334 research outputs found

    Lambda theories of effective lambda models

    Get PDF
    A longstanding open problem is whether there exists a non-syntactical model of untyped lambda-calculus whose theory is exactly the least equational lambda-theory (=Lb). In this paper we make use of the Visser topology for investigating the more general question of whether the equational (resp. order) theory of a non syntactical model M, say Eq(M) (resp. Ord(M)) can be recursively enumerable (= r.e. below). We conjecture that no such model exists and prove the conjecture for several large classes of models. In particular we introduce a notion of effective lambda-model and show that for all effective models M, Eq(M) is different from Lb, and Ord(M) is not r.e. If moreover M belongs to the stable or strongly stable semantics, then Eq(M) is not r.e. Concerning Scott's continuous semantics we explore the class of (all) graph models, show that it satisfies Lowenheim Skolem theorem, that there exists a minimum order/equational graph theory, and that both are the order/equ theories of an effective graph model. We deduce that no graph model can have an r.e. order theory, and also show that for some large subclasses, the same is true for Eq(M).Comment: 15 pages, accepted CSL'0

    Effective lambda-models vs recursively enumerable lambda-theories

    Get PDF
    A longstanding open problem is whether there exists a non syntactical model of the untyped lambda-calculus whose theory is exactly the least lambda-theory (l-beta). In this paper we investigate the more general question of whether the equational/order theory of a model of the (untyped) lambda-calculus can be recursively enumerable (r.e. for brevity). We introduce a notion of effective model of lambda-calculus calculus, which covers in particular all the models individually introduced in the literature. We prove that the order theory of an effective model is never r.e.; from this it follows that its equational theory cannot be l-beta or l-beta-eta. We then show that no effective model living in the stable or strongly stable semantics has an r.e. equational theory. Concerning Scott's semantics, we investigate the class of graph models and prove that no order theory of a graph model can be r.e., and that there exists an effective graph model whose equational/order theory is minimum among all theories of graph models. Finally, we show that the class of graph models enjoys a kind of downwards Lowenheim-Skolem theorem.Comment: 34

    Graph Lambda Theories

    Get PDF
    to appear in MSCSInternational audienceA longstanding open problem in lambda calculus is whether there exist continuous models of the untyped lambda calculus whose theory is exactly lambda-beta or the the least sensible lambda-theory H (generated by equating all the unsolvable terms). A related question, raised recently by C. Berline, is whether, given a class of lambda models, there are a minimal lambda-theory and a minimal sensible lambda-theory represented by it. In this paper, we give a positive answer to this question for the class of graph models à la Plotkin-Scott-Engeler. In particular, we build two graph models whose theories are respectively the set of equations satisfied in any graph model and in any sensible graph model. We conjecture that the least sensible graph theory, where ''graph theory" means ''lambda-theory of a graph model", is equal to H, while in one of the main results of the paper we show the non-existence of a graph model whose equational theory is exactly the beta-theory. Another related question is whether, given a class of lambda models, there is a maximal sensible lambdatheory represented by it. In the main result of the paper we characterize the greatest sensible graph theory as the lambda-theory B generated by equating lambda-terms with the same Boehm tree. This result is a consequence of the main technical theorem of the paper: all the equations between solvable lambda-terms, which have different Boehm trees, fail in every sensible graph model. A further result of the paper is the existence of a continuum of different sensible graph theories strictly included in B

    Ordered models of the lambda calculus

    Get PDF
    Answering a question by Honsell and Plotkin, we show that there are two equations between lambda terms, the so-called subtractive equations, consistent with lambda calculus but not simultaneously satisfied in any partially ordered model with bottom element. We also relate the subtractive equations to the open problem of the order-incompleteness of lambda calculus, by studying the connection between the notion of absolute unorderability in a specific point and a weaker notion of subtractivity (namely n-subtractivity) for partially ordered algebras. Finally we study the relation between n-subtractivity and relativized separation conditions in topological algebras, obtaining an incompleteness theorem for a general topological semantics of lambda calculus

    Ordered Models of the Lambda Calculus

    Full text link

    Representation and duality of the untyped lambda-calculus in nominal lattice and topological semantics, with a proof of topological completeness

    Get PDF
    We give a semantics for the lambda-calculus based on a topological duality theorem in nominal sets. A novel interpretation of lambda is given in terms of adjoints, and lambda-terms are interpreted absolutely as sets (no valuation is necessary)
    corecore