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Abstract

The lazy evaluation of the λ-calculus, both in call-by-name and in call-by-value setting, is studied.
Starting from a logical descriptions of two topological models of such calculi, a pre-order relation
on terms, stratified by types, is defined, which grasps exactly the two operational semantics we
want to model. Such a relation can be used for building two fully abstract models.
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1 Introduction

The lazy evaluation of the λ-calculus has been introduced by Plotkin in [13],
in both the call-by-name and the call-by-value setting, for capturing the be-
haviour of the functional languages, where a function is only evaluated when
parameters are supplied. In the λ-calculus setting, this means that the eval-
uation of a program (i.e., a closed term) stops when an abstraction term is
reached.

The lazy call-by-name evaluation is modelled through the standard λβ-
calculus, the call-by-value is modelled using the λβv-calculus, which has been
introduced with this aim in [13]. In both cases the lazy evaluation is performed
by choosing at every step the outermost redex (respectively the β-redex and
the βv-redex) not under the scope of a λ-abstraction. The lazy operational se-
mantics, induced by this evaluation strategy, can be defined, following Plotkin
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[13], as a pre-order relation between λ-terms, saying that M is operationally
less than N if and only if, for all context C[.] such that C[M ], C[N ] are closed,
C[M ] reduces to an abstraction implies C[N ] reduces to an abstraction.

The lazy denotational semantics of the λ-calculus has been first studied by
Abramsky and Ong [2], in the call-by-name setting, and by Egidi, Honsell and
Ronchi Della Rocca [8] in the call-by-value setting. Both models are built in
the category of the topological spaces, and are based on the lifting operation
on domains. Namely the model Mcbn, for the call-by-name case, is the initial
solution of the domain equation

X = [X → X]⊥

where [. → .]⊥ is the lifted space of Scott’s continuous functions. In the
call-by-value case, the model Mcbv is the initial solution of the domain

X = [X →⊥ X]⊥.

where [. →⊥ .]⊥ is the lifted space of Scott’s strict continuous functions.

Both models turned out to be correct but not complete with respect to
the operational semantics they want to model. Let us recall that a model
is correct when the denotational semantics implies the operational one, it is
complete if the inverse implication holds. Moreover a model is fully abstract
with respect to an operational semantics if and only if it is both correct and
complete with respect to it. It has been proved, respectively in [8] and [2],
that there is not a topological model which is fully abstract with respect to
the lazy operational semantics, both in the call-by-value and call-by-name
case. Both proofs are inspired to the incompleteness result proved in [10]. In
[8] a fully abstract model has been built, through a collapse on Mcbv, based
on a notion of applicative bisimulation on terms. This technique cannot be
applied to the model Mcbn, since it requires that the projections used in the
construction of the model be λ-definable, and in this case this is not true.
Further incompleteness results for the class of lazy call-by-name models based
on stable functions have been proved in [4].

In this paper we consider a logical description of both the previous recalled
models, based on an intersection type assignment system, and we define a pre-
order relation between closed terms, stratified by types, that, when specialized
by the type system describing one or the other of the two models, turns out
to be equivalent to the operational semantics the model describes. So this
pre-order relation is used for building, in a completely uniform way, two fully
abstract models, for the call-by-name and the call-by-value case. First the pre-
order on terms is extended to a pre-order on filters which are interpretations of
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closed terms, and then the fully abstract models is obtained by collapsing all
filters belonging to the same equivalence class, with respect to the equivalence
induced by the given pre-order.

A further fully abstract model for the lazy call-by-name operational se-
mantics, based on a variant of the game semantics, has been built in [7].

A general investigation on the properties of the models for the call-by-name
lazy-λ-calculus, in different settings, can be found in [5].

The paper is organized as follows. In Section 2 we introduce the parametric
λ-calculus, which will allow us to speak, in an uniform way, about the call-by-
name and the call-by-value version of the λ-calculus. In Section 3 the two lazy
operational semantics are introduced. In Sections 4 and 5 the basic notions
of model and filter model are respectively recalled. Section 6 contains the
two pre-orders on terms and the proof that they grasp exactly the operational
semantics. In Section 6 we sketch how to use this pre-order for building a fully
abstract model.

2 A Parametric Language

In order to deal with two different calculi in an uniform way, we will use
the notion of parametric calculus, defined first in [12]. The λ∆-calculus is the
language Λ equipped with a set ∆ ⊆ Λ of input values, satisfying some closure
conditions. Informally, input values represent partially evaluated terms, that
can be passed as parameters.

Definition 2.1 Let ∆ ⊆ Λ.

i) The set Λ of terms of λ-calculus is defined inductively by the following
grammar: M ::= x | λx.M | MM where x ∈ V ar, and V ar is a countable
set of variables.

ii) The ∆-reduction (→∆) is the contextual closure of the following rule:

(λx.M)N → M [N/x] if and only if N ∈ ∆.

(λx.M)N is called a ∆-redex (or simply redex).

iii) →∗
∆ and =∆ are respectively the reflexive and transitive closure of →∆ and

the symmetric, reflexive and transitive closure of →∆.

iv) A set ∆ ⊆ Λ is a set of input values, when the following conditions are
satisfied:

• Var ⊆ ∆ (Var-closure);

• P, Q ∈ ∆ implies P [Q/x] ∈ ∆, for each x ∈ Var (substitution closure);

• M ∈ ∆ and M →∆ N imply N ∈ ∆ (reduction closure).
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v) A term is in ∆-normal form (∆-nf) if it has not ∆-redexes.

Theorem 2.2 [12] The λ∆-calculus enjoys the Church-Rosser property, for
every choice of the set of input values ∆.

In this paper we will study two particular instances of input values, namely
∆ = Λ and ∆ = Γ, where Γ = V ar ∪ {λx.M | M ∈ Λ}. It is easy to check
that both Λ and Γ are sets of input values. In particular the λΛ-calculus is the
usual λβ-calculus and the λΓ-calculus is the λβv-calculus, defined by Plotkin
[13].

For every Σ ⊆ Λ, Σ0 denotes the restriction of Σ to closed terms. M
denotes a sequence of terms M1, ..., Mn, for n ≥ 0 (if n = 0 the sequence is
empty). ‖M‖ denotes the lenght of the sequence M .

3 Operational Semantics

The two operational semantics defined below characterize the set of closed
terms reducing to an abstraction, respectively in the call-by-name and call-
by-value setting. Let W ⊆ Λ be the set of λ-abstractions.

Definition 3.1 i) ⇓L is the formal system proving judgments of the shape
M ⇓L N where M ∈ Λ0 and N ∈ W 0. It consists of the following rules:

(lazy)

λx.M ⇓L λx.M

P [Q/x]M1. . .Mm ⇓L N
(head)

(λx.P )QM1. . .Mm ⇓L N

M ⇓L denotes that there is a proof of the judgment M ⇓L N , for some
N , while M ⇑L denotes that there is not such a proof.

ii) The lazy operational semantics L is defined as the following preorder:
M 	L N if and only if, for all context C[.] such that C[M ], C[N ] ∈ Λ0,
C[M ] ⇓L implies C[N ] ⇓L. The strict preorder will be denoted by ≺L.

iii) M ≈L N if and only if M 	L N and N 	L M .

The formal system described before corresponds to the lazy call-by-name
evaluation machine introduced by Plotkin [13].

Theorem 3.2 Let M ∈ Λ0.

i) M ⇓L N implies N is an abstraction and M →∗
Λ N ;

ii) M ⇓L if and only if M Λ-reduces to an abstraction.

In the next definition the lazy call-by-value operational semantics is given.
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Definition 3.3 i) ⇓V is the formal system proving judgments of the shape
M ⇓V N where M ∈ Λ0 and N ∈ W 0. It consists of the following rules:

(lazy)

λx.M ⇓V λx.M

Q ⇓V Q′ P [Q′/x]M1. . .Mm ⇓V N
(head)

(λx.P )QM1. . .Mm ⇓V N

M ⇓V denotes that there is a proof of the judgment M ⇓V N , for some
N , while M ⇑V denotes that there is not such a proof.

ii) M 	V N if and only if, for all context C[.] such that C[M ], C[N ] ∈ Λ0,
C[M ] ⇓V implies C[N ] ⇓V.

iii) M ≈V N if and only if M 	V N and N 	V M .

The formal system described before corresponds to the lazy call-by-value
evaluation machine introduced by Plotkin [13].

Theorem 3.4 Let M ∈ Λ0.

i) M ⇓V N implies N is an abstraction and M →∗
Γ N ;

ii) M ⇓V if and only if M Γ-reduces to an abstraction.

4 λ∆-models

In this section the definition of λ∆-model and the notion of correctness and
completeness are recalled.

Definition 4.1 A λ∆-model is a quadruple < D, I, ◦, [[.]] >, where:
D is a set, ◦ is a map from D

2 in D and I ⊆ D. Moreover, if E is the collection
of functions (environments) from Var to I, ranged over by ρ, ρ′, .., then the
interpretation function [[.]] : Λ × E → D satisfies the following conditions:

(i) [[x]]ρ = ρ(x);

(ii) [[MN ]]ρ = [[M ]]ρ ◦ [[N ]]ρ;

(iii) [[λx.M ]]ρ ◦ d = [[M ]]ρ[d/x] if d ∈ I;

(iv) if [[M ]]ρ[d/x] = [[M ′]]ρ′[d/y] for each d ∈I, then [[λx.M ]]ρ = [[λy.M ′]]ρ′ ;

(v) M ∈ ∆ implies ∀ρ.[[M ]]ρ ∈ I.

where ρ[d/x](y) = if y ≡ x then d else ρ(y).

I is the semantic counterpart of the set of input values; posing I = D, the
previous definition is equivalent to the classical definition of λ-model given in
[9]. A λ∆-model M induces an equivalence relation between terms defined
as:

M ∼M N if and only if [[M ]]Mρ = [[N ]]Mρ , for all environments ρ.
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Let ≈O be an equivalence relation between terms induced by an operational
semantics O. The denotational equivalence ∼M is correct with respect to the
operational equivalence ≈O if M ∼M N implies M ≈O N , for all M and N ,
while it is complete if M ≈O N implies M ∼M N , for all M and N . M is
fully abstract if it is both correct and complete.

5 Filter Models

In this section we will introduce the notion of filter models, a class of λ∆-
models based on intersection types and intersection type assignment systems.
The use of intersection type assignment systems for a logical description of
domains has been extensively studied in [6], [3], [1].

Definition 5.1 i) Let C be a non empty countable set of type-constants,
containing at least the constant ω (the universal type). The set T (C) of
types is inductively defined as follows: σ ::= α | (σ → σ) | (σ ∧ σ) where
α ∈ C.

ii) An intersection relation ≤ is a preorder relation on T (C), closed under
the following rules:

(a)

σ ≤ ω
(b)

σ ≤ σ ∧ σ
(c)

σ ∧ τ ≤ σ
(c′)

σ ∧ τ ≤ τ

(d)

(σ → τ) ∧ (σ → π) ≤ σ → (τ ∧ π)

σ ≤ σ′, τ ≤ τ ′
(e)

σ ∧ τ ≤ σ′ ∧ τ ′

σ′ ≤ σ, τ ≤ τ ′
(f)

σ → τ ≤ σ′ → τ ′
(g)

σ → ω ≤ ω → ω
(r)

σ ≤ σ

σ ≤ ρ, ρ ≤ τ
(t)

σ ≤ ρ

iii) Let ≤ be a intersection relation on T (C).
≤ induce a type theory �: σ � τ if and only if σ ≤ τ and τ ≤ σ.

iv) A type system ∇ is a triple < C,≤∇, I(C) >, where C is a set of type
constants, ≤∇ is an intersection relation on T (C) and I(C) ⊆ T (C) is a set
of input types with respect to ≤∇, namely it is not empty and it is closed
under the following conditions:
• σ ∈ I(C) and σ �∇ τ imply τ ∈ I(C);
• σ ∈ I(C) and τ �∈ I(C) imply σ ≤∇ τ .

v) Given a type system ∇, the corresponding type assignment system �∇ is
a formal system proving statements of the shape:

B �∇ M : σ

where M is a term, σ ∈ T (C) and B is a basis i.e., a function from Var to
I(C). B[σ/x] denotes the basis such that:
B[σ/x](y) = if y ≡ x then σ else B(y).
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The type assignment system consists of the following rules:

(var)

B[σ/x] �∇ x : σ
(ω)

B �∇ M : ω

B[σ/x] �∇ M : τ
(→I)

B �∇ λx.M : σ → τ

σ ∈ I(C) B �∇ M : σ → τ B �∇ N : σ
(→E)

B �∇ MN : τ

B �∇ M : σ B �∇ M : τ
(∧I)

B �∇ M : σ ∧ τ

B �∇ M : σ σ ≤∇ τ
(≤∇)

B �∇ M : τ

B �∇ M : σ ∧ τ
(∧El)

B �∇ M : σ

B �∇ M : σ ∧ τ
(∧Er)

B �∇ M : τ

Note that rules (∧El) and (∧Er) are redundant, since the rule (≤∇).

I(C) is the collection of types that can be assigned to input values. This
is reflected by the facts that I(C) (and not the whole T (C)) is the codomain
of the basis, and the rule (→ E) requires the argument of the application has
a type belonging to I(C).

Let ∇ be the type system < C,≤∇, I(C) >. If π ∈ I(C) and σ ≤∇ π then
σ ∈ I(C). If σ ∈ I(C) then σ ∧ τ ∈ I(C), for all τ ∈ T (C). If π �∈ I(C) and
π ≤∇ σthen σ �∈ I(C).

In order to decrease the number of parenthesis in types, we will use the
following precedence rules between connectives: ∧ binds stronger than →,
moreover → associates to the right. We will use σ ∧ τ ∧ ρ for denoting both
σ ∧ (τ ∧ ρ) and σ ∧ (τ ∧ ρ).

The notion of legal type theory, given in the next definition, is a key one,
since we will prove that to be legal is a necessary condition for a type theory
to induce a λ∆-model.

Definition 5.2 Let ∇ be the type system < C,≤∇, I(C) >.
∇ is legal if and only if for all σ ∈ I(C) and τ ��∇ ω:

(σ1 → τ1) ∧ ... ∧ (σn → τn) ≤∇ σ → τ (1 ≤ n) implies

∃{i1, ..., ik} ⊆ {1, ..., n} s.t. (σi1 ∧ ... ∧ σik) ≥∇ σ and (τi1 ∧ ... ∧ τik) ≤∇ τ .

Let ∇ be a type system < C,≤∇, I(C) > such that I(C) = T (C) and ≤∇
is the least inclusion relation: ∇ is legal.

Now we are ready to introduce the basic ingredients for defining a filter
model.

Definition 5.3 Let ∇ be the type system < C,≤∇, I(C) >.

i) A filter f on ∇ is any set containing ω and closed under ∧ and ≤∇, namely:
· µ, ν ∈ f implies µ ∧ ν ∈ f ;
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· µ ∈ f and µ ≤∇ τ imply τ ∈ f .
Let F(∇) be the set of all filters on ∇ and let I(∇) be the set of filters
containing at least one type belonging to I(C).

ii) Let S be a set of types; ↑ S is the filter obtained from S by closing it under
∧ and ≤∇, i.e the least filter containing S.

iii) Let ◦∇ be the binary operation defined on F(∇) in the following way:

f1 ◦∇ f2 =↑ {ω} ∪ {τ | σ → τ ∈ f1 and σ ∈ f2 and σ ∈ I(C)}.

Note that f ∈ I(∇) and σ �∈ I(C) imply σ ∈ f , by the conditions on the
set of input types. The interpretation function associates to every term all
the types that can be assigned to it.

Let ∇ =< C,≤∇, I(C) >. [[.]]F(∇) : Λ × (Var → I(∇)) → F(∇) is the
interpretation function, defined as follows:

[[M ]]F(∇)
ρ = {σ ∈ T (C) | ∃B ∝ ρ such that B �∇ M : σ}

where B ∝ ρ means that ∀z ∈ Var B(z) ∈ ρ(z).

Theorem 5.4 Let ∇ =< C,≤∇, I(C) > be a legal type system, and let M ∈
∆ imply [[M ]]ρ ∈ I(∇), for all environment ρ.

Then < F(∇), I(∇), ◦∇, [[.]]F(∇) > is a λ∆-model.

Proof. It is easy to see that [[M ]]
F(∇)
ρ is a filter, for all term M . The proof

can be carried out by verifying the conditions of Definition 4.1. �

The partial order between terms induced by a filter λ∆-model F is defined
as follows:

M �F N if and only if ∀ρ, [[M ]]Fρ ⊆ [[N ]]Fρ
i.e., {σ|∃B ∝ ρ such that B �∇ M : σ} ⊆ {σ|∃B ∝ ρ such that B �∇ N : σ}.
M �F N will denote the proper inclusion.

We can refine both the notion of correctness and completeness of a model
with respect to a given operational semantics, by taking into account the
preorder relation instead of the equivalence one.

Definition 5.5 Let F be a filter model.

F is correct with respect to the O-operational semantics if and only if
M �F N implies M 	O N , for all M, N ∈ Λ. F is complete with respect to
the O-operational semantics if and only if the inverse implication holds.

Moreover F is fully abstract with respect to O, in case it is both correct
and complete with respect to O.
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6 Two Lazy Models

We present two filter models, which are correct but not complete with respect
to the L-operational semantics and the V-operational semantics, respectively.

Definition 6.1 Let C∠ = {ω}. ∠ is the type system < C∠,≤∠, I(C∠) >,
where ≤∠ is the least intersection relation of Definition 5.1.ii) and I(C∠) =
T (C∠). Let L be the filter model < F(∠),F(∠), ◦∠, [[.]]F(∠) >.

L is isomorphic to the topological λ-model obtained as initial solution of
the domain equation:

X = [X → X]⊥
where [. → .]⊥ is the lifted space of Scott’s continuous functions (see [2]).

Theorem 6.2 i) [2] L is correct with respect to the L-operational semantics.

ii) [2] L is not complete with respect to the L- operational semantics.

Now let us define the next model.

Definition 6.3
√

is the type system < C√,≤√, I(C√) > where C√ = {ω},

I(C√) = {σ0 ∧ ... ∧ σn | ∃k ≤ n ∃σ, τ ∈ T (C√) σk ≡ σ → τ}

and ≤√ is the intersection relation induced by adding to the Definition 5.1.ii)
the rule

(v)

(ω → ω) → τ ≤√ ω → τ

V is the λΓ-model < F(
√

), I(
√

), ◦√, [[.]]F(
√

) >.

It is easy to check that σ ∈ I(C√) if and only if σ ��√ ω.

The filter Γ-model V can be proved isomorphic to that one defined in [8],
where types are built starting from a constant ν which plays the role of the
type ω → ω. So it follows that V is isomorphic to the topological λ-model
obtained as initial solution of the domain equation:

X = [X →⊥ X]⊥.

where [. →⊥ .]⊥ is the lifted space of Scott’s strict continuous functions.

Theorem 6.4 i) [8] V is correct with respect to the V-operational semantics.

ii) [8] V is not complete with respect to the V- operational semantics.

Both models characterize convergent terms by the type ω → ω.

Property 6.5 Let M ∈ Λ0.
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i) B �∠ M : ω → ω if and only if M ⇓L.

ii) B �√ M : ω → ω if and only if M ⇓V.

Some structural properties of types will be useful.

Property 6.6 Let ∇ ∈ {∠,
√}.

i) If σ ��∇ ω then σ �∇ σ0 ∧ ... ∧ σn such that ∀i ≤ n,
σi �∇ τ i

1 → ... → τ i
mi

→ ω → ω, for some n, mi ∈ N.

ii) σ �∇ ω if and only if σ ≡ ω ∧ ..... ∧ ω
︸ ︷︷ ︸

n

(n ≥ 1).

iii) (ω → ω) → τ �√ ω → τ , for all τ ∈ T (C√).

7 Applicative Operational Preorders

Two preorder relations on closed λ-terms will be defined, stratified by types
respectively of T (C∠) and T (C√). These relations will turn out to correspond
respectively to the two operational preorders 	L and 	V.

Let ∆ be a set of input values: a term M is ∆-valuable if and only if it ∆-
reduces to a term in ∆. Clearly the notion of Λ-valuable term is meaningless.

Definition 7.1 Let either (∆ = Λ and ∇ = ∠) or (∆ = Γ and ∇ =
√

).

i) �∆
σ is a relation on Λ0 defined as follows:

• M �∆
ω N is true;

• M �∆
σ→τ N where τ �∇ ω, if and only if

B �∇ M : ω → ω implies B �∇ N : ω → ω, for all basis B;

• M �∆
σ→τ N where τ ��∇ ω, if and only if

P closed and ∆-valuable, and B �∇ P : σ imply MP �∆
τ NP ;

• M �∆
σ∧τ N if and only if both M �∆

σ N and M �∆
τ N ;

ii) M �∆ N if and only if M �∆
σ N , for all σ.

The next property will be useful in order to better understand the previous
definition.

Property 7.2 For every type σ and basis B,

i) there is a closed term P such that B �∠ P : σ;

ii) there is a closed term P such that B �√ P : σ.

Proof. It is easy to prove that for each σ there is n such that both B �∠:
λx1...xn.DD : σ and B �√: λx1...xn.DD : σ, where D ≡ λx.xx. Both proofs
can be done by induction on σ �
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Note that, although λx.DD ��Λ
ω→ω DD, λx.DD �Λ

ω→ω→ω DD; in fact for
each P ∈ Λ0, B �∠ P : ω, and so (λx.DD)P �Λ

ω→ω (DD)P is true, by
definition of �Λ. Hence M �Λ

σ N and σ ≤∠ τ does not imply M �Λ
τ N .

Property 7.3 Let M, N ∈ Λ0.

i) �∆ is reflexive.

ii) �∆ is transitive.

Proof. Both points can be proved by an easy induction on σ. �

Property 7.4 Let M, N ∈ Λ0.

i) M �L N implies M �Λ N ;

ii) M �V N implies M �Γ N .

Proof.

i) We will prove that M ��Λ N implies M ��L N . By definition M ��Λ N
means that there is σ such that M ��Λ

σ N . The proof is given by induction
on σ. Clearly σ ��∠ ω, since by definition M �Λ

ω N is true. If σ ≡ µ → ν
where ν �∠ ω, then B �∠ M : ω → ω and B ��∠ N : ω → ω by definition
of �Λ, so the proof is immediate. If σ ≡ µ → ν where ν ��∠ ω, then there
is P ∈ Λ0 such that MP ��Λ

ν NP , by definition of �Λ. Hence, MP ��L NP
by induction, so M ��L N . If σ ≡ µ∧ ν then the proof follows by induction.

ii) Similar to the previous point.

�

Now we will prove that, for closed terms, the preorders 	L and 	V coincide
respectively with �Λ and �Γ.

Lemma 7.5 Let M, N ∈ Λ0 and, let either (∆ = Λ and ∇ = ∠) or (∆ = Γ
and ∇ =

√
). M �∆ N if and only if MP �∆

ω→ω NP , for each sequence P
of closed ∆-valuable terms.

Proof. ⇐ We will prove that M ��∆ N implies that there is a sequence of
closed ∆-valuable terms P such that MP ��∆

ω→ω NP . By hypothesis there is
a type σ such that M ��∆

σ N , so the proof is done by induction on σ.

If σ �∇ ω then σ �∇ ω ∧ ..... ∧ ω
︸ ︷︷ ︸

n

(n ≥ 1); but, since M �∆
ω N by

definition, this is not possible. Thus let σ ��∇ ω. If σ ≡ µ → ν where ν �∇ ω,
then the proof is vacuous. If σ ≡ µ → ν where ν ��∇ ω, then there is P ∈ ∆0

such that MP ��∆
ν NP , so the proof follows by induction. If σ ≡ µ ∧ ν then

the proof follows by induction.

⇒ We will prove that, if there is a sequence of closed ∆-valuable P and
a type τ ��∇ ω such that MP ��∆

τ NP then M ��∆ N , by induction on
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the length of P . If ‖P ‖ = 0 then the proof is trivial, so let ‖P ‖ ≥ 1 and
P ≡ QQ′.

• B �∠ Q′ : ω by rule (ω) implies MQ ��Λ
ω→τ NQ by definition of �Λ; so the

proof follows by induction.

• B �√ Q′ : ω → ω, since Q′ is Γ- valuable, implies MQ ��Γ
(ω→ω)→τ NQ by

definition of �Γ; so the proof follows by induction.

�

Lemma 7.6 Let M, N ∈ Λ0.
M 	L N if and only if MP �Λ

ω→ω NP , for each sequence of closed terms P .

Proof. Remember that, for every term Q, Q ⇓L if and only if B �∠ Q : ω →
ω, by Property 6.5.i.

⇒ Let P be a sequence of closed terms and let B be a basis. If M 	L N then
MP ⇓L implies NP ⇓L; thus, B �∠ MP : ω → ω implies B �∠ NP : ω → ω,
by Property 6.5.i. Hence, by definition of �ω→ω the proof is done.

⇐ Let MP �ω→ω NP , for each sequence of closed terms P . We will prove
that, if C[M ], C[N ] ∈ Λ0 and C[M ] ⇓L, then C[N ] ⇓L, for all context C[.].
The proof is done by induction on the size of the derivation proving C[M ] ⇓L.

If the last applied rule is (lazy) then either C[.] ≡ [.] or C[.] ≡ λx.C0[.], so
the proof is immediate. If the last applied rule is (head) then there are two
cases, according to the possible shape of C[.].

• C[.] ≡ [.]C1[.]...Cm[.] (m ∈ N).

If m = 0 then M ⇓L implies B �∠ M : ω → ω, so B �∠ N : ω → ω by
definition of �ω→ω and the proof follows by Property 6.5.i.

Now let m ≥ 1. Define D[.] ≡ MC1[.]...Cm[.], so D[M ] ≡ C[M ]. If M ≡
(λz.M0)M then D[.] ≡ (λz.M0)MC1[.]...Cm[.] (m ∈ N).

If ‖M‖ = 0 then let D∗[.] ≡ M0[C1[.]/z]C2[.]...Cm[.], otherwise let D∗[.] ≡
M0[M1/z]RC1[.]...Cm[.] where M ≡ M1R. In all cases D∗[M ] ⇓L and by in-
duction D∗[N ] ⇓L, so D[N ] ⇓L by rule (head). But MC1[N ]...Cm[N ] ⇓L im-
plies B �∠ MC1[N ]...Cm[N ] : ω → ω, so by hypothesis B �∠ NC1[N ]...Cm[N ] :
ω → ω. Hence, NC1[N ]...Cm[N ] ⇓L by Property 6.5.i.

• C[.] ≡ (λy.C0[.])C1[.]...Cm[.] (m ∈ N).
The case m = 0 is not possible, otherwise the proof follows by induction

on the derivation proving C0[M ][C1[M ]/y]C2[M ]...Cm[M ] ⇓L.

�

Theorem 7.7 For all M, N ∈ Λ0, M �Λ N if and only if M 	L N .

Proof. By Lemmas 7.5 and 7.6. �
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The proof of the ⇐ implication of the property corresponding to 7.6, for
the λΓ-calculus cannot be done by induction on the size of the derivation. We
need to define a more refined induction measure, that has been introduced in
[11], for reasoning about the V-operational semantics.

Definition 7.8
The weight 〈 〉 : Λ0 −→ N is the partial function, defined as follows:

• 〈λx.M ′〉 = 0

• 〈(λx.M0)M1. . .Mm〉 = 1 + 〈M1〉 + 〈M0[M1/x]M2. . .Mm〉
Property 7.9 Let M ∈ Λ0.

i) 〈M〉 is defined if and only if M ⇓V;

ii) Let M →∗
Γ N . If 〈M〉 is defined then 〈N〉 is defined and 〈M〉 ≥ 〈N〉.

Informally, the weight of a Γ-valuable term M is an upper bound of the
lenghts of two reduction sequences, starting from M and reaching an abstrac-
tion, one performing at every step the outermost Γ-redex, the other performing
at every step the innermost Λ-redex not under the scope of an abstraction.

The following property holds.

Lemma 7.10 Let M, N ∈ Λ0. M 	V N if and only if MP �ω→ω NP , for
each sequence of closed Γ-valuable terms P .

Proof. Let Q be a closed Γ-valuable term. Then Q ⇓V if and only if B �√

Q : ω → ω, by Property 6.5.ii.

⇒ Let P be a sequence of closed Γ-valuable terms. If M 	V N then,
MP ⇓V implies NP ⇓V; thus, B �√ MP : ω → ω implies B �√ NP : ω →
ω, by Property 6.5.ii. So the proof is done, by definition of �ω→ω.

⇐ Let MP �ω→ω NP , for each sequence of closed Γ-valuable terms P . We
will prove that, if 〈C[M ]〉 defined implies 〈C[N ]〉 defined, for all context C[.]
such that C[M ], C[N ] ∈ Λ0. Then the result follows from Property 7.9.i. The
proof will be given by induction on 〈C[M ]〉. There are two cases, according
to the possible shape of C[.].

• C[.] ≡ [.]C1[.]...Cm[.] (m ∈ N).

If m = 0 then 〈M〉 defined and M ⇓V, so B �√ M : ω → ω. But
B �√ N : ω → ω by definition of �ω→ω and the proof follows by Property
7.9.i. Let m ≥ 1 and let M ≡ (λx.M0)M1...Mp. Pose D[.] ≡ MC1[.]...Cm[.],
so D[M ] ≡ C[M ].
· If p > 0 then D∗[.] ≡ M0[M1/x]M2...MpC1[.]...Cm[.], so 〈D∗[M ]〉 and 〈M1〉

are defined, since 〈C[M ]〉 is defined.
· Otherwise D∗[.] ≡ M0[C1[.]/x]C2[.]...Cm[.], so 〈D∗[M ]〉 and 〈C1[M ]〉 are

L. Paolini, S. Ronchi Della Rocca / Electronic Notes in Theoret. Comput. Sci. 104 (2004) 235–251 247



defined, since 〈C[M ]〉 is defined.
In both cases, 〈D[N ]〉 is defined by induction. Hence D[N ] ⇓V, thus B �√

MC1[N ]....Cm[N ] : ω → ω, therefore by hypothesis B �√ NC1[N ]...Cm[N ] :
ω → ω. So NC1[N ]...Cm[N ] ⇓V by Property 6.5.ii and the proof follows.

• C[.] ≡ (λy.C0[.])C1[.]...Cm[.] (m ∈ N).
The case m = 0 is trivial, otherwise the proof follows by induction on the

weight of C0[M ][C1[M ]/y]C2[M ]...Cm[M ] and C1[M ].

�

Theorem 7.11 For all M, N ∈ Λ0, M �Γ N if and only if M 	V N .

Proof. By Lemmas 7.5 and 7.10. �

8 Two fully abstract models

By using the results of the previous section, we can build two fully abstract
models, with respect to the L and V operational semantics respectively . Since
the construction is completely uniform in the two cases, we will sketch just
the case of V.

�Γ induces a preorder on F 0(
√

), the set of filters of F(
√

) which are
interpretations of closed terms.

Definition 8.1 Let f, g ∈ F 0(
√

) and let ρ be an environment.

f �Γ g if and only if M, N ∈ Λ0 such that [[M ]]
F(

√
)

ρ = f and [[N ]]
F(

√
)

ρ = g
imply M �Γ N . Moreover, f � g if and only if f �Γ g and g �Γ f .

Note that if M is closed then [[M ]]Vρ = [[M ]]Vρ′ , for all ρ, ρ′; moreover, if M, N

are closed then [[M ]]Vρ = [[N ]]Vρ′ implies M �Γ N and N �Γ M , by Property

7.4.ii. Remark that �Γ is overloaded, since it denotes both a relation on Λ0

and a relation on F 0(
√

).

Now we can define the new λΓ-model.

Definition 8.2 Let f, g ∈ F 0(
√

).

i) [f ] is the equivalence class of f with respect to the equivalence relation
�, while F 0

� is the set of of equivalence classes induced from � on F 0(
√

).

Moreover, let I0
� = {[f ] ∈ F 0

� | ∃M ∈ Γ0 s.t. [[M ]]
F(

√
)

ρ = f}.
ii) ◦� : F0

� ×F0
� → F0

� is defined as [f ] ◦� [g] = [f ◦√ g], for all [f ], [g] ∈ F 0
�.

iii) The interpretation function [[.]]VV : Λ × (Var → I0
�) → F0

� is defined as:

[[M ]]VV
ζ = [[[M ]]

F(
√

)
ρ ], where ρ is such that ρ(x) ∈ ζ(x) for all x ∈ Var.

iv) Let VV be the quadruple: < F 0
�, I0

�, ◦, [[.]]VV >.
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Note that the interpretation is defined for open terms too.

Property 8.3 Let M, N, P, Q ∈ Λ0.
If M �Γ N and P �Γ Q then MP �Γ NQ.

Proof. By Theorem 7.11. �

◦� is well defined, by using the previous property. Furthermore, it is easy
to see that [f ] ∈ I0

� and f ′ ∈ [f ] imply that f ′ ∈ I(
√

).

Lemma 8.4 VV is a λΓ-model.

Proof. We check that VV satisfies the conditions of definition 4.1.

If ζ ∈ (Var → I0
�) then let ρ be such that ρ(x) ∈ ζ(x) for all x ∈ Var.

(i) [[x]]VV
ζ = [[[x]]

F(
√

)
ρ ] = [ρ(x)] = ζ(x).

(ii) [[MN ]]VV
ζ = [[[MN ]]

F(
√

)
ρ ] = [[[M ]]

F(
√

)
ρ ◦√[[N ]]

F(
√

)
ρ ] = [[[M ]]

F(
√

)
ρ ]◦�[[[N ]]

F(
√

)
ρ ] =

[[M ]]VV
ζ ◦� [[N ]]VV

ζ .

(iii) [[λx.M ]]VV
ζ ◦� [d] = [[[λx.M ]]

F(
√

)
ρ ]◦� [d] = [[[λx.M ]]

F(
√

)
ρ ◦√d] = [[[M ]]

F(
√

)
ρ[d/x]] =

[[M ]]VV
ζ[[d]/x], for all d ∈ I0(

√
).

(iv) Let [[M ]]VV
ζ[[d]/x] = [[N ]]VV

ζ′[[d′]/x′], where d, d′ ∈ I0(
√

); thus [[[M ]]
F(

√
)

ρ[d/x]] =

[[[N ]]
F(

√
)

ρ[d′/x′]], hence [[[λx.M ]]ρ] = [[[λx′.N ]]ρ′ ] so [[λx.M ]]VV
ζ = [[λx′.N ]]VV

ζ′ .

(v) Trivial.

�

Since �Γ is a preorder on F 0(
√

) then it induces a partial order on F 0
�.

Definition 8.5
Let M �VV N denote [[M ]]VV

ζ �Γ [[N ]]VV
ζ , for all ζ ∈ (Var → I0

�).
Moreover, let M ∼VV N denote M �VV N and N �VV M .

Consequently the model VV induces a partial order on the interpretation
of terms (not only closed terms).

Lemma 8.6 Let M, N ∈ Λ0. M �VV N if and only if M �Γ N .

Proof. Let ζ ∈ (Var → I0
�) and let ρ be such that ρ(x) ∈ ζ(x) for all x ∈ Var.

M �VV N if and only if [[M ]]VV
ζ �Γ [[N ]]VV

ζ if and only if [[[M ]]
F(

√
)

ρ ] �Γ [[[N ]]
F(

√
)

ρ ]

if and only if [[M ]]
F(

√
)

ρ �Γ [[N ]]
F(

√
)

ρ if and only if M �Γ N . �

The correctness is easy.

Theorem 8.7 VV is correct with respect to the V-operational semantics.
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Proof. We will prove that M �VV N implies M 	V N , by definition of
correctness. M �VV N implies C[M ] �VV C[N ], for each closing context
C[.]. Thus C[M ] �Γ C[N ], by Lemma 8.6; hence C[M ] �Γ

ω→ω C[N ], thus
B �√ C[M ] : ω → ω implies B �√ C[N ] : ω → ω, for all basis B. So,
Property 6.5.ii, C[M ] ⇓V implies C[N ] ⇓V, and so M 	V N . �

The following theorem implies the full abstraction of VV with respect to
the V-operational semantics.

Theorem 8.8 VV is complete with respect to the V-operational semantics.

Proof. We will prove ��VV implies �	V.
M ��VV N means [[M ]]VV

ζ ��Γ [[N ]]VV
ζ , for some ζ ∈ (Var → I0

�). Since the

codomain of ζ is I0
�, if FV(M)∪FV(N) = {x1, ..., xm} then there are Pi ∈ Γ0

such that ζ(xi) = [[[Pi]]
F(

√
)

ρ ]. Thus, let s be such that s(xi) = Pi (1 ≤ i ≤ m),
hence s(M), s(N) ∈ Λ0. Thus [[s(M)]]VV

ζ′ ��Γ [[s(N)]]VV
ζ′ , for all ζ ′ ∈ (Var → I0

�),

so in particular s(M) ��VV s(N).

By Lemma 8.6, s(M) ��Γ s(N), thus there is a sequence of closed Γ-valuable
terms Q such that s(M)Q ��Γ

ω→ω s(N)Q, by Theorem 7.5.

Let C[.] ≡ (λx1...xm.[.])s(x1)...s(xm)Q; clearly C[M ], C[N ] ∈ Λ0 and
moreover C[M ] ⇓V and C[N ] ⇑V, so M �	V N . �

So we can state the following theorem.

Theorem 8.9 The model VV is fully abstract with respect to the call-by-value
operational semantics.

The construction of the fully abstract model for the L-operational seman-
tics is similar but simpler.
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