used to perform

monitoring operations by both the MRTSD class and the remote MQOSD processes.

ReportPacket is used by the MRTSD to report results of the monitoring process.

NotifyPacket is used by the MQOSD and the SenderFlow to notify senders of QoS

degradation. QueryPacket and QueryReplyPacket are used by the SenderFlow and the

MQOSD to inquire about the current operating QoS level for a flow. KillPacket is

used by the system developer to gracefully terminate MQOSD and MRTSD processes

prior to system shutdown.

87

4.3.3 Scenarios

The typical scenarios in the proposed system are those involving QoS management

functions. The operation of these functions exhibits the most important object

interactions. These functions are:

 Flow creation

 Data sending

 Realtime packet scheduling

 QoS monitoring

 QoS degradation

 QoS selection

 Flow termination

4.3.3.1 Flow Creation

Flow creation occurs when a sender wishes to establish a new multimedia data flow. It

involves QoS specification by the sender and QoS admission by the MQOSD. The

result of this process is either the denial of service or the creation of a flow and the

storage of its parameters in the MQOSD. Figure 23 shows the object diagram for a

typical flow creation process that results in acceptance.

88

Sender

SenderFlow

1: Create
CreatePacket

2: SetData

IPC

3
: S

e
n

d

CreateReply

Packet

16: GetData4
: R

e
c
e
iv

e

CreatePacket

CreateReply

Packet

MQOSD

IPC

1: Receive

4
: G

e
tD

a
ta

5: Create

6: MapQoS

7: AdmitQoS

QoSTable
8: GetQoSTotal

9: GetQoSAverage

13: Add

14: SetData

15: Send

QoSAdmission

Table

10: In
putN

etw
orkStatus

11: In
putU

serR
equest

12: D
ecision

Figure 23 - Flow Create Object Diagram

Flow creation starts with a Create request from the sender to the SenderFlow.

Meanwhile, the MQOSD is already ready for receiving data from any sender. The

SenderFlow sets the specified QoS data into a CreatePacket and sends it using IPC.

The MQOSD receives the request using IPC and gets the data from the CreatePacket.

It identifies the data as a Create request and issues a Create operation in the MQOSD.

The operation proceeds by mapping the specified QoS into network parameters and

then performing QoS admission on the mapped parameters. The admission control

mechanism gets QoS totals and averages from the QoSTable. The QoS averages are

89

input to the QoSAdmissionTable together with the user-specified QoS and a decision

is requested. When the decision is positive, the flow is added to the QoSTable.

Success information is composed in a CreateReplyPacket and then sent back using

IPC to the sender. The sender receives the reply and gets the decision from the

CreateReplyPacket. The decision is passed back as the result of the Create operation.

4.3.3.2 Data Sending

Data sending is performed by the sender in order to transfer data to the receiver using

the specified QoS. It involves scheduling and transmission at the MRTSD. Figure 24

shows the object interactions for a typical send operation.

Data sending starts by the sender inserting data into the shared memory buffer. The

sender requests to send the buffer from the SenderFlow. The SenderFlow packs the

data into a SendPacket and sends the data using IPC to the MRTSD. Meanwhile, the

MRTSD was waiting for a send request from any sender. The MRTSD unpacks the

data from the SendPacket and composes a QueryPacket to be sent to the local

MQOSD. The local MQOSD receives the QueryPacket and contacts the QoSTable to

get flow QoS information. The MQOSD composes a QueryReplyPacket and sends it

back to the MRTSD. The MRTSD gets the QoS information from the

QueryReplyPacket and inserts the packet into the PacketTable along with its

calculated deadline. The CountTable is also incremented for the flow to adjust QoS

monitoring counters. Once the packet is in the packet table, it is ready for

consumption by the realtime scheduler of the MRTSD.

90

Sender SenderFlow2: Send

SendPacket

IPC

3
:
S

e
tD

a
ta

4: Send

IPC

MQOSD

1: Receive

12: Send

MRTSD

ipc::IPC

1
:
R

e
c
e
iv

e

SendPacket

5:
 G

et
D
at

a

mqosd::IPC

QueryPacket

QueryReply

Packet

6: SetD
ata

7
: S

e
n
d

8
: R

e
c
e
iv

e

QueryPacket

8
:
G

e
tD

a
ta

9: Q
uery

QoSTable

QueryReply

Packet

10: GetData

1
1

: S
e

tD
a

ta

1
3

: G
e

tD
a

ta

PacketTable

CountTable

1
4

: A
d

d

1
5
:
In

c

SharedMemory

Buffer

1
:

In
s
e

rt

Figure 24 - Data Sending Object Diagram

4.3.3.3 Realtime Packet Scheduling

Realtime packet scheduling is performed whenever the packet queue in the MRTSD is

non-empty. The MRTSD utilizes an Earliest-Deadline-First realtime scheduling

technique using the deadlines that were set during packet acceptance by the MRTSD.

The highest priority packet is extracted and sent to its destination. Figure 25 shows the

object diagram for a typical scheduling scenario.

91

MRTSD PacketTable

1: GetEarliestDeadline

2: GetData

UDP

SharedMemory

Buffer

3
: G

e
tD

a
ta

4: Send

Figure 25 - Realtime Packet Scheduling Object Diagram

The MRTSD scheduler process is synchronized with the MRTSD using semaphores

in order to detect any packet arrival. Whenever packets are ready, the MRTSD

contacts the PacketTable to get the packet with the earliest deadline. The MRTSD gets

the packet data and extracts the shared memory buffer containing the data to send it to

the receiver using UDP. The receiver is a normal TCP/IP application executing the

recvfrom system call to receive UDP packets.

4.3.3.4 QoS Monitoring

QoS monitoring is performed regularly at the specified system rate for all flows. QoS

monitoring involves probing for network performance and storage of results at the

local MQOSD. Figure 26 shows a typical scenario for QoS monitoring.

92

MRTSD

CountTable 1: Count

18: Reset

2: Ping

UDP

PingDelay

Packet

3: S
etD

ata

4
:
S

e
n
d

5
:
R

e
ce

iv
e

7
:
S

e
n
d

9
:
S

e
n
d

1
0
:
R

e
ce

iv
e

StartPing

Throughput

Packet

PingThroughput

ReplyPacket

PingThroughput

Packet

6
: S

e
tD

a
ta

8
: S

e
tD

a
ta

11: G
etD

ata

ReportPacket

IPC12: SetData

13: Send

IPC

ReportPacket

MQOSD

14: GetData

1
:
R

e
c
e
iv

e

QoSTable

15: GetQoSTotals

16: GetActualQoS

17: SetActualQoS

Figure 26 - QoS Monitoring Object Diagram

QoS monitoring starts by the MRTSD scheduler counting the size of the packets sent

for the flow. When the threshold is reached, QoS monitoring is initiated. First, the

MRTSD creates a PingDelayPacket and sends it using UDP to the remote MQOSD.

The MRTSD waits for the results of the PingDelayPacket and starts the process of

throughput measurement. The MRTSD sends a StartPingThroughputPacket using

UDP followed by multiple PingThroughputPacket datagrams. The MRTSD collects

the results in a PingThroughputReplyPacket. After all measurements were made, the

MRTSD creates a ReportPacket and sends it using IPC to the local MQOSD. The

93

local MQOSD receives the packet and unpacks the ReportPacket. After that, the

MQOSD retrieves old QoS measurements for the flow from the QoSTable and stores

the newly calculated measurements in the QoSTable.

4.3.3.5 QoS Degradation

QoS degradation occurs when the local MQOSD detects that the QoS measurements

being stored for a flow are lower than the contracted QoS level. QoS degradation

notifies the sender of the situation in order to take appropriate corrective action.

Figure 27 shows the object diagram for a typical QoS degradation scenario.

MQOSD

SenderFlow

QoSTable

1
: G

e
tD

e
s
ire

d
Q

o
S

2
: G

e
tD

a
ta

IPC

NotifyPacket

4: Send

3: S
etD

ata

IPC

1
: R

e
c
e

iv
e

NotifyPacket

5: GetData

6: QoSNotification

Figure 27 - QoS Degradation Object Diagram

When the MQOSD gets the desired QoS level for the flow, it compares it with the

measured values obtained during QoS monitoring and reporting. If the measured level

is lower than requested, the MQOSD composes a NotifyPacket and sends it using IPC

to the SenderFlow. The SenderFlow is already waiting for any notifications in a

separate QoSNotificationHandler process. The SenderFlow reads the contents of the

94

NotifyPacket and executes the overloaded QoSNotification member function. Sender

applications override the QoSNotification member function to achieve custom

functionality upon QoS degradation notification.

4.3.3.6 QoS Selection

QoS Selection is performed at the sender’s request. A sender may wish to perform

QoS selection when the contracted QoS levels need to be altered. The QoS selection

process involves QoS specification and QoS admission (readmission). Figure 28

shows the object diagram for a typical QoS selection request.

SenderFlow

SelectQoS

Packet

SelectQoS

ReplyPacket

IPC

IPC

MQOSD SelectQoS

Packet

SelectQoS

ReplyPacket

1
: S

e
tD

a
ta

2: Send3: Receive

1:
 R

ec
ei

ve

14
: S

en
d

3: GetData

4: SelectQoS

5: MapQoS

6: AdmitQoS

QoSTable

7:
 G

et
Q
oS

Tot
al

8:
 G

et
Q
oS

A
ve

ra
ge

12
: S

et
D
es

ire
dQ

oS

QoSAdmission

Table

9
: In

p
u
tN

e
tw

o
rk

S
ta

tu
s

1
0
: In

p
u
tU

s
e
rR

e
q
u
e
s
t

1
1
: D

e
c
is

io
n

13: S
etD

ata

15: GetData

Figure 28 - QoS Selection Object Diagram

95

The sender initiates the process by requesting QoS selection from the SenderFlow.

The SenderFlow, in turn, creates a SelectQoSPacket and sends it through IPC to the

local MQOSD. The local MQOSD receives the data, unpacks the SelectQoSPacket,

and invokes the local QoS selection code. The QoS selection process involves QoS

mapping and QoS admission similar to that performed during the flow creation

process described in section 4.3.3.1. The result of QoS admission is stored in the QoS

table for later usage. The result is then packed in a SelectQoSReplyPacket and sent

back to the SenderFlow using IPC. The SenderFlow gets the result from the

SelectQoSReplyPacket and passes it to the sender.

4.3.3.7 Flow Termination

The sender chooses to terminate a flow when it has finished sending all the data in the

flow. Figure 29 shows a typical flow termination scenario.

SenderFlow

Terminate

Packet

IPC IPC

MQOSD

Terminate

Packet

1
: S

e
tD

a
ta

2: Send

1: R
ece

ive

3: GetData

4: Terminate

QoSTable

4: D
ele

te

Figure 29 - Flow Termination Object Diagram

96

The SenderFlow creates a TerminatePacket and sends it using IPC to the MQOSD.

The MQOSD decodes the packet and executes the local terminate procedure. The

procedure removes all the deleted flow’s data from the QoSTable.

97

CChhaapptteerr 55 EEXXPPEERRIIMMEENNTTAALL RREESSUULLTTSS

A test system was set up to perform performance measurements of the prototype

system. A test lab, consisting of three dedicated workstations, was used to run the test

applications. The workstations were connected using a non-dedicated 10-Mbps

coaxial Ethernet network. The network layout of the test lab is shown in Figure 30.

All workstations used (test01, test02 and test03) had a single Intel P-II 450 MHz

processor with 512K of cache and 64MB RAM. All three workstations had only an

MQOSD and an MRTSD running per workstation. In addition to the test

workstations, the network contained two servers and many other workstations that

were in constant use by other party. The traffic generated on the network from the

uncontrolled workstations and servers was unknown and variable with time. When a

dedicated network was required, the network was used off working hours. This

provided a near-dedicated network where the traffic generated by the uncontrolled

workstations was minimal.

 Coaxial Ethernet (10-Mbps)

test01 test02 test03

Uncontrolled Servers Uncontrolled Workstations

Figure 30 - Testing Platform

98

The tests used concentrated on measuring two aspects of the system: enhancements

and costs. The experiments measure the enhancements made to the timely arrival of

transmitted data. The experiments also measure the overheads incurred by the system

to provide the measured enhancements.

5.1 Goodput Enhancement

Goodput is an invented term that denotes the percentage of transmitted packets that

arrived to the receiver before or at their deadline time. The higher the goodput, the

more comprehendible a transmitted multimedia flow becomes. A goodput of 100%

means that all the packets in the flow were received on time by the receiver.

To measure goodput, three flows were created on the three workstations. Each sender

sent 10,000 packets of 5-Kbytes each before terminating the flow. The pattern of

sending the packets was dependent on the throughput being measured. The receiver

timed the packets as they were received and discarded any packets that did not arrive

on time. The ratio of the number of packets received on time to the total number of

packets sent is the goodput of the flow. The total goodput of the network was the

average goodput for the three flows. The same test was repeated with different

throughputs. Varying the throughput allowed testing the effect of increasing the

requested throughput on the goodput measured at the receiver. The test was further

repeated using UDP/IP for sending the packets instead of the controlled QoS system.

Figure 31 shows the measured goodput for different requested cumulative throughput.

The cumulative throughput is the sum of the requested throughputs for all three flows.

99

0%

20%

40%

60%

80%

100%

120%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cumulative Throughput (Kbytes/sec)

G
o

o
d

p
u

t

Ideal

UDP

Flow

Figure 31 – Percentage of good packets at variable requested throughput

The ideal values for the goodput were calculated using the 10-Mbps (1280

Kbytes/sec) nominal bandwidth for the underlying network. The ideal network was

assumed to only allow 1280 Kbytes to be transmitted per second. If more is requested,

the ideal network will only pass 1280 Kbytes of the requested throughput and hence

the percentage of correct packets would be estimated on this ground.

The QoS-controlled flows demonstrated a worse goodput at lower cumulative

throughputs than that of normal UDP streams. This can be attributed to the overheads

of QoS maintenance and monitoring which use a portion of the network bandwidth

that could have otherwise been used by flow data. The advantages of the QoS system

are much less than the overheads of the system at this stage. At higher requested

throughputs, the controlled flows exhibit a higher goodput than normal UDP streams

that send data using the same throughput. At this stage, the network bandwidth saved

due to the realtime packet scheduling performed at the MRTSD is more than that

100

wasted by QoS maintenance and monitoring. At 5000 Kbytes/sec (approximately 1.6

Mbytes/sec per flow), 10% of the packets arrive on time when sent using the QoS

system as opposed to only 3% arriving on time using UDP streams.

5.2 Throughput Overhead

The proposed QoS system was developed as a layer above UDP/IP. This ports all the

overheads of UDP to the system and adds to them the overhead of the system itself.

UDP has overheads due to data copying and checksum creation and validation. The

proposed system adds throughput overheads due to packet scheduling.

One flow was created to send packets at the maximum rate possible. The flow

attempts to send 10,000 packets of data in a tight loop. The experiment was repeated

for different packet sizes and the throughput was measured at the receiver. The

exercise was performed using QoS flows, UDP/IP and raw IP. Figure 32 shows the

measured system throughput at different packet sizes.

0

1

2

3

4

5

6

7

8

9

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Packet Size (Bytes)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Raw IP

UDP/IP

Flow

Figure 32 - Measured throughput for different packet sizes

101

Raw IP, expectedly, outperformed all higher level protocols. Raw IP is the basis of all

other protocols and contains minimal overheads. UDP/IP performed at almost 50% of

raw IP due to data-copying overhead as well as checksum generation and transport-

level overheads. The throughput for the proposed system was slightly less than

UDP/IP due to the overhead of the realtime packet scheduler.

5.3 Network Bandwidth

The network capacity used by the QoS system is not entirely used for the transmission

of data packets. The QoS system uses probe packets for performing QoS monitoring.

The percentage of network bandwidth used for QoS monitoring is determined

according to a system-level parameter as described in section 4.2.6.

A single flow was created to send data at different QoS levels. Counters were inserted

at the MRTSD to measure the total number of bytes sent for data packets and the

corresponding number of bytes sent for probe packets. The system-level monitoring

parameter was set at 0.1 (10%). The distribution of the utilized network bandwidth is

shown in Figure 33.

102

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Cumulative Throughput (KBytes/sec)

N
e
tw

o
rk

 B
a
n

d
w

id
th

 (
K

b
y
te

s
/s

e
c
)

Data

Control

Figure 33 - Breakdown of network bandwidth utilization

The network bandwidth utilization was split into exactly 90% for data and 10% for

probe packets. This is in agreement with the system-level monitoring parameter that

was set at 0.1.

5.4 Delay Overhead

The added system layer in the proposed system adds to the latency of the overall

network. First, there is the copying required by the sender to make the data ready for

transmission. The data pointers to the shared memory are then transmitted using IPC

to the MRTSD without actually copying the data. The MRTSD uses realtime

scheduling to prioritize packet transmission, which adds to the delay of sending every

packet. Figure 34 shows the breakdown of system latency into its different

components.

103

1

10

100

1000

10000

100000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Packet Size (Bytes)

T
im

e
 (

u
s
) Transmission

RTS

IPC

Copying

Figure 34 – System latency as a function of packet size (using log-scale)

The largest part of latency is that caused by the network itself. This includes the delay

due to UDP, the network delay and the transmission time. The elements of the latency

introduced by the QoS system are an average delay of approximately 1000s for the

realtime scheduler and a constant delay (approximately 150s) for IPC transmission of

the data pointers. There is also a variable delay for copying data into shared memory

by the sender, which depends on the size of the data being copied. The dominant part

of the QoS system delay is due to the realtime scheduler. This is attributed to the

usage of semaphores for signaling the arrival and consumption of packets in the

packet queue.

5.5 Summary

The measured performance of the proposed system indicates that realtime scheduling

indeed helps in the correct multiplexing of multimedia data. Realtime scheduling

avoids sending data that has expired and makes room for data that has a chance of

reaching its destination on time. The added overhead in throughput is significant with

104

comparison to raw IP transmission. A system that is built directly on top of raw IP

instead of UDP/IP would provide a higher throughput for applications. The added

latency to the system (approx. 1300s) is acceptable for high-latency networks such as

the one used in the test system. This latency might not be acceptable in networks with

lower-latency.

The experiments performed in this section did not count the effect of cooperation

among multimedia flows. In reality, QoS notification significantly adds to the

collective performance of multimedia applications by allowing applications to reduce

their QoS requirements during network congestion and relaxing them again when the

network is less congested. This can significantly increase goodput to allow more

multimedia flows to coexist on the same network. Moreover, the effect of admission

control was not tested. Admission control notably protects the network bandwidth

from being overwhelmed by a flow whose requested QoS-level could not be satisfied.

105

CChhaapptteerr 66 SSUUMMMMAARRYY AANNDD CCOONNCCLLUUSSIIOONN

This thesis researched the different aspects of providing a QoS management solution

for multimedia communication. QoS management functions were normally provided

with networks that have an inherent capacity for reserving resources. The thesis aimed

at adapting the concepts of QoS management to the world of non-guaranteed

networks. This research has been conducted in the context of an environment where

network performance cannot be guaranteed and where performance may be changing

with time.

6.1 Development

An abstraction layer was developed on top of a standard transport protocol to provide

QoS functionality. The abstraction layer used the concept of a flow, which is a stream

of multimedia data that has specific quality constraints. The abstraction layer includes

a QoS-management subsystem, a realtime scheduling subsystem, and a user-level

library.

The QoS management subsystem (the MQOSD) provides a central point of control for

QoS functions on every workstation. The MQOSD is the single point for active

storage of flow-related QoS data. It performs QoS specification, mapping, and

admission prior to flow creation by utilizing the stored QoS information in taking QoS

decisions. The MQOSD also performs QoS notification for flows whose desired QoS

levels could not be satisfied due to network constraints.

106

The realtime scheduling subsystem (the MRTSD) performs QoS maintenance

functions on every workstation. It communicates with senders of the same workstation

to receive and prioritize flow data packets before sending them to their destinations.

The MRTSD is also responsible for QoS monitoring by measuring actual QoS values

and reporting them to the MQOSD.

The user-level library provides a high-end interface to the users of the QoS system

(senders). The library defines a highly portable interface on top of high-level

languages. It allows senders to create flows, manage their QoS requirements as well as

receive and handle notifications for QoS degradation. Receivers of multimedia flows

are oblivious to whether the information they receive is QoS managed. Receivers are

not involved in the QoS management process.

The complete system allows senders to create flows and simply specify their QoS

requirements. It also manages the data being transferred to maximize the utilization of

the network using the knowledge it has from the specified QoS requirements. This is

performed while coexisting with other time-varying, non-controlled data on the same

network.

6.2 Results

The core design features of the system were implemented on Linux using UDP/IP as

the base transport protocol. User libraries were provided for C++ to extend QoS

functionality to the language. IPC was used for local communication between the user

libraries and the QoS subsystems (the MQOSD and the MRTSD).

107

The testing of the implemented system indicated that the system provides better

network traffic management but with a high overhead. Goodput was used as a basis

for measuring the performance of QoS management system. It indicates the

percentage of flow data packets that arrived on time according to the contracted QoS

levels for the flow. Goodput during network overload for the QoS managed system

was significantly higher than an uncontrolled system. The system provided triple the

goodput (10% versus 3%) when the total concurrent requests were triple the network

capacity.

The runtime of the system encompassed a high throughput overhead. Being

implemented on top of UDP/IP, the system provided a performance that was slightly

lower than that of UDP/IP but almost half that of raw IP. At low throughput requests,

the system provided performance that was poorer than that of uncontrolled systems

due to the high system overhead. A system implemented on top of raw IP instead of

UDP/IP would provide higher goodput results.

The overhead in overall system delay was not as severe as the throughput overhead.

The end-to-end delay was increased by less than 10% of the minimum measured

network delay during system testing. This is attributed to the usage of out-of-bound

control channels. Sending control data on separate channels rather than using

piggybacking mechanisms reduces the overhead of handling flow data and reduces the

operations performed at the sender and receiver. This significantly reduced the

increase in system delay. The notable constituent (90%) of the added delay is the delay

caused by realtime scheduling of packets at the MRTSD. The algorithm used was an

non-optimized Earliest Deadline First scheme.

108

6.3 Conclusions

The goal of this thesis has been to provide QoS management for flows on non-

guaranteed networks. This goal has been achieved through the design of the model

presented in this thesis. Instead of relying on the network to perform resource

reservation for the specified QoS levels, the system actively performs QoS assessment

and monitoring. The model also presents a novel predictive approach for QoS

admission by anticipating current network QoS levels and intelligently admitting or

denying acceptance of future QoS requests. QoS contracts are constantly monitored

and evaluated to provide proper notification of any instances where the contracted

levels are not met.

The proposed model provides a threshold level for QoS. Threshold QoS provides a

higher level than the common best-effort QoS that is adopted in non-guaranteed

networks. The testing and measurement of the proposed model has shown

improvements in quality over best-effort QoS. This is to be compared to the

compulsory QoS levels that are warranted in guaranteed networks. The adopted model

provides a medium level between best-effort QoS and compulsory QoS.

Finally, the proposed model was implemented on a common LAN and showed that

QoS managed flows can coexist with non-managed data streams. Applications were

written using the high-level interface provided by the user libraries of the proposed

system. Applications were able to work with the notion of threshold QoS and were

able to coordinate at times of congestion to work with lower QoS levels and provide

maximum quality for the available network resources.

6.4 Future Research

109

The proposed model provides a framework for the study of further aspects of QoS

management. This work has mainly focused on providing breadth coverage of QoS

functions to verify the feasibility of the concept. One QoS aspect, predictive QoS

admission, was studied in depth. However, the proposed model provides a rich

research platform for the investigation of the following aspects:

 Realtime scheduling

 Elaborate notification and adaptation to QoS feedback

 Comprehensive specification and mapping for QoS levels

 Multicast and group management

 QoS negotiation and renegotiation mechanisms

The proposed model implements a simple Earliest Deadline First realtime scheduling

algorithm. The realtime-scheduling algorithm is currently a bottleneck in the proposed

system. Effective realtime scheduling can increase network bandwidth utilization and

provide better management for network traffic. This should lead to better system

performance and increased goodput at higher requested QoS levels.

At present, the proposed model employs primitive QoS notification. Elaborate QoS

notification should allow user specification of the events requiring notification.

Moreover, it the mechanism should allow for intelligent distribution of the exceeded

network capacity. Currently, the system notifies all active flows of QoS degradation in

order to cooperate in reducing the requested QoS levels. This proves efficient to the

network but too downgrading to the applications. Approaches that are more formal

110

include the identification of which flows contribute to the network congestion and

only notifying those flows that are creating the problem.

Comprehensive QoS specification can allow a versatile set of parameters for

specifying user-level QoS parameters. QoS specification should allow specifying all

multimedia formats as well as having a generic way of defining the transmission

patterns of flow data. Elaborate specification should also differentiate between stored

data and data generated using live multimedia sources. This should allow QoS

mapping to tighter network-level QoS parameters leading to effective management of

network bandwidth.

The proposed work has been designed with the assumption of having only unicast

flows. Typical multimedia applications involve multicast operation and group

communication. The proposed system provides a basic framework that can be

modified to include group handling functionality to allow group creation and

membership. This is the first step in providing a complete multicast solution for multi-

point communication. Moreover, multicast flows face the challenge of having

different QoS levels requested by different receivers, which introduces the concept of

multi QoS levels per flow.

The current model allows only acceptance or denial of flow creation. A more

complete system should provide mechanisms for negotiating QoS levels. QoS

renegotiation during operation is also essential to adequately adapt to the varying

network performance. QoS negotiation and renegotiation mechanisms allow the

system to recommend QoS levels to the applications instead of denying them the

111

service. It also allows applications to reach better agreement with the system on what

QoS levels it requires.

Finally, it is hoped that continuous analysis and further development of the proposed

system will lead to a more complete study of all aspects of QoS management on non-

guaranteed networks.

112

REFERENCES

[Aurrecoechea 98] C. Aurrecoechea, A. Campbell and L. Hauw. “A Survey of QoS

Architectures.” Multimedia Systems Journal, May 1998.

[Banerjea 97] A. Banerjea and H. Vin (ed.). “Heterogeneous Networking.” IEEE

Multimedia, April-June 1997, pp. 84-87.

[Besse 94] L. Besse, et al. “Towards an Architecture for Distributed

Multimedia Application Support.” Proceedings of International

Conference on Multimedia Computing and Systems, Boston, May

1994.

[Blair 93] G. Blair, et al. “Summary of the 4th International Workshop on

Network and Operating System Support for Digital Audio and

Video (NOSSDAV’93).” ACM Operating Systems Review,

November 1993.

[Booch 94] Booch, Grady. “Object-Oriented Analysis and Design with

Applications.” Second Edition. California: Benjamin-Cummings

Co., 1994.

 [Bosco 96] P. Bosco, et al. “The ReTINA Project: An Overview.” ReTINA

Techinical Report 96-15, May 1996.

[Braden 94] R. Braden, D. Clark and S. Shenker. “Integrated Services in the

Internet Architecture: An Overview.” Internet Network Working

Group, RFC 1633, July 1994.

113

[Braden 96] R. Braden, et al. “Resource ReSerVation Protocol (RSVP) –

Version 1 Functional Specifications.” Internet Draft, October

1996.

[Braun 97] T. Braun and P. Liu (ed.). “Internet Protocols for Multimedia

Communications.” IEEE Multimedia, July-September 1997, pp.

85-90.

[Campbell 93] A. Campbell, G. Coulson and F. Garcia. “Integrated Quality of

Service for Multimedia Communications.” Proc. IEEE

INFOCOM’93, San Francisco, USA, April 1993.

[Campbell 94] A. Campbell, G. Coulson and D. Hutchison. “A Quality of Service

Architecture.” ACM SIGCOMM Computer Communication

Review, April 1994.

[Campbell 96] A. Campbell, C. Aurrecoechea and L. Hauw. “A Review of QoS

Architectures.” Proc. 4th IFIP International Workshop on QoS,

Paris, March 1996, (invited paper).

[Campbell 97] A. Campbell and G. Coulson. “QoS Adaptive Transports:

Delivering Scalable Media to the Desktop.” IEEE Network,

March-April 1997, pp. 18-27.

[Deering 95] S. Deering and R. Hinden. “Internet Protocol Version 6 (IPv6)

Specifications.” IETF RFC 1883, December 1995.

114

[Delgrossi 95] L. Delgrossi and L. Berger. “Internet Stream Protocol Version 2

(ST2): Protocol Specification – Version ST2+.” Internet Network

Working Group, RFC 1819, August 1995.

[DeMeer 95] J. deMeer and A. Hafid. “QoS Modelling of Distributed

Teleoperating Services.” ISN 1995.

[Ferrari 96] D. Ferrari. “The Tenet Experience and the Design of Protocols for

Integrated Services Internetworks.” Multimedia Systems Journal,

November 1995.

[Gecsie 97] J. Gecsei. “Adaptation in Distributed Multimedia Systems.” IEEE

Mutlimedia, April-June 1997, pp. 58-66.

[Gopalakrishna 94] G. Gopalakrishna and G. Parulkar. “Efficient Quality of Service in

Multimedia Computer Operating Systems.” Dept. of Computer

Science, Washington University, Report WUCS-TM-9404,

August 1994.

[Hafid 96a] A. Hafid. “Quality of Service Negotiation for Distributed

Multimedia Applications.”

http://www.iro.umontreal.ca/labs/teleinfo/PubListIndex.html.

[Hafid 96b] A. Hafid, G. Bochmann and R. Dssouli. “Distributed Multimedia

Applications and Quality of Service.”

http://www.iro.umontreal.ca/labs/teleinfo/PubListIndex.html.

Technical report #1036. May 1996.

115

[Hutchison 95] D. Hutchison, et al. Network and Distributed Systems

Management. M. Sloman (ed.). “Quality of Service Management

in Distributed Systems.” Addison Wesley, May 1995.

[IEEE 95] “Interface Requirements for Realtime Distributed Systems

Communication.” IEEE, July 1995.

[ISO 93a] “Information Technology – Digital Compression and Coding of

Continuous-Tone Still Images.” ISO/IEC/JTC 1/ IS 10918, 1993.

[ISO 93b] “Information Technology – Coding of Moving Pictures and

Associated Audio for Digital Storage Media up to About 1.5

MBit/s" ISO/IEC/JTC 1/IS 11172, 1993.

[ISO 94] “Information Technology – Generic Coding of Moving Pictures

and Associated Audio Information.” ISO/IEC/JTC 1/DIS 13818,

1994.

[ISO 95] “Open Systems Interconnection, Data Management and Open

Distributed Processing : QoS – Basic Framework.” ISO/IEC JTC

1/SC 21 N9309, January 1995.

[Kerherve 94] B. Kerherve, et al. “On Distributed Multimedia Presentational

Applications: Functional and Computational Architecture and

QoS Negotiation.” Proc. of High Speed Networks Conference, pp.

1-19, 1994.

116

[Kong 97] J. Kong and J. Hong. “A CORBA-based Management Framework

for Distributed Multimedia Services and Applications.” DSOM

1997.

[Lazar 94] A. Lazar, S. Bhonsle and K. Lim. “A Binding Architecture for

Multimedia Networks.” Proceedings of COST-237 Conference on

Multimedia Transport and Teleservices, Vienna, Austria, 1994.

[Mitchell 97] S. Mitchell, et al. “The Djinn Framework for Distributed

Multimedia Applications.”

[Nahrstedt 95] K. Nahrstedt. “An Architecture for End-to-End Quality of Service

Provision and its Experimental Validation.” Ph.D. Thesis,

University of Pennsylvania, 1995.

[OMG 96] “Realtime CORBA: A White Paper.” Object Management Group,

December 1996.

[Reynolds 96] Reynolds, Peter. “End-to-End Quality of Service Support for

Integrated Multimedia Workstations.” Masters Thesis. University

of Wollongong. July 1996.

 [Schulzrinne 95] H. Schulzrinne and S. Casner. “RTP: A Transport Protocol for

Real-Time Applications.” Internet Draft, 1995.

[Siqueria 97] F. Siqueria. “A Framework for Distributed Multimedia

Applications based on CORBA and Integrated Services Networks.

117

Ph.D. Project. Distributed Systems Group, Trinity College,

Dublin.

[Stuttgen 95] H. Stüttgen. “Network Evolution and Multimedia

Communication.” IEEE Multimedia, Fall 1995, pp. 42-59.

[Vogel 95] A. Vogel, et al. “On QoS Negotiation in Distributed Multimedia

Applications.”

http://www.iro.umontreal.ca/labs/teleinfo/PubListIndex.html.

Technical report #977. May 1995.

[Volg 96] C. Volg, et al. “HeiRAT – Quality of Service Management for

Distributed Multimedia Systems.” Multimedia Systems Journal,

November 1995.

[Worsley 97] J. Worsley and T. Ogunfunmi. “Isochronous Ethernet – An ATM

Bridge for Multimedia Networking.” IEEE Multimedia, January-

March 1997, pp. 58-67.

[Yau 96a] D. Yau and S. Lam. “An Architecture Towards Efficient OS

Support for Distributed Multimedia.” Proc. IS&T/SPIE

Multimedia Computing and Networking, pp. 424-435, San Jose,

CA, January 1996.

[Yau 96b] D. Yau. “Operating System Support for Distributed Multimedia.”

Dissertation Proposal. Ph.D. Thesis. The University of Texas at

Austin, June 1996.

118

[Yau 97] D. Yau and S. Lam. “Migrating Sockets for Networking with

Quality of Service Guarantees.” ACM SIGCOMM, 1997.

[Yeadon 96] N. Yeadon, et al. “Filters: QoS Support Mechanisms for Multipeer

Communications.” IEEE Journal on Selected Areas in

Communication (JSAC), Issue on Distributed Multimedia Systems

and Technology, 3rd Quarter 1996.

[Yun 97] T. Yun, J. Kong and J. Hong. “Object-Oriented Modeling of

Distributed Multimedia Services.” ICCS, 1997.

119

Appendix A: Neural Network Training

The neural network used as the second step of QoS admission was trained using

MATLAB. A feed-forward neural network was defined using MATLAB to match the

network shown in Figure 21. The network was trained using the back-propagation

algorithm using the following data:

Throughput

Acceptability

Delay

Acceptability

Error-Rate

Acceptability

Decision
[1=accept, 0=deny]

0.00 0.00 0.00 0

0.25 0.00 0.00 0

0.50 0.00 0.00 0

0.75 0.00 0.00 0

1.00 0.00 0.00 0

0.00 0.25 0.25 0

0.25 0.25 0.25 0

0.50 0.25 0.25 0

0.75 0.25 0.25 0

1.00 0.25 0.25 0

0.00 0.50 0.50 0

0.25 0.50 0.50 0

0.50 0.50 0.50 0

0.75 0.50 0.50 0

1.00 0.50 0.50 1

0.00 0.75 0.75 0

0.25 0.75 0.75 0

0.50 0.75 0.75 0

0.75 0.75 0.75 1

1.00 0.75 0.75 1

0.00 1.00 1.00 0

0.25 1.00 1.00 0

0.50 1.00 1.00 1

0.75 1.00 1.00 1

1.00 1.00 1.00 1

0.00 0.25 0.00 0

0.00 0.50 0.00 0

0.00 0.75 0.00 0

0.00 1.00 0.00 0

0.25 0.00 0.25 0

0.25 0.50 0.25 0

0.25 0.75 0.25 0

0.25 1.00 0.25 0

120

Throughput

Acceptability

Delay

Acceptability

Error-Rate

Acceptability

Decision
[1=accept, 0=deny]

0.50 0.00 0.50 0

0.50 0.25 0.50 0

0.50 0.75 0.50 0

0.50 1.00 0.50 0

0.75 0.00 0.75 0

0.75 0.25 0.75 0

0.75 0.50 0.75 1

0.75 1.00 0.75 1

1.00 0.00 1.00 0

1.00 0.25 1.00 0

1.00 0.5 1.00 1

1.00 0.75 1.00 1

0.00 0.00 0.25 0

0.00 0.00 0.50 0

0.00 0.00 0.75 0

0.00 0.00 1.00 0

0.25 0.25 0.00 0

0.25 0.25 0.50 0

0.25 0.25 0.75 0

0.25 0.25 1.00 0

0.50 0.50 0.00 0

0.50 0.50 0.25 0

0.50 0.50 0.75 0

0.50 0.50 1.00 1

0.75 0.75 0.00 0

0.75 0.75 0.25 0

0.75 0.75 0.50 1

0.75 0.75 1.00 1

1.00 1.00 0.00 0

1.00 1.00 0.25 0

1.00 1.00 0.50 1

1.00 1.00 0.75 1

The training set was developed using common sense. The strategy was to accept flows

when the inputs were high and to reject flows that had low inputs. Preference was

given to throughput as the most important input. A flow needs to have high

throughput acceptability but only medium delay and error rate acceptability to get

accepted into the network.

121

The set of weights and biases obtained after training the network were stored in a text

file called “nn-weights.dat” for usage by the MQOSD during runtime.

The following file was used for creating and training the neural network in MATLAB

version 4.1:

% INITIALIZE

inputrange = [0 1; 0 1; 0 1];

[w1, b1, w2, b2] = initff (inputrange, 3, 'logsig', 1,

'logsig');

% TRAIN

trainingset = [

0.00 0.00 0.00 0;

0.25 0.00 0.00 0;

0.50 0.00 0.00 0;

0.75 0.00 0.00 0;

1.00 0.00 0.00 0;

0.00 0.25 0.25 0;

0.25 0.25 0.25 0;

0.50 0.25 0.25 0;

0.75 0.25 0.25 0;

1.00 0.25 0.25 0;

0.00 0.50 0.50 0;

0.25 0.50 0.50 0;

0.50 0.50 0.50 0;

0.75 0.50 0.50 0;

1.00 0.50 0.50 1;

0.00 0.75 0.75 0;

0.25 0.75 0.75 0;

0.50 0.75 0.75 0;

0.75 0.75 0.75 1;

1.00 0.75 0.75 1;

0.00 1.00 1.00 0;

0.25 1.00 1.00 0;

0.50 1.00 1.00 1;

0.75 1.00 1.00 1;

1.00 1.00 1.00 1;

0.00 0.25 0.00 0;

0.00 0.50 0.00 0;

0.00 0.75 0.00 0;

0.00 1.00 0.00 0;

0.25 0.00 0.25 0;

0.25 0.50 0.25 0;

0.25 0.75 0.25 0;

0.25 1.00 0.25 0;

0.50 0.00 0.50 0;

0.50 0.25 0.50 0;

0.50 0.75 0.50 0;

0.50 1.00 0.50 0;

0.75 0.00 0.75 0;

122

0.75 0.25 0.75 0;

0.75 0.50 0.75 1;

0.75 1.00 0.75 1;

1.00 0.00 1.00 0;

1.00 0.25 1.00 0;

1.00 0.5 1.00 1;

1.00 0.75 1.00 1;

0.00 0.00 0.25 0;

0.00 0.00 0.50 0;

0.00 0.00 0.75 0;

0.00 0.00 1.00 0;

0.25 0.25 0.00 0;

0.25 0.25 0.50 0;

0.25 0.25 0.75 0;

0.25 0.25 1.00 0;

0.50 0.50 0.00 0;

0.50 0.50 0.25 0;

0.50 0.50 0.75 0;

0.50 0.50 1.00 1;

0.75 0.75 0.00 0;

0.75 0.75 0.25 0;

0.75 0.75 0.50 1;

0.75 0.75 1.00 1;

1.00 1.00 0.00 0;

1.00 1.00 0.25 0;

1.00 1.00 0.50 1;

1.00 1.00 0.75 1;

]';

p=trainingset(1:3,1:size(trainingset,2));

t=trainingset(4,1:size(trainingset,2));

tp=[100 3000 nan nan nan nan nan nan];

[w1, b1, w2, b2, te, tr] = trainbpx (w1, b1, 'logsig', w2, b2,

'logsig', p, t, tp);

% SIMULATE

i=[1;1;1];

while i(1)~=0 | i(2)~=0 | i(3)~=0,

 i = input('input? ')';

x1 = (w1*i);

x2 = x1+b1*ones(1,size(x1,2));

x3 = 1 ./ (1+exp(-x2));

x4 = (w2*x3);

x5 = x4+b2*ones(1,size(x4,2));

x6 = 1 ./ (1+exp(-x5));

r = x6

 simuff (i, w1, b1, 'logsig', w2, b2, 'logsig')

end

123

Appendix B: Object-Oriented Design Class Details

QoS Structures

#ifndef QOS_H

#define QOS_H

#include <iostream.h>

struct NetworkQoS {

 int throughput;

 int delay;

 int jitter;

 int errorrate;

 NetworkQoS &operator =(const NetworkQoS &src);

 int operator <(const NetworkQoS &rhs);

 friend ostream &operator <<(ostream &ostream, NetworkQoS

&qos);

};

struct AudioQoS {

 int freq;

 int channels;

 int samplesize;

};

struct VideoQoS {

 struct {

 int x, y;

 } resolution;

 int colors;

 int frames;

};

struct UserQoS {

 enum {

 AUDIO, VIDEO

 } datatype;

 union {

 struct AudioQoS audio;

 struct VideoQoS video;

 } data;

 int compression;

 enum {

 INTERACTIVE, NONINTERACTIVE

 } interactivity;

 int tolerance;

 UserQoS &operator =(const UserQoS &src);

 friend ostream &operator <<(ostream &ostream, UserQoS &qos);

};

#endif

124

Buffer Class

#ifndef BUFFER_H

#define BUFFER_H

// if not in Linux, inline may not work (undefine it), and NULL

might

// not be defined (include stdio.h to define it)

#ifndef LINUX

#define inline

#include <stdio.h>

#endif

#include <iostream.h>

class Buffer

{

 protected:

 struct {

 int size; // allocated size for

buffer

 int extra; // extra bytes allocated

at beginning

 // of buffer for

application use

 int localbuffer; // buffer allocated here

or by caller

 char *buffer; // buffer pointer

 int inptr, outptr; // indeces to current

positions in buffer

 int opaquedatasize; // size of opaque data to

be sent

 // opaque data (void*)

when being

 // marshalled take the

first int

 // before them as the

size. that

 // int gets sent before

the data.

 } data;

 char *bufferdata;

 public:

 Buffer (unsigned short bufsize=8196, unsigned short

extrasize=0,

 char *buf=NULL);

 Buffer (Buffer &rhs);

 virtual ~Buffer ();

 inline void clear ();

 inline void rewind ();

 inline int maxsize ();

 inline int datasize ();

 inline int extrasize ();

 inline char *databuffer ();

 inline char *wholebuffer ();

 void setdatasize (int datasize);

 void setbuffer (char *buffer);

 void extra (void *extrabuf, int bufsize);

 virtual Buffer &operator =(Buffer &rhs);

125

 virtual Buffer &operator <<(Buffer &rhs);

 virtual Buffer &operator <<(int n);

 virtual Buffer &operator <<(short n);

 virtual Buffer &operator <<(long n);

 virtual Buffer &operator <<(unsigned n);

 virtual Buffer &operator <<(unsigned short n);

 virtual Buffer &operator <<(unsigned long n);

 virtual Buffer &operator <<(char c);

 virtual Buffer &operator <<(char *s);

 virtual Buffer &operator <<(void *v);

 virtual Buffer &operator >>(int &n);

 virtual Buffer &operator >>(short &n);

 virtual Buffer &operator >>(long &n);

 virtual Buffer &operator >>(unsigned &n);

 virtual Buffer &operator >>(unsigned short &n);

 virtual Buffer &operator >>(unsigned long &n);

 virtual Buffer &operator >>(char &c);

 virtual Buffer &operator >>(char *s);

 virtual Buffer &operator >>(void *v);

};

#endif

126

Comm Class

#ifndef COMM_H

#define COMM_H

#include "buffer.h"

class Comm

{

 public:

 virtual int Send (Buffer &buffer)=0;

 virtual int Receive (Buffer &buffer)=0;

 virtual int NonBlockingReceive (Buffer &buffer)=0;

};

#endif

127

ControlPacket Class

#ifndef CONTROLPACKET_H

#define CONTROLPACKET_H

#include "buffer.h"

class ControlPacket : public Buffer

{

 public:

 enum PacketType {

 KILL,

 // MQOSD packets

 CREATE, CREATEREPLY, TERMINATE, SELECTQOS,

SELECTQOSREPLY, NOTIFY,

 PINGDELAY, STARTPINGTHROUGHPUT, PINGTHROUGHPUT,

 PINGTHROUGHPUTREPLY,

 // MRTSD packets

 SEND, QUERY, QUERYREPLY, REPORT

 };

 public:

 ControlPacket (unsigned short bufsize, unsigned short

extrasize, char *buf);

 virtual PacketType Type ();

 virtual void Type (PacketType type);

};

#endif

128

CountTable Class

#ifndef COUNTTABLE_H

#define COUNTTABLE_H

#include "flowtable.h"

class CountTable : public FlowTable {

 protected:

 struct Entry {

 int count;

 long packetmax;

 long packetmin;

 long packetavg;

 };

 protected:

 virtual void DumpEntry (int index);

 virtual void SetEntry (int index, void *data);

 virtual void DeleteEntry (int index);

 public:

 CountTable (int size);

 void Inc (flow_t flowid, long packetsize);

 void Reset (flow_t flowid);

 int Count (flow_t flowid);

 long AveragePacketSize (flow_t flowid);

};

#endif

129

CreatePacket Class

#ifndef CREATEPACKET_H

#define CREATEPACKET_H

#include "flow.h"

#include "qos.h"

#include "controlpacket.h"

#include <unistd.h>

#include "pid.h"

class CreatePacket : public ControlPacket

{

 protected:

 struct PacketCreate {

 PacketType type;

 pid_t pid;

 pid_t notifypid;

 UserQoS qos;

 char address[30];

 unsigned short port;

 };

 PacketCreate *packet;

 public:

 CreatePacket (unsigned short extrasize=0, char *buf=NULL);

 pid_t pid ();

 void notifypid (pid_t notifypid);

 pid_t notifypid ();

 void pid (pid_t pid);

 void qos (UserQoS *qos);

 void qos (UserQoS &qos);

 char *address ();

 void address (char *address);

 unsigned short port ();

 void port (unsigned short port);

};

#endif

130

CreateReplyPacket Class

#ifndef CREATEREPLYPACKET_H

#define CREATEREPLYPACKET_H

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

class CreateReplyPacket : public ControlPacket

{

 protected:

 struct PacketCreateReply {

 PacketType type;

 flow_t flowid;

// int qos;

 };

 PacketCreateReply *packet;

 public:

 CreateReplyPacket (unsigned short extrasize=0, char

*buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

// int qos ();

// void qos (int qos);

};

#endif

131

Flow Class

#ifndef FLOW_H

#define FLOW_H

#include "ipc.h"

// if not in Linux, inline may not work (undefine it)

#ifndef LINUX

#define inline

#endif

#define FLOWERROR (0)

typedef unsigned int flow_t;

class Flow

{

 protected:

 IPC *mqosd; // mqosd ipc channel

 IPC *mrtsd; // mrtsd ipc channel

 flow_t flowid;

 public:

 Flow ();

 virtual ~Flow ();

 inline flow_t ID();

};

#endif

132

FlowTable Class

#ifndef FLOWTABLE_H

#define FLOWTABLE_H

#define FLOWTABLE_EMPTY (0)

// if not in Linux, inline may not work (undefine it)

#ifndef LINUX

#define inline

#endif

#include "flow.h"

class FlowTable {

 protected:

 struct Entry {

 flow_t flowid;

 void *data;

 } *table;

 int tablesize;

 protected:

 inline int Empty (int index);

 virtual int Find (flow_t flowid);

 virtual int AddEntry (flow_t flowid, void *data);

 // entry functions

 virtual void DeleteEntry (int index)=0;

 virtual void SetEntry (int index, void *data)=0;

 virtual void DumpEntry (int index)=0;

 public:

 FlowTable (int size);

 virtual ~FlowTable ();

 virtual int Delete (flow_t flowid);

 virtual void Dump ();

};

#endif

133

IPC Class

#ifndef IPC_H

#define IPC_H

// if not in Linux, inline may not work (undefine it)

#ifndef LINUX

#define inline

#endif

#include "comm.h"

#include "buffer.h"

class IPC : public Comm

{

 public:

 enum JoinType {

 CREATE, ATTACH

 };

 protected:

 JoinType join;

 int key;

 int msqid;

 long sendmsgtype; // type of messages to send using

msgsnd()

 long receivemsgtype; // type of messages to recv using

msgrcv()

 public:

 IPC (int remotekey, JoinType jointype=ATTACH);

 IPC (IPC &rhs);

 virtual ~IPC ();

 inline int MsgQueueID ();

 inline void SendType (long msgtype);

 inline void ReceiveType (long msgtype);

 virtual int Send (Buffer &buffer);

 virtual int Receive (Buffer &buffer);

 virtual int NonBlockingReceive (Buffer &buffer);

};

#endif

134

KillPacket Class

#ifndef KILLPACKET_H

#define KILLPACKET_H

#include "controlpacket.h"

class KillPacket : public ControlPacket

{

 protected:

 struct PacketKill {

 PacketType type;

 };

 PacketKill *packet;

 public:

 KillPacket (unsigned short extrasize=0, char *buf=NULL);

};

#endif

135

MQOSD Class

#ifndef MQOSD_H

#define MQOSD_H

#define MQOSD_IPCPORT (7776)

#define MQOSD_UDPPORT (7776)

#define MQOSD_IPCTOMQOSD (1)

#define MQOSD_IPCTOMRTSD (2)

#include "qos.h"

#include "qostable.h"

#include "pid.h"

#include <unistd.h>

//ASSUME: max concurrent flows = 50

#define MQOSD_MAXCONCURRENTFLOWS (50)

//ASSUME: max concurrent pinging flows = 50

#define MQOSD_MAXCONCURRENTPINGS (50)

//ASSUME: max ping request buffer size = 8K

#define MQOSD_MAXPINGBUFFER (8*1024)

//ASSUME: percentage of ping packets expected = 80%

#define MQOSD_PERCENTPINGPACKETS (80)

//ASSUME: max receive buffer size = 8K

#define MQOSD_MAXRECEIVEBUFFER (8*1024)

//ASSUME: ratio of old qos retained = 40% old, 60% new

#define MQOSD_OLDDATARATIO (40)

class MQoSDaemon

{

 protected:

 IPC *ipc;

 QoSTable *qostable;

 protected:

 // functions available to callers

 void Create (pid_t pid, pid_t notifypid, UserQoS &qos,

 char *address, unsigned short port);

 void Terminate (flow_t flowid);

 void SelectQoS (flow_t flowid, UserQoS &qos);

 void Query (flow_t flowid, long requestor);

 void Report (flow_t flowid, NetworkQoS &qos);

 // internal functions

 virtual int AdmitQoS (NetworkQoS &qos);

 virtual void MapQoS (UserQoS &userqos, NetworkQoS *netqos);

 public:

 MQoSDaemon (int maxflows);

 virtual ~MQoSDaemon ();

 static void *HandlePings (void *arg);

 static void *HandleRequests (void *arg);

};

#endif

136

MRTSD Class

#ifndef MRTSD_H

#define MRTSD_H

#include <semaphore.h>

#include <pthread.h>

#include "packettable.h"

#include "counttable.h"

#include "ipc.h"

#define MRTSD_IPCPORT (7777)

#define MRTSD_UDPPORT (7777)

#define MRTSD_IPCTOMRTSD (1)

//ASSUME: max mrtsd received packet size = 8K

#define MRTSD_MAXPACKETSIZE (8*1024)

//ASSUME: max packets awaiting send in mrtsd buffer = 500

#define MRTSD_MAXBUFFERPACKETS (100)

//ASSUME: max concurrent flows = 50

#define MRTSD_MAXCONCURRENTFLOWS (50)

#define TIMEDIFF(a,b) ((a.tv_sec-b.tv_sec)*1000000+(a.tv_usec-

b.tv_usec))

//TODO: make num of ping packets a user parameter

#define PING_NUMPACKETS (10)

//TODO: use alpha from user qos

#define PING_ALPHA (50)

class MRTSDaemon {

 protected:

 sem_t sema; // semaphore to synch receiver and scheduler

 // receiver posts when new packet is put in

buffer

 // scheduler waits until receiver posts a packet

 pthread_mutex_t mutex;

 PacketTable *packettable;

 CountTable *counttable;

 IPC *ipc;

 int currentping;

 protected:

 virtual void Ping (flow_t flowid, char *address);

 public:

 MRTSDaemon (int maxtables, int maxflows);

 virtual ~MRTSDaemon ();

 static void *Receiver (void *arg);

 static void *Scheduler (void *arg);

};

#endif

137

NotifyPacket Class

#ifndef NOTIFYPACKET_H

#define NOTIFYPACKET_H

#include "qos.h"

#include "controlpacket.h"

class NotifyPacket : public ControlPacket

{

 protected:

 struct PacketNotify {

 PacketType type;

 NetworkQoS actualqos;

 NetworkQoS desiredqos;

 };

 PacketNotify *packet;

 public:

 NotifyPacket (unsigned short extrasize=0, char *buf=NULL);

 void actualqos (NetworkQoS *qos);

 void actualqos (NetworkQoS &qos);

 void desiredqos (NetworkQoS *qos);

 void desiredqos (NetworkQoS &qos);

};

#endif

138

PacketTable Class

#ifndef PACKETTABLE_H

#define PACKETTABLE_H

#include "flowtable.h"

#include "qos.h"

#include <unistd.h>

#include <sys/time.h>

#include "pid.h"

class PacketTable : public FlowTable {

 protected:

 int numentries,maxnumentries,requests; //TODO: remove

these two vars

 struct Entry {

 pid_t pid;

 char address[30];

 unsigned short port;

 struct timeval deadline;

 int shmkey;

 int datasize;

 };

 protected:

 virtual void DumpEntry (int index);

 virtual void SetEntry (int index, void *data);

 virtual void DeleteEntry (int index);

 public:

 PacketTable (int size);

 virtual ~PacketTable ();

 flow_t Add (flow_t flowid, pid_t pid, char *address,

unsigned short port,

 long sec, long usec, int shmkey, int datasize);

 int GetData (flow_t flowid, pid_t *pid, char *address,

unsigned short *port,

 long *sec, long *usec, int *shmkey, int *datasize);

 flow_t GetEarliestDeadline ();

};

#endif

139

PingDelayPacket Class

#ifndef PINGDELAYPACKET_H

#define PINGDELAYPACKET_H

#include "controlpacket.h"

class PingDelayPacket : public ControlPacket

{

 protected:

 struct PacketPingDelay {

 PacketType type;

 };

 PacketPingDelay *packet;

 public:

 PingDelayPacket (unsigned short extrasize=0, char

*buf=NULL);

};

#endif

140

PingThroughputPacket Class

#ifndef PINGTHROUGHPUTPACKET_H

#define PINGTHROUGHPUTPACKET_H

#include "flow.h"

#include "controlpacket.h"

#define PINGTHROUGHPUT_PACKETSIZE (5*1024)

class PingThroughputPacket : public ControlPacket

{

 protected:

 struct PacketPingThroughput {

 PacketType type;

 flow_t flowid;

 char data[PINGTHROUGHPUT_PACKETSIZE];

 };

 PacketPingThroughput *packet;

 public:

 PingThroughputPacket (unsigned short extrasize=0, char

*buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

};

#endif

141

PingThroughputReplyPacket Class

#ifndef PINGTHROUGHPUTREPLYPACKET_H

#define PINGTHROUGHPUTREPLYPACKET_H

#include "controlpacket.h"

class PingThroughputReplyPacket : public ControlPacket

{

 protected:

 struct PacketPingThroughputReply {

 PacketType type;

 long timetaken;

 };

 PacketPingThroughputReply *packet;

 public:

 PingThroughputReplyPacket (unsigned short extrasize=0, char

*buf=NULL);

 void timetaken (long timetaken);

 long timetaken (void);

};

#endif

142

QoSAdmissionTable Class

#ifndef QOSADMISSIONTABLE_H

#define QOSADMISSIONTABLE_H

#include "qos.h"

class QoSAdmissionTable

{

 protected:

 enum FuzzyDigit { LOW, MIDLOW, MID, MIDHIGH, HIGH, NONE };

 struct FuzzyValue {

 FuzzyDigit fuzzy;

 int weight;

 FuzzyValue &operator =(FuzzyValue &rhs) {

 fuzzy = rhs.fuzzy;

 weight = rhs.weight;

 return *this;

 }

 };

 NetworkQoS networkstatus;

 NetworkQoS userrequest;

 FuzzyDigit decisiontable[5][5] =

 { { HIGH, HIGH, HIGH, HIGH, HIGH },

 { HIGH, HIGH, MIDHIGH, MID, MID },

 { HIGH, MIDHIGH, MID, MID, MIDLOW },

 { MIDHIGH, MID, MID, MIDLOW, LOW },

 { MID, MIDLOW, MIDLOW, LOW, LOW } };

 protected:

 void Fuzzify (long value, FuzzyValue *low, FuzzyValue

*high);

 int FuzzyDecide (FuzzyValue &requestlow, FuzzyValue

&requesthigh,

 FuzzyValue &networklow, FuzzyValue

&networkhigh);

 int NeuralDecide (int throughput, int delay, int errorrate);

 void FuzzyAnd (FuzzyValue &value1, FuzzyValue &value2,

FuzzyValue *result);

 public:

 void InputNetworkStatus (NetworkQoS &status);

 void InputUserRequest (NetworkQoS &request);

 int Decision ();

};

#endif

143

QoSTable Class

#ifndef QOSTABLE_H

#define QOSTABLE_H

#include "flowtable.h"

#include "qos.h"

#include <unistd.h>

#include "pid.h"

class QoSTable : public FlowTable {

 protected:

 flow_t nextflowid;

 struct Entry {

 pid_t pid;

 pid_t notifypid;

 NetworkQoS desiredqos;

 NetworkQoS actualqos;

 char address[30];

 unsigned short port;

 };

 protected:

 virtual void DumpEntry (int index);

 virtual void SetEntry (int index, void *data);

 virtual void DeleteEntry (int index);

 public:

 QoSTable (int size);

 flow_t Add (pid_t pid, pid_t notifypid, char *address,

unsigned short port, NetworkQoS &qos);

 int SetDesiredQoS (flow_t flowid, NetworkQoS &qos);

 int SetActualQoS (flow_t flowid, NetworkQoS &qos);

 int SetDestination (flow_t flowid, char *address, unsigned

short port);

 int GetDesiredQoS (flow_t flowid, NetworkQoS *qos);

 int GetActualQoS (flow_t flowid, NetworkQoS *qos);

 int GetData (flow_t flowid, pid_t *pid, pid_t *notifypid,

 NetworkQoS *desiredqos, NetworkQoS *actualqos,

 char *address, unsigned short *port);

 void GetQoSTotal (NetworkQoS *desiredqos, NetworkQoS

*actualqos);

 void GetQoSMax (NetworkQoS *desiredqos, NetworkQoS

*actualqos);

 //TODO: void GetQoSMin (NetworkQoS *desiredqos, NetworkQoS

*actualqos);

 void GetQoSAverage (NetworkQoS *desiredqos, NetworkQoS

*actualqos);

};

#endif

144

QueryPacket Class

#ifndef QUERYPACKET_H

#define QUERYPACKET_H

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

class QueryPacket : public ControlPacket

{

 protected:

 struct PacketQuery {

 PacketType type;

 flow_t flowid;

 long requestor;

 };

 PacketQuery *packet;

 public:

 QueryPacket (unsigned short extrasize=0, char *buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

 long requestor ();

 void requestor (long requestor);

};

#endif

145

QueryReplyPacket Class

#ifndef QUERYREPLYPACKET_H

#define QUERYREPLYPACKET_H

#include "qos.h"

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

#include "pid.h"

class QueryReplyPacket : public ControlPacket

{

 protected:

 struct PacketQueryReply {

 PacketType type;

 pid_t pid;

 NetworkQoS actualqos;

 NetworkQoS desiredqos;

 char address[30];

 unsigned short port;

 };

 PacketQueryReply *packet;

 public:

 QueryReplyPacket (unsigned short extrasize=0, char

*buf=NULL);

 pid_t pid ();

 void pid (pid_t pid);

 void actualqos (NetworkQoS *qos);

 void actualqos (NetworkQoS &qos);

 void desiredqos (NetworkQoS *qos);

 void desiredqos (NetworkQoS &qos);

 char *address ();

 void address (char *address);

 unsigned short port ();

 void port (unsigned short port);

};

#endif

146

ReceiverFlow Class

#ifndef RECEIVERFLOW_H

#define RECEIVERFLOW_H

#include "flow.h"

#include "buffer.h"

class ReceiverFlow : public Flow

{

 protected:

 public:

 protected:

 public:

 int Create (Addr &addr, QoS &qos);

 int Terminate ();

 int SelectQoS (QoS &qos);

 int Receive (Buffer &buffer);

};

#endif

147

ReportPacket Class

#ifndef REPORTPACKET_H

#define REPORTPACKET_H

#include "qos.h"

#include "flow.h"

#include "controlpacket.h"

class ReportPacket : public ControlPacket

{

 protected:

 struct PacketReport {

 PacketType type;

 flow_t flowid;

 NetworkQoS qos;

 };

 PacketReport *packet;

 public:

 ReportPacket (unsigned short extrasize=0, char *buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

 void qos (NetworkQoS *qos);

 void qos (NetworkQoS &qos);

};

#endif

148

SelectQoSPacket Class

#ifndef SELECTQOSPACKET_H

#define SELECTQOSPACKET_H

#include "qos.h"

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

class SelectQoSPacket : public ControlPacket

{

 protected:

 struct PacketSelectQoS {

 PacketType type;

 flow_t flowid;

 UserQoS qos;

 };

 PacketSelectQoS *packet;

 public:

 SelectQoSPacket (unsigned short extrasize=0, char

*buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

 void qos (UserQoS *qos);

 void qos (UserQoS &qos);

};

#endif

149

SelectQoSReplyPacket Class

#ifndef SELECTQOSREPLYPACKET_H

#define SELECTQOSREPLYPACKET_H

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

class SelectQoSReplyPacket : public ControlPacket

{

 protected:

 struct PacketSelectQoSReply {

 PacketType type;

 flow_t flowid;

// int qos;

 };

 PacketSelectQoSReply *packet;

 public:

 SelectQoSReplyPacket (unsigned short extrasize=0, char

*buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

// int qos ();

// void qos (int qos);

};

#endif

150

SenderFlow Class

#ifndef SENDERFLOW_H

#define SENDERFLOW_H

#include "qos.h"

#include "flow.h"

#include "shmbuffer.h"

#include <pthread.h>

#include <semaphore.h>

class SenderFlow : public Flow

{

 protected:

 pid_t callerpid;

 pid_t threadpid;

 sem_t threadpidsem;

 pthread_t notificationhandler;

 virtual void QoSNotification (NetworkQoS &desiredqos,

NetworkQoS &actualqos)=0;

 static void *NotificationHandler (void *arg);

 public:

 SenderFlow ();

 virtual ~SenderFlow ();

 virtual flow_t Create (char *addr, unsigned short port,

UserQoS &qos);

 virtual void Terminate ();

 virtual int SelectQoS (UserQoS &qos);

 virtual int Send (SharedMemBuffer &buffer);

 virtual int Assess ();

};

#endif

151

SendPacket Class

#ifndef SENDPACKET_H

#define SENDPACKET_H

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

class SendPacket : public ControlPacket

{

 protected:

 struct PacketSend {

 PacketType type;

 flow_t flowid;

 int shmkey;

 int datasize;

 };

 PacketSend *packet;

 public:

 SendPacket (unsigned short extrasize=0, char *buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

 int shmkey ();

 void shmkey (int shmkey);

 int datasize ();

 void datasize (int datasize);

};

#endif

152

SharedMemBuffer Class

#ifndef SHMBUFFER_H

#define SHMBUFFER_H

#include "buffer.h"

#include <sys/ipc.h>

#include <sys/shm.h>

#define SHMBUFFER_SHMSIZE (8196)

class SharedMemBuffer : public Buffer

{

 protected:

 int creator;

 int shmid;

 key_t key;

 public:

 SharedMemBuffer (key_t keytouse,

 int createnew=0, int

buffersize=SHMBUFFER_SHMSIZE);

 //SharedMemBuffer (SharedMemBuffer &rhs);

 ~SharedMemBuffer ();

 key_t Key ();

 //virtual SharedMemBuffer &operator =(SharedMemBuffer &rhs);

};

#endif

153

StartPingThroughputPacket Class

#ifndef STARTPINGTHROUGHPUTPACKET_H

#define STARTPINGTHROUGHPUTPACKET_H

#include "flow.h"

#include "controlpacket.h"

class StartPingThroughputPacket : public ControlPacket

{

 protected:

 struct PacketStartPingThroughput {

 PacketType type;

 flow_t flowid;

 };

 PacketStartPingThroughput *packet;

 public:

 StartPingThroughputPacket (unsigned short extrasize=0, char

*buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

};

#endif

154

TerminatePacket Class

#ifndef TERMINATEPACKET_H

#define TERMINATEPACKET_H

#include "flow.h"

#include "controlpacket.h"

#include <unistd.h>

class TerminatePacket : public ControlPacket

{

 protected:

 struct PacketTerminate {

 PacketType type;

 flow_t flowid;

 };

 PacketTerminate *packet;

 public:

 TerminatePacket (unsigned short extrasize=0, char

*buf=NULL);

 flow_t flowid ();

 void flowid (flow_t flowid);

};

#endif

155

UDP Class

#ifndef UDP_H

#define UDP_H

#include "comm.h"

#include "buffer.h"

#include <netinet/in.h>

class UDP : public Comm

{

 protected:

 int sockfd;

 unsigned short port;

 struct sockaddr_in remoteaddr;

 struct sockaddr_in lastrecvaddr; // last address from

which data was received

 public:

 struct Addr {

 char host[30];

 unsigned short port;

 };

 public:

 UDP (unsigned short localport);

 UDP (Addr &raddr, unsigned short localport=INADDR_ANY);

 UDP (char *host, unsigned short port, unsigned short

localport=INADDR_ANY);

 UDP (UDP &rhs);

 virtual ~UDP ();

 virtual int Send (Buffer &buffer);

 virtual int Send (Buffer &buffer, struct sockaddr_in *dest);

 virtual int Reply (Buffer &buffer);

 virtual int Receive (Buffer &buffer);

 virtual int NonBlockingReceive (Buffer &buffer);

};

#endif

	Quality of service management for non-guaranteed networks
	Recommended Citation
	APA Citation
	MLA Citation

	Thesis Outline

