654 research outputs found

    An architecture for IEEE 802.16 MAC scheduler design

    Get PDF
    Copyright © 2007 IEEEThe scheduling algorithm for IEEE 802.16 broadband wireless access system has been left open in the standard. In this paper, we consider three criteria that we have identified as important criteria for an 802.16 scheduler: Service Type differentiation, dynamic sub-frame partition and Subscriber Station differentiation. We investigate the scheduler design from a general perspective, based on these three criteria

    A Fair and Efficient Packet Scheduling Scheme for IEEE 802.16 Broadband Wireless Access Systems

    Full text link
    This paper proposes a fair and efficient QoS scheduling scheme for IEEE 802.16 BWA systems that satisfies both throughput and delay guarantee to various real and non-real time applications. The proposed QoS scheduling scheme is compared with an existing QoS scheduling scheme proposed in literature in recent past. Simulation results show that the proposed scheduling scheme can provide a tight QoS guarantee in terms of delay, delay violation rate and throughput for all types of traffic as defined in the WiMAX standard, thereby maintaining the fairness and helps to eliminate starvation of lower priority class services. Bandwidth utilization of the system and fairness index of the resources are also encountered to validate the QoS provided by our proposed scheduling scheme

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Cross-layer RaCM design for vertically integrated wireless networks

    Get PDF
    Includes bibliographical references (p. 70-74).Wireless local and metropolitan area network (WLAN/WMAN) technologies, more specifically IEEE 802.11 (or wireless fidelity, WiFi) and IEEE 802.16 (or wireless interoperability for microwave access, WiMAX), are well-suited to enterprise networking since wireless offers the advantages of rapid deployment in places that are difficult to wire. However, these networking standards are relatively young with respect to their traditional mature high-speed low-latency fixed-line networking counterparts. It is more challenging for the network provider to supply the necessary quality of service (QoS) to support the variety of existing multimedia services over wireless technology. Wireless communication is also unreliable in nature, making the provisioning of agreed QoS even more challenging. Considering the advantages and disadvantages, wireless networks prove well-suited to connecting rural areas to the Internet or as a networking solution for areas that are difficult to wire. The focus of this study specifically pertains to IEEE 802.16 and the part it plays in an IEEE vertically integrated wireless Internet (WIN): IEEE 802.16 is a wireless broadband backhaul technology, capable of connecting local area networks (LANs), wireless or fixed-line, to the Internet via a high-speed fixed-line link

    A Scalable QoS Scheduling Architecture For WiMAX Multi-Hop Relay Networks.

    Get PDF
    WiMAX Mobile Multi-hop Relay (MMR) network has been introduced to increase the capacity and extend the coverage area of a single WiMAX Base Station (BS) by the use of a Relay Station (RS)

    Connection admission control and packet scheduling for IEEE 802.16 networks

    Get PDF
    Includes bibliographical references.The IEEE 802.16 standard introduced as one of the Wireless Metropolitan Area Networks (WMAN) for Broadband Wireless Access (BWA) which is known as Worldwide Interoperability for Microwave Access (WiMAX), provides a solution of broadband connectivity to areas where wired infrastructure is economically and technically infeasible. Apart from the advantage of having high speeds and low costs, IEEE 802.16 has the capability to simultaneously support various service types with required QoS characteristics. ... While IEEE 802.16 standard defines medium access control (MAC) and physical (PHY) layers specification, admission control and packet scheduling mechanisms which are important elements of QoS provisioning are left to vendors to design and implement for service differentiation and QoS support
    corecore