7,562 research outputs found

    On Approximating Multi-Criteria TSP

    Get PDF
    We present approximation algorithms for almost all variants of the multi-criteria traveling salesman problem (TSP). First, we devise randomized approximation algorithms for multi-criteria maximum traveling salesman problems (Max-TSP). For multi-criteria Max-STSP, where the edge weights have to be symmetric, we devise an algorithm with an approximation ratio of 2/3 - eps. For multi-criteria Max-ATSP, where the edge weights may be asymmetric, we present an algorithm with a ratio of 1/2 - eps. Our algorithms work for any fixed number k of objectives. Furthermore, we present a deterministic algorithm for bi-criteria Max-STSP that achieves an approximation ratio of 7/27. Finally, we present a randomized approximation algorithm for the asymmetric multi-criteria minimum TSP with triangle inequality Min-ATSP. This algorithm achieves a ratio of log n + eps.Comment: Preliminary version at STACS 2009. This paper is a revised full version, where some proofs are simplifie

    Equidistribution of Point Sets for the Traveling Salesman and Related Problems

    Get PDF
    Given a set S of n points in the unit square [0, 1)2, an optimal traveling salesman tour of S is a tour of S that is of minimum length. A worst-case point set for the Traveling Salesman Problem in the unit square is a point set S(n) whose optimal traveling salesman tour achieves the maximum possible length among all point sets S C [0, 1)2, where JSI = n. An open problem is to determine the structure of S(n). We show that for any rectangle R contained in [0, 1 F, the number of points in S(n) n R is asymptotic to n times the area of R. One corollary of this result is an 0( n log n) approximation algorithm for the worst-case Euclidean TSP. Analogous results are proved for the minimum spanning tree, minimum-weight matching, and rectilinear Steiner minimum tree. These equidistribution theorems are the first results concerning the structure of worst-case point sets like S(n)

    Approximation Algorithms for the Asymmetric Traveling Salesman Problem : Describing two recent methods

    Full text link
    The paper provides a description of the two recent approximation algorithms for the Asymmetric Traveling Salesman Problem, giving the intuitive description of the works of Feige-Singh[1] and Asadpour et.al\ [2].\newline [1] improves the previous O(logn)O(\log n) approximation algorithm, by improving the constant from 0.84 to 0.66 and modifying the work of Kaplan et. al\ [3] and also shows an efficient reduction from ATSPP to ATSP. Combining both the results, they finally establish an approximation ratio of (43+ϵ)logn\left(\frac{4}{3}+\epsilon \right)\log n for ATSPP,\ considering a small ϵ>0\epsilon>0,\ improving the work of Chekuri and Pal.[4]\newline Asadpour et.al, in their seminal work\ [2], gives an O(lognloglogn)O\left(\frac{\log n}{\log \log n}\right) randomized algorithm for the ATSP, by symmetrizing and modifying the solution of the Held-Karp relaxation problem and then proving an exponential family distribution for probabilistically constructing a maximum entropy spanning tree from a spanning tree polytope and then finally defining the thin-ness property and transforming a thin spanning tree into an Eulerian walk.\ The optimization methods used in\ [2] are quite elegant and the approximation ratio could further be improved, by manipulating the thin-ness of the cuts.Comment: 12 page

    The Maximum Scatter TSP on a Regular Grid

    Get PDF
    In the maximum scatter traveling salesman problem the objective is to find a tour that maximizes the shortest distance between any two consecutive nodes. This model can be applied to manufacturing processes, particularly laser melting processes. We extend an algorithm by Arkin et al. that yields optimal solutions for nodes on a line to a regular m×nm \times n-grid. The new algorithm \textsc{Weave}(m,n) takes linear time to compute an optimal tour in some cases. It is asymptotically optimal and a 105\frac{\sqrt{10}}{5}-approximation for the 3×43\times 4-grid, which is the worst case.Comment: 6 pages, 2 figures; to appear in OR Proceedings 201

    Labeled Traveling Salesman Problems: Complexity and approximation

    Get PDF
    We consider labeled Traveling Salesman Problems, defined upon a complete graph of n vertices with colored edges. The objective is to find a tour of maximum or minimum number of colors. We derive results regarding hardness of approximation and analyze approximation algorithms, for both versions of the problem. For the maximization version we give a 1/21/2-approximation algorithm based on local improvements and show that the problem is APX-hard. For the minimization version, we show that it is not approximable within n1ϵn^{1-\epsilon} for any fixed ϵ>0\epsilon>0. When every color appears in the graph at most rr times and rr is an increasing function of nn, the problem is shown not to be approximable within factor O(r1ϵ)O(r^{1-\epsilon}). For fixed constant rr we analyze a polynomial-time (r+Hr)/2(r +H_r)/2 approximation algorithm, where HrH_r is the rr-th harmonic number, and prove APX-hardness for r=2r = 2. For all of the analyzed algorithms we exhibit tightness of their analysis by provision of appropriate worst-case instances
    corecore